kernel-fxtec-pro1x/drivers/scsi/cpqfcTSworker.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

6516 lines
207 KiB
C

/* Copyright(c) 2000, Compaq Computer Corporation
* Fibre Channel Host Bus Adapter
* 64-bit, 66MHz PCI
* Originally developed and tested on:
* (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ...
* SP# P225CXCBFIEL6T, Rev XC
* SP# 161290-001, Rev XD
* (back): Board No. 010008-001 A/W Rev X5, FAB REV X5
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
* Written by Don Zimmerman
*/
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/stat.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/smp_lock.h>
#include <linux/pci.h>
#define SHUTDOWN_SIGS (sigmask(SIGKILL)|sigmask(SIGINT)|sigmask(SIGTERM))
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/dma.h>
#include "scsi.h"
#include <scsi/scsi_host.h> // struct Scsi_Host definition for T handler
#include "cpqfcTSchip.h"
#include "cpqfcTSstructs.h"
#include "cpqfcTStrigger.h"
//#define LOGIN_DBG 1
// REMARKS:
// Since Tachyon chips may be permitted to wait from 500ms up to 2 sec
// to empty an outgoing frame from its FIFO to the Fibre Channel stream,
// we cannot do everything we need to in the interrupt handler. Specifically,
// every time a link re-init (e.g. LIP) takes place, all SCSI I/O has to be
// suspended until the login sequences have been completed. Login commands
// are frames just like SCSI commands are frames; they are subject to the same
// timeout issues and delays. Also, various specs provide up to 2 seconds for
// devices to log back in (i.e. respond with ACC to a login frame), so I/O to
// that device has to be suspended.
// A serious problem here occurs on highly loaded FC-AL systems. If our FC port
// has a low priority (e.g. high arbitrated loop physical address, alpa), and
// some other device is hogging bandwidth (permissible under FC-AL), we might
// time out thinking the link is hung, when it's simply busy. Many such
// considerations complicate the design. Although Tachyon assumes control
// (in silicon) for many link-specific issues, the Linux driver is left with the
// rest, which turns out to be a difficult, time critical chore.
// These "worker" functions will handle things like FC Logins; all
// processes with I/O to our device must wait for the Login to complete
// and (if successful) I/O to resume. In the event of a malfunctioning or
// very busy loop, it may take hundreds of millisecs or even seconds to complete
// a frame send. We don't want to hang up the entire server (and all
// processes which don't depend on Fibre) during this wait.
// The Tachyon chip can have around 30,000 I/O operations ("exchanges")
// open at one time. However, each exchange must be initiated
// synchronously (i.e. each of the 30k I/O had to be started one at a
// time by sending a starting frame via Tachyon's outbound que).
// To accommodate kernel "module" build, this driver limits the exchanges
// to 256, because of the contiguous physical memory limitation of 128M.
// Typical FC Exchanges are opened presuming the FC frames start without errors,
// while Exchange completion is handled in the interrupt handler. This
// optimizes performance for the "everything's working" case.
// However, when we have FC related errors or hot plugging of FC ports, we pause
// I/O and handle FC-specific tasks in the worker thread. These FC-specific
// functions will handle things like FC Logins and Aborts. As the Login sequence
// completes to each and every target, I/O can resume to that target.
// Our kernel "worker thread" must share the HBA with threads calling
// "queuecommand". We define a "BoardLock" semaphore which indicates
// to "queuecommand" that the HBA is unavailable, and Cmnds are added to a
// board lock Q. When the worker thread finishes with the board, the board
// lock Q commands are completed with status causing immediate retry.
// Typically, the board is locked while Logins are in progress after an
// FC Link Down condition. When Cmnds are re-queued after board lock, the
// particular Scsi channel/target may or may not have logged back in. When
// the device is waiting for login, the "prli" flag is clear, in which case
// commands are passed to a Link Down Q. Whenever the login finally completes,
// the LinkDown Q is completed, again with status causing immediate retry.
// When FC devices are logged in, we build and start FC commands to the
// devices.
// NOTE!! As of May 2000, kernel 2.2.14, the error recovery logic for devices
// that never log back in (e.g. physically removed) is NOT completely
// understood. I've still seen instances of system hangs on failed Write
// commands (possibly from the ext2 layer?) on device removal. Such special
// cases need to be evaluated from a system/application view - e.g., how
// exactly does the system want me to complete commands when the device is
// physically removed??
// local functions
static void SetLoginFields(
PFC_LOGGEDIN_PORT pLoggedInPort,
TachFCHDR_GCMND* fchs,
BOOLEAN PDisc,
BOOLEAN Originator);
static void AnalyzeIncomingFrame(
CPQFCHBA *cpqfcHBAdata,
ULONG QNdx );
static void SendLogins( CPQFCHBA *cpqfcHBAdata, __u32 *FabricPortIds );
static int verify_PLOGI( PTACHYON fcChip,
TachFCHDR_GCMND* fchs, ULONG* reject_explain);
static int verify_PRLI( TachFCHDR_GCMND* fchs, ULONG* reject_explain);
static void LoadWWN( PTACHYON fcChip, UCHAR* dest, UCHAR type);
static void BuildLinkServicePayload(
PTACHYON fcChip, ULONG type, void* payload);
static void UnblockScsiDevice( struct Scsi_Host *HostAdapter,
PFC_LOGGEDIN_PORT pLoggedInPort);
static void cpqfcTSCheckandSnoopFCP( PTACHYON fcChip, ULONG x_ID);
static void CompleteBoardLockCmnd( CPQFCHBA *cpqfcHBAdata);
static void RevalidateSEST( struct Scsi_Host *HostAdapter,
PFC_LOGGEDIN_PORT pLoggedInPort);
static void IssueReportLunsCommand(
CPQFCHBA* cpqfcHBAdata,
TachFCHDR_GCMND* fchs);
// (see scsi_error.c comments on kernel task creation)
void cpqfcTSWorkerThread( void *host)
{
struct Scsi_Host *HostAdapter = (struct Scsi_Host*)host;
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
#ifdef PCI_KERNEL_TRACE
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
#endif
DECLARE_MUTEX_LOCKED(fcQueReady);
DECLARE_MUTEX_LOCKED(fcTYOBcomplete);
DECLARE_MUTEX_LOCKED(TachFrozen);
DECLARE_MUTEX_LOCKED(BoardLock);
ENTER("WorkerThread");
lock_kernel();
daemonize("cpqfcTS_wt_%d", HostAdapter->host_no);
siginitsetinv(&current->blocked, SHUTDOWN_SIGS);
cpqfcHBAdata->fcQueReady = &fcQueReady; // primary wait point
cpqfcHBAdata->TYOBcomplete = &fcTYOBcomplete;
cpqfcHBAdata->TachFrozen = &TachFrozen;
cpqfcHBAdata->worker_thread = current;
unlock_kernel();
if( cpqfcHBAdata->notify_wt != NULL )
up( cpqfcHBAdata->notify_wt); // OK to continue
while(1)
{
unsigned long flags;
down_interruptible( &fcQueReady); // wait for something to do
if (signal_pending(current) )
break;
PCI_TRACE( 0x90)
// first, take the IO lock so the SCSI upper layers can't call
// into our _quecommand function (this also disables INTs)
spin_lock_irqsave( HostAdapter->host_lock, flags); // STOP _que function
PCI_TRACE( 0x90)
CPQ_SPINLOCK_HBA( cpqfcHBAdata)
// next, set this pointer to indicate to the _quecommand function
// that the board is in use, so it should que the command and
// immediately return (we don't actually require the semaphore function
// in this driver rev)
cpqfcHBAdata->BoardLock = &BoardLock;
PCI_TRACE( 0x90)
// release the IO lock (and re-enable interrupts)
spin_unlock_irqrestore( HostAdapter->host_lock, flags);
// disable OUR HBA interrupt (keep them off as much as possible
// during error recovery)
disable_irq( cpqfcHBAdata->HostAdapter->irq);
// OK, let's process the Fibre Channel Link Q and do the work
cpqfcTS_WorkTask( HostAdapter);
// hopefully, no more "work" to do;
// re-enable our INTs for "normal" completion processing
enable_irq( cpqfcHBAdata->HostAdapter->irq);
cpqfcHBAdata->BoardLock = NULL; // allow commands to be queued
CPQ_SPINUNLOCK_HBA( cpqfcHBAdata)
// Now, complete any Cmnd we Q'd up while BoardLock was held
CompleteBoardLockCmnd( cpqfcHBAdata);
}
// hopefully, the signal was for our module exit...
if( cpqfcHBAdata->notify_wt != NULL )
up( cpqfcHBAdata->notify_wt); // yep, we're outta here
}
// Freeze Tachyon routine.
// If Tachyon is already frozen, return FALSE
// If Tachyon is not frozen, call freeze function, return TRUE
//
static BOOLEAN FreezeTach( CPQFCHBA *cpqfcHBAdata)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
BOOLEAN FrozeTach = FALSE;
// It's possible that the chip is already frozen; if so,
// "Freezing" again will NOT! generate another Freeze
// Completion Message.
if( (fcChip->Registers.TYstatus.value & 0x70000) != 0x70000)
{ // (need to freeze...)
fcChip->FreezeTachyon( fcChip, 2); // both ERQ and FCP assists
// 2. Get Tach freeze confirmation
// (synchronize SEST manipulation with Freeze Completion Message)
// we need INTs on so semaphore can be set.
enable_irq( cpqfcHBAdata->HostAdapter->irq); // only way to get Semaphore
down_interruptible( cpqfcHBAdata->TachFrozen); // wait for INT handler sem.
// can we TIMEOUT semaphore wait?? TBD
disable_irq( cpqfcHBAdata->HostAdapter->irq);
FrozeTach = TRUE;
} // (else, already frozen)
return FrozeTach;
}
// This is the kernel worker thread task, which processes FC
// tasks which were queued by the Interrupt handler or by
// other WorkTask functions.
#define DBG 1
//#undef DBG
void cpqfcTS_WorkTask( struct Scsi_Host *HostAdapter)
{
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG QconsumerNdx;
LONG ExchangeID;
ULONG ulStatus=0;
TachFCHDR_GCMND fchs;
PFC_LINK_QUE fcLQ = cpqfcHBAdata->fcLQ;
ENTER("WorkTask");
// copy current index to work on
QconsumerNdx = fcLQ->consumer;
PCI_TRACEO( fcLQ->Qitem[QconsumerNdx].Type, 0x90)
// NOTE: when this switch completes, we will "consume" the Que item
// printk("Que type %Xh\n", fcLQ->Qitem[QconsumerNdx].Type);
switch( fcLQ->Qitem[QconsumerNdx].Type )
{
// incoming frame - link service (ACC, UNSOL REQ, etc.)
// or FCP-SCSI command
case SFQ_UNKNOWN:
AnalyzeIncomingFrame( cpqfcHBAdata, QconsumerNdx );
break;
case EXCHANGE_QUEUED: // an Exchange (i.e. FCP-SCSI) was previously
// Queued because the link was down. The
// heartbeat timer detected it and Queued it here.
// We attempt to start it again, and if
// successful we clear the EXCHANGE_Q flag.
// If the link doesn't come up, the Exchange
// will eventually time-out.
ExchangeID = (LONG) // x_ID copied from DPC timeout function
fcLQ->Qitem[QconsumerNdx].ulBuff[0];
// It's possible that a Q'd exchange could have already
// been started by other logic (e.g. ABTS process)
// Don't start if already started (Q'd flag clear)
if( Exchanges->fcExchange[ExchangeID].status & EXCHANGE_QUEUED )
{
// printk(" *Start Q'd x_ID %Xh: type %Xh ",
// ExchangeID, Exchanges->fcExchange[ExchangeID].type);
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID);
if( !ulStatus )
{
// printk("success* ");
}
else
{
#ifdef DBG
if( ulStatus == EXCHANGE_QUEUED)
printk("Queued* ");
else
printk("failed* ");
#endif
}
}
break;
case LINKDOWN:
// (lots of things already done in INT handler) future here?
break;
case LINKACTIVE: // Tachyon set the Lup bit in FM status
// NOTE: some misbehaving FC ports (like Tach2.1)
// can re-LIP immediately after a LIP completes.
// if "initiator", need to verify LOGs with ports
// printk("\n*LNKUP* ");
if( fcChip->Options.initiator )
SendLogins( cpqfcHBAdata, NULL ); // PLOGI or PDISC, based on fcPort data
// if SendLogins successfully completes, PortDiscDone
// will be set.
// If SendLogins was successful, then we expect to get incoming
// ACCepts or REJECTs, which are handled below.
break;
// LinkService and Fabric request/reply processing
case ELS_FDISC: // need to send Fabric Discovery (Login)
case ELS_FLOGI: // need to send Fabric Login
case ELS_SCR: // need to send State Change Registration
case FCS_NSR: // need to send Name Service Request
case ELS_PLOGI: // need to send PLOGI
case ELS_ACC: // send generic ACCept
case ELS_PLOGI_ACC: // need to send ELS ACCept frame to recv'd PLOGI
case ELS_PRLI_ACC: // need to send ELS ACCept frame to recv'd PRLI
case ELS_LOGO: // need to send ELS LOGO (logout)
case ELS_LOGO_ACC: // need to send ELS ACCept frame to recv'd PLOGI
case ELS_RJT: // ReJecT reply
case ELS_PRLI: // need to send ELS PRLI
// printk(" *ELS %Xh* ", fcLQ->Qitem[QconsumerNdx].Type);
// if PortDiscDone is not set, it means the SendLogins routine
// failed to complete -- assume that LDn occurred, so login frames
// are invalid
if( !cpqfcHBAdata->PortDiscDone) // cleared by LDn
{
printk("Discard Q'd ELS login frame\n");
break;
}
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
fcLQ->Qitem[QconsumerNdx].Type, // e.g. PLOGI
(TachFCHDR_GCMND*)
fcLQ->Qitem[QconsumerNdx].ulBuff, // incoming fchs
NULL, // no data (no scatter/gather list)
&ExchangeID );// fcController->fcExchanges index, -1 if failed
if( !ulStatus ) // Exchange setup?
{
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID );
if( !ulStatus )
{
// submitted to Tach's Outbound Que (ERQ PI incremented)
// waited for completion for ELS type (Login frames issued
// synchronously)
}
else
// check reason for Exchange not being started - we might
// want to Queue and start later, or fail with error
{
}
}
else // Xchange setup failed...
printk(" cpqfcTSBuildExchange failed: %Xh\n", ulStatus );
break;
case SCSI_REPORT_LUNS:
// pass the incoming frame (actually, it's a PRLI frame)
// so we can send REPORT_LUNS, in order to determine VSA/PDU
// FCP-SCSI Lun address mode
IssueReportLunsCommand( cpqfcHBAdata, (TachFCHDR_GCMND*)
fcLQ->Qitem[QconsumerNdx].ulBuff);
break;
case BLS_ABTS: // need to ABORT one or more exchanges
{
LONG x_ID = fcLQ->Qitem[QconsumerNdx].ulBuff[0];
BOOLEAN FrozeTach = FALSE;
if ( x_ID >= TACH_SEST_LEN ) // (in)sanity check
{
// printk( " cpqfcTS ERROR! BOGUS x_ID %Xh", x_ID);
break;
}
if( Exchanges->fcExchange[ x_ID].Cmnd == NULL ) // should be RARE
{
// printk(" ABTS %Xh Scsi Cmnd null! ", x_ID);
break; // nothing to abort!
}
//#define ABTS_DBG
#ifdef ABTS_DBG
printk("INV SEST[%X] ", x_ID);
if( Exchanges->fcExchange[x_ID].status & FC2_TIMEOUT)
{
printk("FC2TO");
}
if( Exchanges->fcExchange[x_ID].status & INITIATOR_ABORT)
{
printk("IA");
}
if( Exchanges->fcExchange[x_ID].status & PORTID_CHANGED)
{
printk("PORTID");
}
if( Exchanges->fcExchange[x_ID].status & DEVICE_REMOVED)
{
printk("DEVRM");
}
if( Exchanges->fcExchange[x_ID].status & LINKFAIL_TX)
{
printk("LKF");
}
if( Exchanges->fcExchange[x_ID].status & FRAME_TO)
{
printk("FRMTO");
}
if( Exchanges->fcExchange[x_ID].status & ABORTSEQ_NOTIFY)
{
printk("ABSQ");
}
if( Exchanges->fcExchange[x_ID].status & SFQ_FRAME)
{
printk("SFQFR");
}
if( Exchanges->fcExchange[ x_ID].type == 0x2000)
printk(" WR");
else if( Exchanges->fcExchange[ x_ID].type == 0x3000)
printk(" RD");
else if( Exchanges->fcExchange[ x_ID].type == 0x10)
printk(" ABTS");
else
printk(" %Xh", Exchanges->fcExchange[ x_ID].type);
if( !(Exchanges->fcExchange[x_ID].status & INITIATOR_ABORT))
{
printk(" Cmd %p, ",
Exchanges->fcExchange[ x_ID].Cmnd);
printk(" brd/chn/trg/lun %d/%d/%d/%d port_id %06X\n",
cpqfcHBAdata->HBAnum,
Exchanges->fcExchange[ x_ID].Cmnd->channel,
Exchanges->fcExchange[ x_ID].Cmnd->target,
Exchanges->fcExchange[ x_ID].Cmnd->lun,
Exchanges->fcExchange[ x_ID].fchs.d_id & 0xFFFFFF);
}
else // assume that Cmnd ptr is invalid on _abort()
{
printk(" Cmd ptr invalid\n");
}
#endif
// Steps to ABORT a SEST exchange:
// 1. Freeze TL SCSI assists & ERQ (everything)
// 2. Receive FROZEN inbound CM (must succeed!)
// 3. Invalidate x_ID SEST entry
// 4. Resume TL SCSI assists & ERQ (everything)
// 5. Build/start on exchange - change "type" to BLS_ABTS,
// timeout to X sec (RA_TOV from PLDA is actually 0)
// 6. Set Exchange Q'd status if ABTS cannot be started,
// or simply complete Exchange in "Terminate" condition
PCI_TRACEO( x_ID, 0xB4)
// 1 & 2 . Freeze Tach & get confirmation of freeze
FrozeTach = FreezeTach( cpqfcHBAdata);
// 3. OK, Tachyon is frozen, so we can invalidate SEST exchange.
// FC2_TIMEOUT means we are originating the abort, while
// TARGET_ABORT means we are ACCepting an abort.
// LINKFAIL_TX, ABORTSEQ_NOFITY, INV_ENTRY or FRAME_TO are
// all from Tachyon:
// Exchange was corrupted by LDn or other FC physical failure
// INITIATOR_ABORT means the upper layer driver/application
// requested the abort.
// clear bit 31 (VALid), to invalidate & take control from TL
fcChip->SEST->u[ x_ID].IWE.Hdr_Len &= 0x7FFFFFFF;
// examine and Tach's "Linked List" for IWEs that
// received (nearly) simultaneous transfer ready (XRDY)
// repair linked list if necessary (TBD!)
// (If we ignore the "Linked List", we will time out
// WRITE commands where we received the FCP-SCSI XFRDY
// frame (because Tachyon didn't processes it). Linked List
// management should be done as an optimization.
// readl( fcChip->Registers.ReMapMemBase+TL_MEM_SEST_LINKED_LIST ));
// 4. Resume all Tachlite functions (for other open Exchanges)
// as quickly as possible to allow other exchanges to other ports
// to resume. Freezing Tachyon may cause cascading errors, because
// any received SEST frame cannot be processed by the SEST.
// Don't "unfreeze" unless Link is operational
if( FrozeTach ) // did we just freeze it (above)?
fcChip->UnFreezeTachyon( fcChip, 2); // both ERQ and FCP assists
PCI_TRACEO( x_ID, 0xB4)
// Note there is no confirmation that the chip is "unfrozen". Also,
// if the Link is down when unfreeze is called, it has no effect.
// Chip will unfreeze when the Link is back up.
// 5. Now send out Abort commands if possible
// Some Aborts can't be "sent" (Port_id changed or gone);
// if the device is gone, there is no port_id to send the ABTS to.
if( !(Exchanges->fcExchange[ x_ID].status & PORTID_CHANGED)
&&
!(Exchanges->fcExchange[ x_ID].status & DEVICE_REMOVED) )
{
Exchanges->fcExchange[ x_ID].type = BLS_ABTS;
fchs.s_id = Exchanges->fcExchange[ x_ID].fchs.d_id;
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
BLS_ABTS,
&fchs, // (uses only s_id)
NULL, // (no scatter/gather list for ABTS)
&x_ID );// ABTS on this Exchange ID
if( !ulStatus ) // Exchange setup build OK?
{
// ABTS may be needed because an Exchange was corrupted
// by a Link disruption. If the Link is UP, we can
// presume that this ABTS can start immediately; otherwise,
// set Que'd status so the Login functions
// can restart it when the FC physical Link is restored
if( ((fcChip->Registers.FMstatus.value &0xF0) &0x80)) // loop init?
{
// printk(" *set Q status x_ID %Xh on LDn* ", x_ID);
Exchanges->fcExchange[ x_ID].status |= EXCHANGE_QUEUED;
}
else // what FC device (port_id) does the Cmd belong to?
{
PFC_LOGGEDIN_PORT pLoggedInPort =
Exchanges->fcExchange[ x_ID].pLoggedInPort;
// if Port is logged in, we might start the abort.
if( (pLoggedInPort != NULL)
&&
(pLoggedInPort->prli == TRUE) )
{
// it's possible that an Exchange has already been Queued
// to start after Login completes. Check and don't
// start it (again) here if Q'd status set
// printk(" ABTS xchg %Xh ", x_ID);
if( Exchanges->fcExchange[x_ID].status & EXCHANGE_QUEUED)
{
// printk("already Q'd ");
}
else
{
// printk("starting ");
fcChip->fcStats.FC2aborted++;
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, x_ID );
if( !ulStatus )
{
// OK
// submitted to Tach's Outbound Que (ERQ PI incremented)
}
else
{
/* printk("ABTS exchange start failed -status %Xh, x_ID %Xh ",
ulStatus, x_ID);
*/
}
}
}
else
{
/* printk(" ABTS NOT starting xchg %Xh, %p ",
x_ID, pLoggedInPort);
if( pLoggedInPort )
printk("prli %d ", pLoggedInPort->prli);
*/
}
}
}
else // what the #@!
{ // how do we fail to build an Exchange for ABTS??
printk("ABTS exchange build failed -status %Xh, x_ID %Xh\n",
ulStatus, x_ID);
}
}
else // abort without ABTS -- just complete exchange/Cmnd to Linux
{
// printk(" *Terminating x_ID %Xh on %Xh* ",
// x_ID, Exchanges->fcExchange[x_ID].status);
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, x_ID);
}
} // end of ABTS case
break;
case BLS_ABTS_ACC: // need to ACCept one ABTS
// (NOTE! this code not updated for Linux yet..)
printk(" *ABTS_ACC* ");
// 1. Freeze TL
fcChip->FreezeTachyon( fcChip, 2); // both ERQ and FCP assists
memcpy( // copy the incoming ABTS frame
&fchs,
fcLQ->Qitem[QconsumerNdx].ulBuff, // incoming fchs
sizeof( fchs));
// 3. OK, Tachyon is frozen so we can invalidate SEST entry
// (if necessary)
// Status FC2_TIMEOUT means we are originating the abort, while
// TARGET_ABORT means we are ACCepting an abort
ExchangeID = fchs.ox_rx_id & 0x7FFF; // RX_ID for exchange
// printk("ABTS ACC for Target ExchangeID %Xh\n", ExchangeID);
// sanity check on received ExchangeID
if( Exchanges->fcExchange[ ExchangeID].status == TARGET_ABORT )
{
// clear bit 31 (VALid), to invalidate & take control from TL
// printk("Invalidating SEST exchange %Xh\n", ExchangeID);
fcChip->SEST->u[ ExchangeID].IWE.Hdr_Len &= 0x7FFFFFFF;
}
// 4. Resume all Tachlite functions (for other open Exchanges)
// as quickly as possible to allow other exchanges to other ports
// to resume. Freezing Tachyon for too long may royally screw
// up everything!
fcChip->UnFreezeTachyon( fcChip, 2); // both ERQ and FCP assists
// Note there is no confirmation that the chip is "unfrozen". Also,
// if the Link is down when unfreeze is called, it has no effect.
// Chip will unfreeze when the Link is back up.
// 5. Now send out Abort ACC reply for this exchange
Exchanges->fcExchange[ ExchangeID].type = BLS_ABTS_ACC;
fchs.s_id = Exchanges->fcExchange[ ExchangeID].fchs.d_id;
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
BLS_ABTS_ACC,
&fchs,
NULL, // no data (no scatter/gather list)
&ExchangeID );// fcController->fcExchanges index, -1 if failed
if( !ulStatus ) // Exchange setup?
{
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID );
if( !ulStatus )
{
// submitted to Tach's Outbound Que (ERQ PI incremented)
// waited for completion for ELS type (Login frames issued
// synchronously)
}
else
// check reason for Exchange not being started - we might
// want to Queue and start later, or fail with error
{
}
}
break;
case BLS_ABTS_RJT: // need to ReJecT one ABTS; reject implies the
// exchange doesn't exist in the TARGET context.
// ExchangeID has to come from LinkService space.
printk(" *ABTS_RJT* ");
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
BLS_ABTS_RJT,
(TachFCHDR_GCMND*)
fcLQ->Qitem[QconsumerNdx].ulBuff, // incoming fchs
NULL, // no data (no scatter/gather list)
&ExchangeID );// fcController->fcExchanges index, -1 if failed
if( !ulStatus ) // Exchange setup OK?
{
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID );
// If it fails, we aren't required to retry.
}
if( ulStatus )
{
printk("Failed to send BLS_RJT for ABTS, X_ID %Xh\n", ExchangeID);
}
else
{
printk("Sent BLS_RJT for ABTS, X_ID %Xh\n", ExchangeID);
}
break;
default:
break;
} // end switch
//doNothing:
// done with this item - now set the NEXT index
if( QconsumerNdx+1 >= FC_LINKQ_DEPTH ) // rollover test
{
fcLQ->consumer = 0;
}
else
{
fcLQ->consumer++;
}
PCI_TRACEO( fcLQ->Qitem[QconsumerNdx].Type, 0x94)
LEAVE("WorkTask");
return;
}
// When Tachyon reports link down, bad al_pa, or Link Service (e.g. Login)
// commands come in, post to the LinkQ so that action can be taken outside the
// interrupt handler.
// This circular Q works like Tachyon's que - the producer points to the next
// (unused) entry. Called by Interrupt handler, WorkerThread, Timer
// sputlinkq
void cpqfcTSPutLinkQue( CPQFCHBA *cpqfcHBAdata,
int Type,
void *QueContent)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
// FC_EXCHANGES *Exchanges = fcChip->Exchanges;
PFC_LINK_QUE fcLQ = cpqfcHBAdata->fcLQ;
ULONG ndx;
ENTER("cpqfcTSPutLinkQ");
ndx = fcLQ->producer;
ndx += 1; // test for Que full
if( ndx >= FC_LINKQ_DEPTH ) // rollover test
ndx = 0;
if( ndx == fcLQ->consumer ) // QUE full test
{
// QUE was full! lost LK command (fatal to logic)
fcChip->fcStats.lnkQueFull++;
printk("*LinkQ Full!*");
TriggerHBA( fcChip->Registers.ReMapMemBase, 1);
/*
{
int i;
printk("LinkQ PI %d, CI %d\n", fcLQ->producer,
fcLQ->consumer);
for( i=0; i< FC_LINKQ_DEPTH; )
{
printk(" [%d]%Xh ", i, fcLQ->Qitem[i].Type);
if( (++i %8) == 0) printk("\n");
}
}
*/
printk( "cpqfcTS: WARNING!! PutLinkQue - FULL!\n"); // we're hung
}
else // QUE next element
{
// Prevent certain multiple (back-to-back) requests.
// This is important in that we don't want to issue multiple
// ABTS for the same Exchange, or do multiple FM inits, etc.
// We can never be sure of the timing of events reported to
// us by Tach's IMQ, which can depend on system/bus speeds,
// FC physical link circumstances, etc.
if( (fcLQ->producer != fcLQ->consumer)
&&
(Type == FMINIT) )
{
LONG lastNdx; // compute previous producer index
if( fcLQ->producer)
lastNdx = fcLQ->producer- 1;
else
lastNdx = FC_LINKQ_DEPTH-1;
if( fcLQ->Qitem[lastNdx].Type == FMINIT)
{
// printk(" *skip FMINIT Q post* ");
// goto DoneWithPutQ;
}
}
// OK, add the Q'd item...
fcLQ->Qitem[fcLQ->producer].Type = Type;
memcpy(
fcLQ->Qitem[fcLQ->producer].ulBuff,
QueContent,
sizeof(fcLQ->Qitem[fcLQ->producer].ulBuff));
fcLQ->producer = ndx; // increment Que producer
// set semaphore to wake up Kernel (worker) thread
//
up( cpqfcHBAdata->fcQueReady );
}
//DoneWithPutQ:
LEAVE("cpqfcTSPutLinkQ");
}
// reset device ext FC link Q
void cpqfcTSLinkQReset( CPQFCHBA *cpqfcHBAdata)
{
PFC_LINK_QUE fcLQ = cpqfcHBAdata->fcLQ;
fcLQ->producer = 0;
fcLQ->consumer = 0;
}
// When Tachyon gets an unassisted FCP-SCSI frame, post here so
// an arbitrary context thread (e.g. IOCTL loopback test function)
// can process it.
// (NOTE: Not revised for Linux)
// This Q works like Tachyon's que - the producer points to the next
// (unused) entry.
void cpqfcTSPutScsiQue( CPQFCHBA *cpqfcHBAdata,
int Type,
void *QueContent)
{
// CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
// PTACHYON fcChip = &cpqfcHBAdata->fcChip;
// ULONG ndx;
// ULONG *pExchangeID;
// LONG ExchangeID;
/*
KeAcquireSpinLockAtDpcLevel( &pDevExt->fcScsiQueLock);
ndx = pDevExt->fcScsiQue.producer + 1; // test for Que full
if( ndx >= FC_SCSIQ_DEPTH ) // rollover test
ndx = 0;
if( ndx == pDevExt->fcScsiQue.consumer ) // QUE full test
{
// QUE was full! lost LK command (fatal to logic)
fcChip->fcStats.ScsiQueFull++;
#ifdef DBG
printk( "fcPutScsiQue - FULL!\n");
#endif
}
else // QUE next element
{
pDevExt->fcScsiQue.Qitem[pDevExt->fcScsiQue.producer].Type = Type;
if( Type == FCP_RSP )
{
// this TL inbound message type means that a TL SEST exchange has
// copied an FCP response frame into a buffer pointed to by the SEST
// entry. That buffer is allocated in the SEST structure at ->RspHDR.
// Copy the RspHDR for use by the Que handler.
pExchangeID = (ULONG *)QueContent;
memcpy(
pDevExt->fcScsiQue.Qitem[pDevExt->fcScsiQue.producer].ulBuff,
&fcChip->SEST->RspHDR[ *pExchangeID ],
sizeof(pDevExt->fcScsiQue.Qitem[0].ulBuff)); // (any element for size)
}
else
{
memcpy(
pDevExt->fcScsiQue.Qitem[pDevExt->fcScsiQue.producer].ulBuff,
QueContent,
sizeof(pDevExt->fcScsiQue.Qitem[pDevExt->fcScsiQue.producer].ulBuff));
}
pDevExt->fcScsiQue.producer = ndx; // increment Que
KeSetEvent( &pDevExt->TYIBscsi, // signal any waiting thread
0, // no priority boost
FALSE ); // no waiting later for this event
}
KeReleaseSpinLockFromDpcLevel( &pDevExt->fcScsiQueLock);
*/
}
static void ProcessELS_Request( CPQFCHBA*,TachFCHDR_GCMND*);
static void ProcessELS_Reply( CPQFCHBA*,TachFCHDR_GCMND*);
static void ProcessFCS_Reply( CPQFCHBA*,TachFCHDR_GCMND*);
void cpqfcTSImplicitLogout( CPQFCHBA* cpqfcHBAdata,
PFC_LOGGEDIN_PORT pFcPort)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
if( pFcPort->port_id != 0xFFFC01 ) // don't care about Fabric
{
fcChip->fcStats.logouts++;
printk("cpqfcTS: Implicit logout of WWN %08X%08X, port_id %06X\n",
(ULONG)pFcPort->u.liWWN,
(ULONG)(pFcPort->u.liWWN >>32),
pFcPort->port_id);
// Terminate I/O with this (Linux) Scsi target
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pFcPort->ScsiNexus,
DEVICE_REMOVED);
}
// Do an "implicit logout" - we can't really Logout the device
// (i.e. with LOGOut Request) because of port_id confusion
// (i.e. the Other port has no port_id).
// A new login for that WWN will have to re-write port_id (0 invalid)
pFcPort->port_id = 0; // invalid!
pFcPort->pdisc = FALSE;
pFcPort->prli = FALSE;
pFcPort->plogi = FALSE;
pFcPort->flogi = FALSE;
pFcPort->LOGO_timer = 0;
pFcPort->device_blocked = TRUE; // block Scsi Requests
pFcPort->ScsiNexus.VolumeSetAddressing=0;
}
// On FC-AL, there is a chance that a previously known device can
// be quietly removed (e.g. with non-managed hub),
// while a NEW device (with different WWN) took the same alpa or
// even 24-bit port_id. This chance is unlikely but we must always
// check for it.
static void TestDuplicatePortId( CPQFCHBA* cpqfcHBAdata,
PFC_LOGGEDIN_PORT pLoggedInPort)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
// set "other port" at beginning of fcPorts list
PFC_LOGGEDIN_PORT pOtherPortWithPortId = fcChip->fcPorts.pNextPort;
while( pOtherPortWithPortId )
{
if( (pOtherPortWithPortId->port_id ==
pLoggedInPort->port_id)
&&
(pOtherPortWithPortId != pLoggedInPort) )
{
// trouble! (Implicitly) Log the other guy out
printk(" *port_id %Xh is duplicated!* ",
pOtherPortWithPortId->port_id);
cpqfcTSImplicitLogout( cpqfcHBAdata, pOtherPortWithPortId);
}
pOtherPortWithPortId = pOtherPortWithPortId->pNextPort;
}
}
// Dynamic Memory Allocation for newly discovered FC Ports.
// For simplicity, maintain fcPorts structs for ALL
// for discovered devices, including those we never do I/O with
// (e.g. Fabric addresses)
static PFC_LOGGEDIN_PORT CreateFcPort(
CPQFCHBA* cpqfcHBAdata,
PFC_LOGGEDIN_PORT pLastLoggedInPort,
TachFCHDR_GCMND* fchs,
LOGIN_PAYLOAD* plogi)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
PFC_LOGGEDIN_PORT pNextLoggedInPort = NULL;
int i;
printk("cpqfcTS: New FC port %06Xh WWN: ", fchs->s_id);
for( i=3; i>=0; i--) // copy the LOGIN port's WWN
printk("%02X", plogi->port_name[i]);
for( i=7; i>3; i--) // copy the LOGIN port's WWN
printk("%02X", plogi->port_name[i]);
// allocate mem for new port
// (these are small and rare allocations...)
pNextLoggedInPort = kmalloc( sizeof( FC_LOGGEDIN_PORT), GFP_ATOMIC );
// allocation succeeded? Fill out NEW PORT
if( pNextLoggedInPort )
{
// clear out any garbage (sometimes exists)
memset( pNextLoggedInPort, 0, sizeof( FC_LOGGEDIN_PORT));
// If we login to a Fabric, we don't want to treat it
// as a SCSI device...
if( (fchs->s_id & 0xFFF000) != 0xFFF000)
{
int i;
// create a unique "virtual" SCSI Nexus (for now, just a
// new target ID) -- we will update channel/target on REPORT_LUNS
// special case for very first SCSI target...
if( cpqfcHBAdata->HostAdapter->max_id == 0)
{
pNextLoggedInPort->ScsiNexus.target = 0;
fcChip->fcPorts.ScsiNexus.target = -1; // don't use "stub"
}
else
{
pNextLoggedInPort->ScsiNexus.target =
cpqfcHBAdata->HostAdapter->max_id;
}
// initialize the lun[] Nexus struct for lun masking
for( i=0; i< CPQFCTS_MAX_LUN; i++)
pNextLoggedInPort->ScsiNexus.lun[i] = 0xFF; // init to NOT USED
pNextLoggedInPort->ScsiNexus.channel = 0; // cpqfcTS has 1 FC port
printk(" SCSI Chan/Trgt %d/%d",
pNextLoggedInPort->ScsiNexus.channel,
pNextLoggedInPort->ScsiNexus.target);
// tell Scsi layers about the new target...
cpqfcHBAdata->HostAdapter->max_id++;
// printk("HostAdapter->max_id = %d\n",
// cpqfcHBAdata->HostAdapter->max_id);
}
else
{
// device is NOT SCSI (in case of Fabric)
pNextLoggedInPort->ScsiNexus.target = -1; // invalid
}
// create forward link to new port
pLastLoggedInPort->pNextPort = pNextLoggedInPort;
printk("\n");
}
return pNextLoggedInPort; // NULL on allocation failure
} // end NEW PORT (WWN) logic
// For certain cases, we want to terminate exchanges without
// sending ABTS to the device. Examples include when an FC
// device changed it's port_id after Loop re-init, or when
// the device sent us a logout. In the case of changed port_id,
// we want to complete the command and return SOFT_ERROR to
// force a re-try. In the case of LOGOut, we might return
// BAD_TARGET if the device is really gone.
// Since we must ensure that Tachyon is not operating on the
// exchange, we have to freeze the chip
// sterminateex
void cpqfcTSTerminateExchange(
CPQFCHBA* cpqfcHBAdata, SCSI_NEXUS *ScsiNexus, int TerminateStatus)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG x_ID;
if( ScsiNexus )
{
// printk("TerminateExchange: ScsiNexus chan/target %d/%d\n",
// ScsiNexus->channel, ScsiNexus->target);
}
for( x_ID = 0; x_ID < TACH_SEST_LEN; x_ID++)
{
if( Exchanges->fcExchange[x_ID].type ) // in use?
{
if( ScsiNexus == NULL ) // our HBA changed - term. all
{
Exchanges->fcExchange[x_ID].status = TerminateStatus;
cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &x_ID );
}
else
{
// If a device, according to WWN, has been removed, it's
// port_id may be used by another working device, so we
// have to terminate by SCSI target, NOT port_id.
if( Exchanges->fcExchange[x_ID].Cmnd) // Cmnd in progress?
{
if( (Exchanges->fcExchange[x_ID].Cmnd->device->id == ScsiNexus->target)
&&
(Exchanges->fcExchange[x_ID].Cmnd->device->channel == ScsiNexus->channel))
{
Exchanges->fcExchange[x_ID].status = TerminateStatus;
cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &x_ID ); // timed-out
}
}
// (in case we ever need it...)
// all SEST structures have a remote node ID at SEST DWORD 2
// if( (fcChip->SEST->u[ x_ID ].TWE.Remote_Node_ID >> 8)
// == port_id)
}
}
}
}
static void ProcessELS_Request(
CPQFCHBA* cpqfcHBAdata, TachFCHDR_GCMND* fchs)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
// FC_EXCHANGES *Exchanges = fcChip->Exchanges;
// ULONG ox_id = (fchs->ox_rx_id >>16);
PFC_LOGGEDIN_PORT pLoggedInPort=NULL, pLastLoggedInPort;
BOOLEAN NeedReject = FALSE;
ULONG ls_reject_code = 0; // default don'n know??
// Check the incoming frame for a supported ELS type
switch( fchs->pl[0] & 0xFFFF)
{
case 0x0050: // PDISC?
// Payload for PLOGI and PDISC is identical (request & reply)
if( !verify_PLOGI( fcChip, fchs, &ls_reject_code) ) // valid payload?
{
LOGIN_PAYLOAD logi; // FC-PH Port Login
// PDISC payload OK. If critical login fields
// (e.g. WWN) matches last login for this port_id,
// we may resume any prior exchanges
// with the other port
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&logi, sizeof(logi));
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
0, // don't search linked list for port_id
&logi.port_name[0], // search linked list for WWN
&pLastLoggedInPort); // must return non-NULL; when a port_id
// is not found, this pointer marks the
// end of the singly linked list
if( pLoggedInPort != NULL) // WWN found (prior login OK)
{
if( (fchs->s_id & 0xFFFFFF) == pLoggedInPort->port_id)
{
// Yes. We were expecting PDISC?
if( pLoggedInPort->pdisc )
{
// Yes; set fields accordingly. (PDISC, not Originator)
SetLoginFields( pLoggedInPort, fchs, TRUE, FALSE);
// send 'ACC' reply
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_PLOGI_ACC, // (PDISC same as PLOGI ACC)
fchs );
// OK to resume I/O...
}
else
{
printk("Not expecting PDISC (pdisc=FALSE)\n");
NeedReject = TRUE;
// set reject reason code
ls_reject_code =
LS_RJT_REASON( PROTOCOL_ERROR, INITIATOR_CTL_ERROR);
}
}
else
{
if( pLoggedInPort->port_id != 0)
{
printk("PDISC PortID change: old %Xh, new %Xh\n",
pLoggedInPort->port_id, fchs->s_id &0xFFFFFF);
}
NeedReject = TRUE;
// set reject reason code
ls_reject_code =
LS_RJT_REASON( PROTOCOL_ERROR, INITIATOR_CTL_ERROR);
}
}
else
{
printk("PDISC Request from unknown WWN\n");
NeedReject = TRUE;
// set reject reason code
ls_reject_code =
LS_RJT_REASON( LOGICAL_ERROR, INVALID_PORT_NAME);
}
}
else // Payload unacceptable
{
printk("payload unacceptable\n");
NeedReject = TRUE; // reject code already set
}
if( NeedReject)
{
ULONG port_id;
// The PDISC failed. Set login struct flags accordingly,
// terminate any I/O to this port, and Q a PLOGI
if( pLoggedInPort )
{
pLoggedInPort->pdisc = FALSE;
pLoggedInPort->prli = FALSE;
pLoggedInPort->plogi = FALSE;
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pLoggedInPort->ScsiNexus, PORTID_CHANGED);
port_id = pLoggedInPort->port_id;
}
else
{
port_id = fchs->s_id &0xFFFFFF;
}
fchs->reserved = ls_reject_code; // borrow this (unused) field
cpqfcTSPutLinkQue( cpqfcHBAdata, ELS_RJT, fchs );
}
break;
case 0x0003: // PLOGI?
// Payload for PLOGI and PDISC is identical (request & reply)
if( !verify_PLOGI( fcChip, fchs, &ls_reject_code) ) // valid payload?
{
LOGIN_PAYLOAD logi; // FC-PH Port Login
BOOLEAN NeedReject = FALSE;
// PDISC payload OK. If critical login fields
// (e.g. WWN) matches last login for this port_id,
// we may resume any prior exchanges
// with the other port
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&logi, sizeof(logi));
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
0, // don't search linked list for port_id
&logi.port_name[0], // search linked list for WWN
&pLastLoggedInPort); // must return non-NULL; when a port_id
// is not found, this pointer marks the
// end of the singly linked list
if( pLoggedInPort == NULL) // WWN not found -New Port
{
pLoggedInPort = CreateFcPort(
cpqfcHBAdata,
pLastLoggedInPort,
fchs,
&logi);
if( pLoggedInPort == NULL )
{
printk(" cpqfcTS: New port allocation failed - lost FC device!\n");
// Now Q a LOGOut Request, since we won't be talking to that device
NeedReject = TRUE;
// set reject reason code
ls_reject_code =
LS_RJT_REASON( LOGICAL_ERROR, NO_LOGIN_RESOURCES);
}
}
if( !NeedReject )
{
// OK - we have valid fcPort ptr; set fields accordingly.
// (not PDISC, not Originator)
SetLoginFields( pLoggedInPort, fchs, FALSE, FALSE);
// send 'ACC' reply
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_PLOGI_ACC, // (PDISC same as PLOGI ACC)
fchs );
}
}
else // Payload unacceptable
{
printk("payload unacceptable\n");
NeedReject = TRUE; // reject code already set
}
if( NeedReject)
{
// The PDISC failed. Set login struct flags accordingly,
// terminate any I/O to this port, and Q a PLOGI
pLoggedInPort->pdisc = FALSE;
pLoggedInPort->prli = FALSE;
pLoggedInPort->plogi = FALSE;
fchs->reserved = ls_reject_code; // borrow this (unused) field
// send 'RJT' reply
cpqfcTSPutLinkQue( cpqfcHBAdata, ELS_RJT, fchs );
}
// terminate any exchanges with this device...
if( pLoggedInPort )
{
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pLoggedInPort->ScsiNexus, PORTID_CHANGED);
}
break;
case 0x1020: // PRLI?
{
BOOLEAN NeedReject = TRUE;
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
(fchs->s_id & 0xFFFFFF), // search linked list for port_id
NULL, // DON'T search linked list for WWN
NULL); // don't care
if( pLoggedInPort == NULL )
{
// huh?
printk(" Unexpected PRLI Request -not logged in!\n");
// set reject reason code
ls_reject_code = LS_RJT_REASON( PROTOCOL_ERROR, INITIATOR_CTL_ERROR);
// Q a LOGOut here?
}
else
{
// verify the PRLI ACC payload
if( !verify_PRLI( fchs, &ls_reject_code) )
{
// PRLI Reply is acceptable; were we expecting it?
if( pLoggedInPort->plogi )
{
// yes, we expected the PRLI ACC (not PDISC; not Originator)
SetLoginFields( pLoggedInPort, fchs, FALSE, FALSE);
// Q an ACCept Reply
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_PRLI_ACC,
fchs );
NeedReject = FALSE;
}
else
{
// huh?
printk(" (unexpected) PRLI REQEST with plogi FALSE\n");
// set reject reason code
ls_reject_code = LS_RJT_REASON( PROTOCOL_ERROR, INITIATOR_CTL_ERROR);
// Q a LOGOut here?
}
}
else
{
printk(" PRLI REQUEST payload failed verify\n");
// (reject code set by "verify")
// Q a LOGOut here?
}
}
if( NeedReject )
{
// Q a ReJecT Reply with reason code
fchs->reserved = ls_reject_code;
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_RJT, // Q Type
fchs );
}
}
break;
case 0x0005: // LOGOut?
{
// was this LOGOUT because we sent a ELS_PDISC to an FC device
// with changed (or new) port_id, or does the port refuse
// to communicate to us?
// We maintain a logout counter - if we get 3 consecutive LOGOuts,
// give up!
LOGOUT_PAYLOAD logo;
BOOLEAN GiveUpOnDevice = FALSE;
ULONG ls_reject_code = 0;
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&logo, sizeof(logo));
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
0, // don't search linked list for port_id
&logo.port_name[0], // search linked list for WWN
NULL); // don't care about end of list
if( pLoggedInPort ) // found the device?
{
// Q an ACC reply
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_LOGO_ACC, // Q Type
fchs ); // device to respond to
// set login struct fields (LOGO_counter increment)
SetLoginFields( pLoggedInPort, fchs, FALSE, FALSE);
// are we an Initiator?
if( fcChip->Options.initiator)
{
// we're an Initiator, so check if we should
// try (another?) login
// Fabrics routinely log out from us after
// getting device info - don't try to log them
// back in.
if( (fchs->s_id & 0xFFF000) == 0xFFF000 )
{
; // do nothing
}
else if( pLoggedInPort->LOGO_counter <= 3)
{
// try (another) login (PLOGI request)
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_PLOGI, // Q Type
fchs );
// Terminate I/O with "retry" potential
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pLoggedInPort->ScsiNexus,
PORTID_CHANGED);
}
else
{
printk(" Got 3 LOGOuts - terminating comm. with port_id %Xh\n",
fchs->s_id &&0xFFFFFF);
GiveUpOnDevice = TRUE;
}
}
else
{
GiveUpOnDevice = TRUE;
}
if( GiveUpOnDevice == TRUE )
{
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pLoggedInPort->ScsiNexus,
DEVICE_REMOVED);
}
}
else // we don't know this WWN!
{
// Q a ReJecT Reply with reason code
fchs->reserved = ls_reject_code;
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_RJT, // Q Type
fchs );
}
}
break;
// FABRIC only case
case 0x0461: // ELS RSCN (Registered State Change Notification)?
{
int Ports;
int i;
__u32 Buff;
// Typically, one or more devices have been added to or dropped
// from the Fabric.
// The format of this frame is defined in FC-FLA (Rev 2.7, Aug 1997)
// The first 32-bit word has a 2-byte Payload Length, which
// includes the 4 bytes of the first word. Consequently,
// this PL len must never be less than 4, must be a multiple of 4,
// and has a specified max value 256.
// (Endianess!)
Ports = ((fchs->pl[0] >>24) - 4) / 4;
Ports = Ports > 63 ? 63 : Ports;
printk(" RSCN ports: %d\n", Ports);
if( Ports <= 0 ) // huh?
{
// ReJecT the command
fchs->reserved = LS_RJT_REASON( UNABLE_TO_PERFORM, 0);
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_RJT, // Q Type
fchs );
break;
}
else // Accept the command
{
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_ACC, // Q Type
fchs );
}
// Check the "address format" to determine action.
// We have 3 cases:
// 0 = Port Address; 24-bit address of affected device
// 1 = Area Address; MS 16 bits valid
// 2 = Domain Address; MS 8 bits valid
for( i=0; i<Ports; i++)
{
BigEndianSwap( (UCHAR*)&fchs->pl[i+1],(UCHAR*)&Buff, 4);
switch( Buff & 0xFF000000)
{
case 0: // Port Address?
case 0x01000000: // Area Domain?
case 0x02000000: // Domain Address
// For example, "port_id" 0x201300
// OK, let's try a Name Service Request (Query)
fchs->s_id = 0xFFFFFC; // Name Server Address
cpqfcTSPutLinkQue( cpqfcHBAdata, FCS_NSR, fchs);
break;
default: // huh? new value on version change?
break;
}
}
}
break;
default: // don't support this request (yet)
// set reject reason code
fchs->reserved = LS_RJT_REASON( UNABLE_TO_PERFORM,
REQUEST_NOT_SUPPORTED);
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_RJT, // Q Type
fchs );
break;
}
}
static void ProcessELS_Reply(
CPQFCHBA* cpqfcHBAdata, TachFCHDR_GCMND* fchs)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG ox_id = (fchs->ox_rx_id >>16);
ULONG ls_reject_code;
PFC_LOGGEDIN_PORT pLoggedInPort, pLastLoggedInPort;
// If this is a valid reply, then we MUST have sent a request.
// Verify that we can find a valid request OX_ID corresponding to
// this reply
if( Exchanges->fcExchange[(fchs->ox_rx_id >>16)].type == 0)
{
printk(" *Discarding ACC/RJT frame, xID %04X/%04X* ",
ox_id, fchs->ox_rx_id & 0xffff);
goto Quit; // exit this routine
}
// Is the reply a RJT (reject)?
if( (fchs->pl[0] & 0xFFFFL) == 0x01) // Reject reply?
{
// ****** REJECT REPLY ********
switch( Exchanges->fcExchange[ox_id].type )
{
case ELS_FDISC: // we sent out Fabric Discovery
case ELS_FLOGI: // we sent out FLOGI
printk("RJT received on Fabric Login from %Xh, reason %Xh\n",
fchs->s_id, fchs->pl[1]);
break;
default:
break;
}
goto Done;
}
// OK, we have an ACCept...
// What's the ACC type? (according to what we sent)
switch( Exchanges->fcExchange[ox_id].type )
{
case ELS_PLOGI: // we sent out PLOGI
if( !verify_PLOGI( fcChip, fchs, &ls_reject_code) )
{
LOGIN_PAYLOAD logi; // FC-PH Port Login
// login ACC payload acceptable; search for WWN in our list
// of fcPorts
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&logi, sizeof(logi));
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
0, // don't search linked list for port_id
&logi.port_name[0], // search linked list for WWN
&pLastLoggedInPort); // must return non-NULL; when a port_id
// is not found, this pointer marks the
// end of the singly linked list
if( pLoggedInPort == NULL) // WWN not found - new port
{
pLoggedInPort = CreateFcPort(
cpqfcHBAdata,
pLastLoggedInPort,
fchs,
&logi);
if( pLoggedInPort == NULL )
{
printk(" cpqfcTS: New port allocation failed - lost FC device!\n");
// Now Q a LOGOut Request, since we won't be talking to that device
goto Done; // exit with error! dropped login frame
}
}
else // WWN was already known. Ensure that any open
// exchanges for this WWN are terminated.
// NOTE: It's possible that a device can change its
// 24-bit port_id after a Link init or Fabric change
// (e.g. LIP or Fabric RSCN). In that case, the old
// 24-bit port_id may be duplicated, or no longer exist.
{
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pLoggedInPort->ScsiNexus, PORTID_CHANGED);
}
// We have an fcPort struct - set fields accordingly
// not PDISC, originator
SetLoginFields( pLoggedInPort, fchs, FALSE, TRUE);
// We just set a "port_id"; is it duplicated?
TestDuplicatePortId( cpqfcHBAdata, pLoggedInPort);
// For Fabric operation, we issued PLOGI to 0xFFFFFC
// so we can send SCR (State Change Registration)
// Check for this special case...
if( fchs->s_id == 0xFFFFFC )
{
// PLOGI ACC was a Fabric response... issue SCR
fchs->s_id = 0xFFFFFD; // address for SCR
cpqfcTSPutLinkQue( cpqfcHBAdata, ELS_SCR, fchs);
}
else
{
// Now we need a PRLI to enable FCP-SCSI operation
// set flags and Q up a ELS_PRLI
cpqfcTSPutLinkQue( cpqfcHBAdata, ELS_PRLI, fchs);
}
}
else
{
// login payload unacceptable - reason in ls_reject_code
// Q up a Logout Request
printk("Login Payload unacceptable\n");
}
break;
// PDISC logic very similar to PLOGI, except we never want
// to allocate mem for "new" port, and we set flags differently
// (might combine later with PLOGI logic for efficiency)
case ELS_PDISC: // we sent out PDISC
if( !verify_PLOGI( fcChip, fchs, &ls_reject_code) )
{
LOGIN_PAYLOAD logi; // FC-PH Port Login
BOOLEAN NeedLogin = FALSE;
// login payload acceptable; search for WWN in our list
// of (previously seen) fcPorts
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&logi, sizeof(logi));
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
0, // don't search linked list for port_id
&logi.port_name[0], // search linked list for WWN
&pLastLoggedInPort); // must return non-NULL; when a port_id
// is not found, this pointer marks the
// end of the singly linked list
if( pLoggedInPort != NULL) // WWN found?
{
// WWN has same port_id as last login? (Of course, a properly
// working FC device should NEVER ACCept a PDISC if it's
// port_id changed, but check just in case...)
if( (fchs->s_id & 0xFFFFFF) == pLoggedInPort->port_id)
{
// Yes. We were expecting PDISC?
if( pLoggedInPort->pdisc )
{
int i;
// PDISC expected -- set fields. (PDISC, Originator)
SetLoginFields( pLoggedInPort, fchs, TRUE, TRUE);
// We are ready to resume FCP-SCSI to this device...
// Do we need to start anything that was Queued?
for( i=0; i< TACH_SEST_LEN; i++)
{
// see if any exchange for this PDISC'd port was queued
if( ((fchs->s_id &0xFFFFFF) ==
(Exchanges->fcExchange[i].fchs.d_id & 0xFFFFFF))
&&
(Exchanges->fcExchange[i].status & EXCHANGE_QUEUED))
{
fchs->reserved = i; // copy ExchangeID
// printk(" *Q x_ID %Xh after PDISC* ",i);
cpqfcTSPutLinkQue( cpqfcHBAdata, EXCHANGE_QUEUED, fchs );
}
}
// Complete commands Q'd while we were waiting for Login
UnblockScsiDevice( cpqfcHBAdata->HostAdapter, pLoggedInPort);
}
else
{
printk("Not expecting PDISC (pdisc=FALSE)\n");
NeedLogin = TRUE;
}
}
else
{
printk("PDISC PortID change: old %Xh, new %Xh\n",
pLoggedInPort->port_id, fchs->s_id &0xFFFFFF);
NeedLogin = TRUE;
}
}
else
{
printk("PDISC ACC from unknown WWN\n");
NeedLogin = TRUE;
}
if( NeedLogin)
{
// The PDISC failed. Set login struct flags accordingly,
// terminate any I/O to this port, and Q a PLOGI
if( pLoggedInPort ) // FC device previously known?
{
cpqfcTSPutLinkQue( cpqfcHBAdata,
ELS_LOGO, // Q Type
fchs ); // has port_id to send to
// There are a variety of error scenarios which can result
// in PDISC failure, so as a catchall, add the check for
// duplicate port_id.
TestDuplicatePortId( cpqfcHBAdata, pLoggedInPort);
// TriggerHBA( fcChip->Registers.ReMapMemBase, 0);
pLoggedInPort->pdisc = FALSE;
pLoggedInPort->prli = FALSE;
pLoggedInPort->plogi = FALSE;
cpqfcTSTerminateExchange( cpqfcHBAdata,
&pLoggedInPort->ScsiNexus, PORTID_CHANGED);
}
cpqfcTSPutLinkQue( cpqfcHBAdata, ELS_PLOGI, fchs );
}
}
else
{
// login payload unacceptable - reason in ls_reject_code
// Q up a Logout Request
printk("ERROR: Login Payload unacceptable!\n");
}
break;
case ELS_PRLI: // we sent out PRLI
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search Scsi Nexus
(fchs->s_id & 0xFFFFFF), // search linked list for port_id
NULL, // DON'T search linked list for WWN
NULL); // don't care
if( pLoggedInPort == NULL )
{
// huh?
printk(" Unexpected PRLI ACCept frame!\n");
// Q a LOGOut here?
goto Done;
}
// verify the PRLI ACC payload
if( !verify_PRLI( fchs, &ls_reject_code) )
{
// PRLI Reply is acceptable; were we expecting it?
if( pLoggedInPort->plogi )
{
// yes, we expected the PRLI ACC (not PDISC; Originator)
SetLoginFields( pLoggedInPort, fchs, FALSE, TRUE);
// OK, let's send a REPORT_LUNS command to determine
// whether VSA or PDA FCP-LUN addressing is used.
cpqfcTSPutLinkQue( cpqfcHBAdata, SCSI_REPORT_LUNS, fchs );
// It's possible that a device we were talking to changed
// port_id, and has logged back in. This function ensures
// that I/O will resume.
UnblockScsiDevice( cpqfcHBAdata->HostAdapter, pLoggedInPort);
}
else
{
// huh?
printk(" (unexpected) PRLI ACCept with plogi FALSE\n");
// Q a LOGOut here?
goto Done;
}
}
else
{
printk(" PRLI ACCept payload failed verify\n");
// Q a LOGOut here?
}
break;
case ELS_FLOGI: // we sent out FLOGI (Fabric Login)
// update the upper 16 bits of our port_id in Tachyon
// the switch adds those upper 16 bits when responding
// to us (i.e. we are the destination_id)
fcChip->Registers.my_al_pa = (fchs->d_id & 0xFFFFFF);
writel( fcChip->Registers.my_al_pa,
fcChip->Registers.ReMapMemBase + TL_MEM_TACH_My_ID);
// now send out a PLOGI to the well known port_id 0xFFFFFC
fchs->s_id = 0xFFFFFC;
cpqfcTSPutLinkQue( cpqfcHBAdata, ELS_PLOGI, fchs);
break;
case ELS_FDISC: // we sent out FDISC (Fabric Discovery (Login))
printk( " ELS_FDISC success ");
break;
case ELS_SCR: // we sent out State Change Registration
// now we can issue Name Service Request to find any
// Fabric-connected devices we might want to login to.
fchs->s_id = 0xFFFFFC; // Name Server Address
cpqfcTSPutLinkQue( cpqfcHBAdata, FCS_NSR, fchs);
break;
default:
printk(" *Discarding unknown ACC frame, xID %04X/%04X* ",
ox_id, fchs->ox_rx_id & 0xffff);
break;
}
Done:
// Regardless of whether the Reply is valid or not, the
// the exchange is done - complete
cpqfcTSCompleteExchange(cpqfcHBAdata->PciDev, fcChip, (fchs->ox_rx_id >>16));
Quit:
return;
}
// **************** Fibre Channel Services **************
// This is where we process the Directory (Name) Service Reply
// to know which devices are on the Fabric
static void ProcessFCS_Reply(
CPQFCHBA* cpqfcHBAdata, TachFCHDR_GCMND* fchs)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG ox_id = (fchs->ox_rx_id >>16);
// ULONG ls_reject_code;
// PFC_LOGGEDIN_PORT pLoggedInPort, pLastLoggedInPort;
// If this is a valid reply, then we MUST have sent a request.
// Verify that we can find a valid request OX_ID corresponding to
// this reply
if( Exchanges->fcExchange[(fchs->ox_rx_id >>16)].type == 0)
{
printk(" *Discarding Reply frame, xID %04X/%04X* ",
ox_id, fchs->ox_rx_id & 0xffff);
goto Quit; // exit this routine
}
// OK, we were expecting it. Now check to see if it's a
// "Name Service" Reply, and if so force a re-validation of
// Fabric device logins (i.e. Start the login timeout and
// send PDISC or PLOGI)
// (Endianess Byte Swap?)
if( fchs->pl[1] == 0x02FC ) // Name Service
{
// got a new (or NULL) list of Fabric attach devices...
// Invalidate current logins
PFC_LOGGEDIN_PORT pLoggedInPort = &fcChip->fcPorts;
while( pLoggedInPort ) // for all ports which are expecting
// PDISC after the next LIP, set the
// logoutTimer
{
if( (pLoggedInPort->port_id & 0xFFFF00) // Fabric device?
&&
(pLoggedInPort->port_id != 0xFFFFFC) ) // NOT the F_Port
{
pLoggedInPort->LOGO_timer = 6; // what's the Fabric timeout??
// suspend any I/O in progress until
// PDISC received...
pLoggedInPort->prli = FALSE; // block FCP-SCSI commands
}
pLoggedInPort = pLoggedInPort->pNextPort;
}
if( fchs->pl[2] == 0x0280) // ACCept?
{
// Send PLOGI or PDISC to these Fabric devices
SendLogins( cpqfcHBAdata, &fchs->pl[4] );
}
// As of this writing, the only reason to reject is because NO
// devices are left on the Fabric. We already started
// "logged out" timers; if the device(s) don't come
// back, we'll do the implicit logout in the heart beat
// timer routine
else // ReJecT
{
// this just means no Fabric device is visible at this instant
}
}
// Regardless of whether the Reply is valid or not, the
// the exchange is done - complete
cpqfcTSCompleteExchange(cpqfcHBAdata->PciDev, fcChip, (fchs->ox_rx_id >>16));
Quit:
return;
}
static void AnalyzeIncomingFrame(
CPQFCHBA *cpqfcHBAdata,
ULONG QNdx )
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
PFC_LINK_QUE fcLQ = cpqfcHBAdata->fcLQ;
TachFCHDR_GCMND* fchs =
(TachFCHDR_GCMND*)fcLQ->Qitem[QNdx].ulBuff;
// ULONG ls_reject_code; // reason for rejecting login
LONG ExchangeID;
// FC_LOGGEDIN_PORT *pLoggedInPort;
BOOLEAN AbortAccept;
ENTER("AnalyzeIncomingFrame");
switch( fcLQ->Qitem[QNdx].Type) // FCP or Unknown
{
case SFQ_UNKNOWN: // unknown frame (e.g. LIP position frame, NOP, etc.)
// ********* FC-4 Device Data/ Fibre Channel Service *************
if( ((fchs->d_id &0xF0000000) == 0) // R_CTL (upper nibble) 0x0?
&&
(fchs->f_ctl & 0x20000000) ) // TYPE 20h is Fibre Channel Service
{
// ************** FCS Reply **********************
if( (fchs->d_id & 0xff000000L) == 0x03000000L) // (31:23 R_CTL)
{
ProcessFCS_Reply( cpqfcHBAdata, fchs );
} // end of FCS logic
}
// *********** Extended Link Service **************
else if( fchs->d_id & 0x20000000 // R_CTL 0x2?
&&
(fchs->f_ctl & 0x01000000) ) // TYPE = 1
{
// these frames are either a response to
// something we sent (0x23) or "unsolicited"
// frames (0x22).
// **************Extended Link REPLY **********************
// R_CTL Solicited Control Reply
if( (fchs->d_id & 0xff000000L) == 0x23000000L) // (31:23 R_CTL)
{
ProcessELS_Reply( cpqfcHBAdata, fchs );
} // end of "R_CTL Solicited Control Reply"
// **************Extended Link REQUEST **********************
// (unsolicited commands from another port or task...)
// R_CTL Ext Link REQUEST
else if( (fchs->d_id & 0xff000000L) == 0x22000000L &&
(fchs->ox_rx_id != 0xFFFFFFFFL) ) // (ignore LIP frame)
{
ProcessELS_Request( cpqfcHBAdata, fchs );
}
// ************** LILP **********************
else if( (fchs->d_id & 0xff000000L) == 0x22000000L &&
(fchs->ox_rx_id == 0xFFFFFFFFL)) // (e.g., LIP frames)
{
// SANMark specifies that when available, we must use
// the LILP frame to determine which ALPAs to send Port Discovery
// to...
if( fchs->pl[0] == 0x0711L) // ELS_PLOGI?
{
// UCHAR *ptr = (UCHAR*)&fchs->pl[1];
// printk(" %d ALPAs found\n", *ptr);
memcpy( fcChip->LILPmap, &fchs->pl[1], 32*4); // 32 DWORDs
fcChip->Options.LILPin = 1; // our LILPmap is valid!
// now post to make Port Discovery happen...
cpqfcTSPutLinkQue( cpqfcHBAdata, LINKACTIVE, fchs);
}
}
}
// ***************** BASIC LINK SERVICE *****************
else if( fchs->d_id & 0x80000000 // R_CTL:
&& // Basic Link Service Request
!(fchs->f_ctl & 0xFF000000) ) // type=0 for BLS
{
// Check for ABTS (Abort Sequence)
if( (fchs->d_id & 0x8F000000) == 0x81000000)
{
// look for OX_ID, S_ID pair that matches in our
// fcExchanges table; if found, reply with ACCept and complete
// the exchange
// Per PLDA, an ABTS is sent by an initiator; therefore
// assume that if we have an exhange open to the port who
// sent ABTS, it will be the d_id of what we sent.
for( ExchangeID = 0, AbortAccept=FALSE;
ExchangeID < TACH_SEST_LEN; ExchangeID++)
{
// Valid "target" exchange 24-bit port_id matches?
// NOTE: For the case of handling Intiator AND Target
// functions on the same chip, we can have TWO Exchanges
// with the same OX_ID -- OX_ID/FFFF for the CMND, and
// OX_ID/RX_ID for the XRDY or DATA frame(s). Ideally,
// we would like to support ABTS from Initiators or Targets,
// but it's not clear that can be supported on Tachyon for
// all cases (requires more investigation).
if( (Exchanges->fcExchange[ ExchangeID].type == SCSI_TWE ||
Exchanges->fcExchange[ ExchangeID].type == SCSI_TRE)
&&
((Exchanges->fcExchange[ ExchangeID].fchs.d_id & 0xFFFFFF) ==
(fchs->s_id & 0xFFFFFF)) )
{
// target xchnge port_id matches -- how about OX_ID?
if( (Exchanges->fcExchange[ ExchangeID].fchs.ox_rx_id &0xFFFF0000)
== (fchs->ox_rx_id & 0xFFFF0000) )
// yes! post ACCept response; will be completed by fcStart
{
Exchanges->fcExchange[ ExchangeID].status = TARGET_ABORT;
// copy (add) rx_id field for simplified ACCept reply
fchs->ox_rx_id =
Exchanges->fcExchange[ ExchangeID].fchs.ox_rx_id;
cpqfcTSPutLinkQue( cpqfcHBAdata,
BLS_ABTS_ACC, // Q Type
fchs ); // void QueContent
AbortAccept = TRUE;
printk("ACCepting ABTS for x_ID %8.8Xh, SEST pair %8.8Xh\n",
fchs->ox_rx_id, Exchanges->fcExchange[ ExchangeID].fchs.ox_rx_id);
break; // ABTS can affect only ONE exchange -exit loop
}
}
} // end of FOR loop
if( !AbortAccept ) // can't ACCept ABTS - send Reject
{
printk("ReJecTing: can't find ExchangeID %8.8Xh for ABTS command\n",
fchs->ox_rx_id);
if( Exchanges->fcExchange[ ExchangeID].type
&&
!(fcChip->SEST->u[ ExchangeID].IWE.Hdr_Len
& 0x80000000))
{
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, ExchangeID);
}
else
{
printk("Unexpected ABTS ReJecT! SEST[%X] Dword 0: %Xh\n",
ExchangeID, fcChip->SEST->u[ ExchangeID].IWE.Hdr_Len);
}
}
}
// Check for BLS {ABTS? (Abort Sequence)} ACCept
else if( (fchs->d_id & 0x8F000000) == 0x84000000)
{
// target has responded with ACC for our ABTS;
// complete the indicated exchange with ABORTED status
// Make no checks for correct RX_ID, since
// all we need to conform ABTS ACC is the OX_ID.
// Verify that the d_id matches!
ExchangeID = (fchs->ox_rx_id >> 16) & 0x7FFF; // x_id from ACC
// printk("ABTS ACC x_ID 0x%04X 0x%04X, status %Xh\n",
// fchs->ox_rx_id >> 16, fchs->ox_rx_id & 0xffff,
// Exchanges->fcExchange[ExchangeID].status);
if( ExchangeID < TACH_SEST_LEN ) // x_ID makes sense
{
// Does "target" exchange 24-bit port_id match?
// (See "NOTE" above for handling Intiator AND Target in
// the same device driver)
// First, if this is a target response, then we originated
// (initiated) it with BLS_ABTS:
if( (Exchanges->fcExchange[ ExchangeID].type == BLS_ABTS)
&&
// Second, does the source of this ACC match the destination
// of who we originally sent it to?
((Exchanges->fcExchange[ ExchangeID].fchs.d_id & 0xFFFFFF) ==
(fchs->s_id & 0xFFFFFF)) )
{
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, ExchangeID );
}
}
}
// Check for BLS {ABTS? (Abort Sequence)} ReJecT
else if( (fchs->d_id & 0x8F000000) == 0x85000000)
{
// target has responded with RJT for our ABTS;
// complete the indicated exchange with ABORTED status
// Make no checks for correct RX_ID, since
// all we need to conform ABTS ACC is the OX_ID.
// Verify that the d_id matches!
ExchangeID = (fchs->ox_rx_id >> 16) & 0x7FFF; // x_id from ACC
// printk("BLS_ABTS RJT on Exchange 0x%04X 0x%04X\n",
// fchs->ox_rx_id >> 16, fchs->ox_rx_id & 0xffff);
if( ExchangeID < TACH_SEST_LEN ) // x_ID makes sense
{
// Does "target" exchange 24-bit port_id match?
// (See "NOTE" above for handling Intiator AND Target in
// the same device driver)
// First, if this is a target response, then we originated
// (initiated) it with BLS_ABTS:
if( (Exchanges->fcExchange[ ExchangeID].type == BLS_ABTS)
&&
// Second, does the source of this ACC match the destination
// of who we originally sent it to?
((Exchanges->fcExchange[ ExchangeID].fchs.d_id & 0xFFFFFF) ==
(fchs->s_id & 0xFFFFFF)) )
{
// YES! NOTE: There is a bug in CPQ's RA-4000 box
// where the "reason code" isn't returned in the payload
// For now, simply presume the reject is because the target
// already completed the exchange...
// printk("complete x_ID %Xh on ABTS RJT\n", ExchangeID);
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, ExchangeID );
}
}
} // end of ABTS check
} // end of Basic Link Service Request
break;
default:
printk("AnalyzeIncomingFrame: unknown type: %Xh(%d)\n",
fcLQ->Qitem[QNdx].Type,
fcLQ->Qitem[QNdx].Type);
break;
}
}
// Function for Port Discovery necessary after every FC
// initialization (e.g. LIP).
// Also may be called if from Fabric Name Service logic.
static void SendLogins( CPQFCHBA *cpqfcHBAdata, __u32 *FabricPortIds )
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG ulStatus=0;
TachFCHDR_GCMND fchs; // copy fields for transmission
int i;
ULONG loginType;
LONG ExchangeID;
PFC_LOGGEDIN_PORT pLoggedInPort;
__u32 PortIds[ number_of_al_pa];
int NumberOfPorts=0;
// We're going to presume (for now) that our limit of Fabric devices
// is the same as the number of alpa on a private loop (126 devices).
// (Of course this could be changed to support however many we have
// memory for).
memset( &PortIds[0], 0, sizeof(PortIds));
// First, check if this login is for our own Link Initialization
// (e.g. LIP on FC-AL), or if we have knowledge of Fabric devices
// from a switch. If we are logging into Fabric devices, we'll
// have a non-NULL FabricPortId pointer
if( FabricPortIds != NULL) // may need logins
{
int LastPort=FALSE;
i = 0;
while( !LastPort)
{
// port IDs From NSR payload; byte swap needed?
BigEndianSwap( (UCHAR*)FabricPortIds, (UCHAR*)&PortIds[i], 4);
// printk("FPortId[%d] %Xh ", i, PortIds[i]);
if( PortIds[i] & 0x80000000)
LastPort = TRUE;
PortIds[i] &= 0xFFFFFF; // get 24-bit port_id
// some non-Fabric devices (like the Crossroads Fibre/Scsi bridge)
// erroneously use ALPA 0.
if( PortIds[i] ) // need non-zero port_id...
i++;
if( i >= number_of_al_pa ) // (in)sanity check
break;
FabricPortIds++; // next...
}
NumberOfPorts = i;
// printk("NumberOf Fabric ports %d", NumberOfPorts);
}
else // need to send logins on our "local" link
{
// are we a loop port? If so, check for reception of LILP frame,
// and if received use it (SANMark requirement)
if( fcChip->Options.LILPin )
{
int j=0;
// sanity check on number of ALPAs from LILP frame...
// For format of LILP frame, see FC-AL specs or
// "Fibre Channel Bench Reference", J. Stai, 1995 (ISBN 1-879936-17-8)
// First byte is number of ALPAs
i = fcChip->LILPmap[0] >= (32*4) ? 32*4 : fcChip->LILPmap[0];
NumberOfPorts = i;
// printk(" LILP alpa count %d ", i);
while( i > 0)
{
PortIds[j] = fcChip->LILPmap[1+ j];
j++; i--;
}
}
else // have to send login to everybody
{
int j=0;
i = number_of_al_pa;
NumberOfPorts = i;
while( i > 0)
{
PortIds[j] = valid_al_pa[j]; // all legal ALPAs
j++; i--;
}
}
}
// Now we have a copy of the port_ids (and how many)...
for( i = 0; i < NumberOfPorts; i++)
{
// 24-bit FC Port ID
fchs.s_id = PortIds[i]; // note: only 8-bits used for ALPA
// don't log into ourselves (Linux Scsi disk scan will stop on
// no TARGET support error on us, and quit trying for rest of devices)
if( (fchs.s_id & 0xFF ) == (fcChip->Registers.my_al_pa & 0xFF) )
continue;
// fabric login needed?
if( (fchs.s_id == 0) ||
(fcChip->Options.fabric == 1) )
{
fcChip->Options.flogi = 1; // fabric needs longer for login
// Do we need FLOGI or FDISC?
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search SCSI Nexus
0xFFFFFC, // search linked list for Fabric port_id
NULL, // don't search WWN
NULL); // (don't care about end of list)
if( pLoggedInPort ) // If found, we have prior experience with
// this port -- check whether PDISC is needed
{
if( pLoggedInPort->flogi )
{
// does the switch support FDISC?? (FLOGI for now...)
loginType = ELS_FLOGI; // prior FLOGI still valid
}
else
loginType = ELS_FLOGI; // expired FLOGI
}
else // first FLOGI?
loginType = ELS_FLOGI;
fchs.s_id = 0xFFFFFE; // well known F_Port address
// Fabrics are not required to support FDISC, and
// it's not clear if that helps us anyway, since
// we'll want a Name Service Request to re-verify
// visible devices...
// Consequently, we always want our upper 16 bit
// port_id to be zero (we'll be rejected if we
// use our prior port_id if we've been plugged into
// a different switch port).
// Trick Tachyon to send to ALPA 0 (see TL/TS UG, pg 87)
// If our ALPA is 55h for instance, we want the FC frame
// s_id to be 0x000055, while Tach's my_al_pa register
// must be 0x000155, to force an OPN at ALPA 0
// (the Fabric port)
fcChip->Registers.my_al_pa &= 0xFF; // only use ALPA for FLOGI
writel( fcChip->Registers.my_al_pa | 0x0100,
fcChip->Registers.ReMapMemBase + TL_MEM_TACH_My_ID);
}
else // not FLOGI...
{
// should we send PLOGI or PDISC? Check if any prior port_id
// (e.g. alpa) completed a PLOGI/PRLI exchange by checking
// the pdisc flag.
pLoggedInPort = fcFindLoggedInPort(
fcChip,
NULL, // don't search SCSI Nexus
fchs.s_id, // search linked list for al_pa
NULL, // don't search WWN
NULL); // (don't care about end of list)
if( pLoggedInPort ) // If found, we have prior experience with
// this port -- check whether PDISC is needed
{
if( pLoggedInPort->pdisc )
{
loginType = ELS_PDISC; // prior PLOGI and PRLI maybe still valid
}
else
loginType = ELS_PLOGI; // prior knowledge, but can't use PDISC
}
else // never talked to this port_id before
loginType = ELS_PLOGI; // prior knowledge, but can't use PDISC
}
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
loginType, // e.g. PLOGI
&fchs, // no incoming frame (we are originator)
NULL, // no data (no scatter/gather list)
&ExchangeID );// fcController->fcExchanges index, -1 if failed
if( !ulStatus ) // Exchange setup OK?
{
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID );
if( !ulStatus )
{
// submitted to Tach's Outbound Que (ERQ PI incremented)
// waited for completion for ELS type (Login frames issued
// synchronously)
if( loginType == ELS_PDISC )
{
// now, we really shouldn't Revalidate SEST exchanges until
// we get an ACC reply from our target and verify that
// the target address/WWN is unchanged. However, when a fast
// target gets the PDISC, they can send SEST Exchange data
// before we even get around to processing the PDISC ACC.
// Consequently, we lose the I/O.
// To avoid this, go ahead and Revalidate when the PDISC goes
// out, anticipating that the ACC will be truly acceptable
// (this happens 99.9999....% of the time).
// If we revalidate a SEST write, and write data goes to a
// target that is NOT the one we originated the WRITE to,
// that target is required (FCP-SCSI specs, etc) to discard
// our WRITE data.
// Re-validate SEST entries (Tachyon hardware assists)
RevalidateSEST( cpqfcHBAdata->HostAdapter, pLoggedInPort);
//TriggerHBA( fcChip->Registers.ReMapMemBase, 1);
}
}
else // give up immediately on error
{
#ifdef LOGIN_DBG
printk("SendLogins: fcStartExchange failed: %Xh\n", ulStatus );
#endif
break;
}
if( fcChip->Registers.FMstatus.value & 0x080 ) // LDn during Port Disc.
{
ulStatus = LNKDWN_OSLS;
#ifdef LOGIN_DBG
printk("SendLogins: PortDisc aborted (LDn) @alpa %Xh\n", fchs.s_id);
#endif
break;
}
// Check the exchange for bad status (i.e. FrameTimeOut),
// and complete on bad status (most likely due to BAD_ALPA)
// on LDn, DPC function may already complete (ABORT) a started
// exchange, so check type first (type = 0 on complete).
if( Exchanges->fcExchange[ExchangeID].status )
{
#ifdef LOGIN_DBG
printk("completing x_ID %X on status %Xh\n",
ExchangeID, Exchanges->fcExchange[ExchangeID].status);
#endif
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, ExchangeID);
}
}
else // Xchange setup failed...
{
#ifdef LOGIN_DBG
printk("FC: cpqfcTSBuildExchange failed: %Xh\n", ulStatus );
#endif
break;
}
}
if( !ulStatus )
{
// set the event signifying that all ALPAs were sent out.
#ifdef LOGIN_DBG
printk("SendLogins: PortDiscDone\n");
#endif
cpqfcHBAdata->PortDiscDone = 1;
// TL/TS UG, pg. 184
// 0x0065 = 100ms for RT_TOV
// 0x01f5 = 500ms for ED_TOV
fcChip->Registers.ed_tov.value = 0x006501f5L;
writel( fcChip->Registers.ed_tov.value,
(fcChip->Registers.ed_tov.address));
// set the LP_TOV back to ED_TOV (i.e. 500 ms)
writel( 0x00000010, fcChip->Registers.ReMapMemBase +TL_MEM_FM_TIMEOUT2);
}
else
{
printk("SendLogins: failed at xchng %Xh, alpa %Xh, status %Xh\n",
ExchangeID, fchs.s_id, ulStatus);
}
LEAVE("SendLogins");
}
// for REPORT_LUNS documentation, see "In-Depth Exploration of Scsi",
// D. Deming, 1994, pg 7-19 (ISBN 1-879936-08-9)
static void ScsiReportLunsDone(Scsi_Cmnd *Cmnd)
{
struct Scsi_Host *HostAdapter = Cmnd->device->host;
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
PFC_LOGGEDIN_PORT pLoggedInPort;
int LunListLen=0;
int i;
ULONG x_ID = 0xFFFFFFFF;
UCHAR *ucBuff = Cmnd->request_buffer;
// printk("cpqfcTS: ReportLunsDone \n");
// first, we need to find the Exchange for this command,
// so we can find the fcPort struct to make the indicated
// changes.
for( i=0; i< TACH_SEST_LEN; i++)
{
if( Exchanges->fcExchange[i].type // exchange defined?
&&
(Exchanges->fcExchange[i].Cmnd == Cmnd) ) // matches?
{
x_ID = i; // found exchange!
break;
}
}
if( x_ID == 0xFFFFFFFF)
{
// printk("cpqfcTS: ReportLuns failed - no FC Exchange\n");
goto Done; // Report Luns FC Exchange gone;
// exchange probably Terminated by Implicit logout
}
// search linked list for the port_id we sent INQUIRY to
pLoggedInPort = fcFindLoggedInPort( fcChip,
NULL, // DON'T search Scsi Nexus (we will set it)
Exchanges->fcExchange[ x_ID].fchs.d_id & 0xFFFFFF,
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
if( !pLoggedInPort )
{
// printk("cpqfcTS: ReportLuns failed - device gone\n");
goto Done; // error! can't find logged in Port
}
LunListLen = ucBuff[3];
LunListLen += ucBuff[2]>>8;
if( !LunListLen ) // failed
{
// generically speaking, a soft error means we should retry...
if( (Cmnd->result >> 16) == DID_SOFT_ERROR )
{
if( ((Cmnd->sense_buffer[2] & 0xF) == 0x6) &&
(Cmnd->sense_buffer[12] == 0x29) ) // Sense Code "reset"
{
TachFCHDR_GCMND *fchs = &Exchanges->fcExchange[ x_ID].fchs;
// did we fail because of "check condition, device reset?"
// e.g. the device was reset (i.e., at every power up)
// retry the Report Luns
// who are we sending it to?
// we know this because we have a copy of the command
// frame from the original Report Lun command -
// switch the d_id/s_id fields, because the Exchange Build
// context is "reply to source".
fchs->s_id = fchs->d_id; // (temporarily re-use the struct)
cpqfcTSPutLinkQue( cpqfcHBAdata, SCSI_REPORT_LUNS, fchs );
}
}
else // probably, the device doesn't support Report Luns
pLoggedInPort->ScsiNexus.VolumeSetAddressing = 0;
}
else // we have LUN info - check VSA mode
{
// for now, assume all LUNs will have same addr mode
// for VSA, payload byte 8 will be 0x40; otherwise, 0
pLoggedInPort->ScsiNexus.VolumeSetAddressing = ucBuff[8];
// Since we got a Report Luns answer, set lun masking flag
pLoggedInPort->ScsiNexus.LunMasking = 1;
if( LunListLen > 8*CPQFCTS_MAX_LUN) // We expect CPQFCTS_MAX_LUN max
LunListLen = 8*CPQFCTS_MAX_LUN;
/*
printk("Device WWN %08X%08X Reports Luns @: ",
(ULONG)(pLoggedInPort->u.liWWN &0xFFFFFFFF),
(ULONG)(pLoggedInPort->u.liWWN>>32));
for( i=8; i<LunListLen+8; i+=8)
{
printk("%02X%02X ", ucBuff[i], ucBuff[i+1] );
}
printk("\n");
*/
// Since the device was kind enough to tell us where the
// LUNs are, lets ensure they are contiguous for Linux's
// SCSI driver scan, which expects them to start at 0.
// Since Linux only supports 8 LUNs, only copy the first
// eight from the report luns command
// e.g., the Compaq RA4x00 f/w Rev 2.54 and above may report
// LUNs 4001, 4004, etc., because other LUNs are masked from
// this HBA (owned by someone else). We'll make those appear as
// LUN 0, 1... to Linux
{
int j;
int AppendLunList = 0;
// Walk through the LUN list. The 'j' array number is
// Linux's lun #, while the value of .lun[j] is the target's
// lun #.
// Once we build a LUN list, it's possible for a known device
// to go offline while volumes (LUNs) are added. Later,
// the device will do another PLOGI ... Report Luns command,
// and we must not alter the existing Linux Lun map.
// (This will be very rare).
for( j=0; j < CPQFCTS_MAX_LUN; j++)
{
if( pLoggedInPort->ScsiNexus.lun[j] != 0xFF )
{
AppendLunList = 1;
break;
}
}
if( AppendLunList )
{
int k;
int FreeLunIndex;
// printk("cpqfcTS: AppendLunList\n");
// If we get a new Report Luns, we cannot change
// any existing LUN mapping! (Only additive entry)
// For all LUNs in ReportLun list
// if RL lun != ScsiNexus lun
// if RL lun present in ScsiNexus lun[], continue
// else find ScsiNexus lun[]==FF and add, continue
for( i=8, j=0; i<LunListLen+8 && j< CPQFCTS_MAX_LUN; i+=8, j++)
{
if( pLoggedInPort->ScsiNexus.lun[j] != ucBuff[i+1] )
{
// something changed from the last Report Luns
printk(" cpqfcTS: Report Lun change!\n");
for( k=0, FreeLunIndex=CPQFCTS_MAX_LUN;
k < CPQFCTS_MAX_LUN; k++)
{
if( pLoggedInPort->ScsiNexus.lun[k] == 0xFF)
{
FreeLunIndex = k;
break;
}
if( pLoggedInPort->ScsiNexus.lun[k] == ucBuff[i+1] )
break; // we already masked this lun
}
if( k >= CPQFCTS_MAX_LUN )
{
printk(" no room for new LUN %d\n", ucBuff[i+1]);
}
else if( k == FreeLunIndex ) // need to add LUN
{
pLoggedInPort->ScsiNexus.lun[k] = ucBuff[i+1];
// printk("add [%d]->%02d\n", k, pLoggedInPort->ScsiNexus.lun[k]);
}
else
{
// lun already known
}
break;
}
}
// print out the new list...
for( j=0; j< CPQFCTS_MAX_LUN; j++)
{
if( pLoggedInPort->ScsiNexus.lun[j] == 0xFF)
break; // done
// printk("[%d]->%02d ", j, pLoggedInPort->ScsiNexus.lun[j]);
}
}
else
{
// printk("Linux SCSI LUNs[] -> Device LUNs: ");
// first time - this is easy
for( i=8, j=0; i<LunListLen+8 && j< CPQFCTS_MAX_LUN; i+=8, j++)
{
pLoggedInPort->ScsiNexus.lun[j] = ucBuff[i+1];
// printk("[%d]->%02d ", j, pLoggedInPort->ScsiNexus.lun[j]);
}
// printk("\n");
}
}
}
Done: ;
}
extern int is_private_data_of_cpqfc(CPQFCHBA *hba, void * pointer);
extern void cpqfc_free_private_data(CPQFCHBA *hba, cpqfc_passthru_private_t *data);
static void
call_scsi_done(Scsi_Cmnd *Cmnd)
{
CPQFCHBA *hba;
hba = (CPQFCHBA *) Cmnd->device->host->hostdata;
// Was this command a cpqfc passthru ioctl ?
if (Cmnd->sc_request != NULL && Cmnd->device->host != NULL &&
Cmnd->device->host->hostdata != NULL &&
is_private_data_of_cpqfc((CPQFCHBA *) Cmnd->device->host->hostdata,
Cmnd->sc_request->upper_private_data)) {
cpqfc_free_private_data(hba,
Cmnd->sc_request->upper_private_data);
Cmnd->sc_request->upper_private_data = NULL;
Cmnd->result &= 0xff00ffff;
Cmnd->result |= (DID_PASSTHROUGH << 16); // prevents retry
}
if (Cmnd->scsi_done != NULL)
(*Cmnd->scsi_done)(Cmnd);
}
// After successfully getting a "Process Login" (PRLI) from an
// FC port, we want to Discover the LUNs so that we know the
// addressing type (e.g., FCP-SCSI Volume Set Address, Peripheral
// Unit Device), and whether SSP (Selective Storage Presentation or
// Lun Masking) has made the LUN numbers non-zero based or
// non-contiguous. To remain backward compatible with the SCSI-2
// driver model, which expects a contiguous LUNs starting at 0,
// will use the ReportLuns info to map from "device" to "Linux"
// LUNs.
static void IssueReportLunsCommand(
CPQFCHBA* cpqfcHBAdata,
TachFCHDR_GCMND* fchs)
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
PFC_LOGGEDIN_PORT pLoggedInPort;
struct scsi_cmnd *Cmnd = NULL;
struct scsi_device *ScsiDev = NULL;
LONG x_ID;
ULONG ulStatus;
UCHAR *ucBuff;
if( !cpqfcHBAdata->PortDiscDone) // cleared by LDn
{
printk("Discard Q'd ReportLun command\n");
goto Done;
}
// find the device (from port_id) we're talking to
pLoggedInPort = fcFindLoggedInPort( fcChip,
NULL, // DON'T search Scsi Nexus
fchs->s_id & 0xFFFFFF,
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
if( pLoggedInPort ) // we'd BETTER find it!
{
if( !(pLoggedInPort->fcp_info & TARGET_FUNCTION) )
goto Done; // forget it - FC device not a "target"
ScsiDev = scsi_get_host_dev (cpqfcHBAdata->HostAdapter);
if (!ScsiDev)
goto Done;
Cmnd = scsi_get_command (ScsiDev, GFP_KERNEL);
if (!Cmnd)
goto Done;
ucBuff = pLoggedInPort->ReportLunsPayload;
memset( ucBuff, 0, REPORT_LUNS_PL);
Cmnd->scsi_done = ScsiReportLunsDone;
Cmnd->request_buffer = pLoggedInPort->ReportLunsPayload;
Cmnd->request_bufflen = REPORT_LUNS_PL;
Cmnd->cmnd[0] = 0xA0;
Cmnd->cmnd[8] = REPORT_LUNS_PL >> 8;
Cmnd->cmnd[9] = (UCHAR)REPORT_LUNS_PL;
Cmnd->cmd_len = 12;
Cmnd->device->channel = pLoggedInPort->ScsiNexus.channel;
Cmnd->device->id = pLoggedInPort->ScsiNexus.target;
ulStatus = cpqfcTSBuildExchange(
cpqfcHBAdata,
SCSI_IRE,
fchs,
Cmnd, // buffer for Report Lun data
&x_ID );// fcController->fcExchanges index, -1 if failed
if( !ulStatus ) // Exchange setup?
{
ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, x_ID );
if( !ulStatus )
{
// submitted to Tach's Outbound Que (ERQ PI incremented)
// waited for completion for ELS type (Login frames issued
// synchronously)
}
else
// check reason for Exchange not being started - we might
// want to Queue and start later, or fail with error
{
}
}
else // Xchange setup failed...
printk(" cpqfcTSBuildExchange failed: %Xh\n", ulStatus );
}
else // like, we just got a PRLI ACC, and now the port is gone?
{
printk(" can't send ReportLuns - no login for port_id %Xh\n",
fchs->s_id & 0xFFFFFF);
}
Done:
if (Cmnd)
scsi_put_command (Cmnd);
if (ScsiDev)
scsi_free_host_dev (ScsiDev);
}
static void CompleteBoardLockCmnd( CPQFCHBA *cpqfcHBAdata)
{
int i;
for( i = CPQFCTS_REQ_QUEUE_LEN-1; i>= 0; i--)
{
if( cpqfcHBAdata->BoardLockCmnd[i] != NULL )
{
Scsi_Cmnd *Cmnd = cpqfcHBAdata->BoardLockCmnd[i];
cpqfcHBAdata->BoardLockCmnd[i] = NULL;
Cmnd->result = (DID_SOFT_ERROR << 16); // ask for retry
// printk(" BoardLockCmnd[%d] %p Complete, chnl/target/lun %d/%d/%d\n",
// i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun);
call_scsi_done(Cmnd);
}
}
}
// runs every 1 second for FC exchange timeouts and implicit FC device logouts
void cpqfcTSheartbeat( unsigned long ptr )
{
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)ptr;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
PFC_LOGGEDIN_PORT pLoggedInPort = &fcChip->fcPorts;
ULONG i;
unsigned long flags;
DECLARE_MUTEX_LOCKED(BoardLock);
PCI_TRACE( 0xA8)
if( cpqfcHBAdata->BoardLock) // Worker Task Running?
goto Skip;
// STOP _que function
spin_lock_irqsave( cpqfcHBAdata->HostAdapter->host_lock, flags);
PCI_TRACE( 0xA8)
cpqfcHBAdata->BoardLock = &BoardLock; // stop Linux SCSI command queuing
// release the IO lock (and re-enable interrupts)
spin_unlock_irqrestore( cpqfcHBAdata->HostAdapter->host_lock, flags);
// Ensure no contention from _quecommand or Worker process
CPQ_SPINLOCK_HBA( cpqfcHBAdata)
PCI_TRACE( 0xA8)
disable_irq( cpqfcHBAdata->HostAdapter->irq); // our IRQ
// Complete the "bad target" commands (normally only used during
// initialization, since we aren't supposed to call "scsi_done"
// inside the queuecommand() function). (this is overly contorted,
// scsi_done can be safely called from queuecommand for
// this bad target case. May want to simplify this later)
for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++)
{
if( cpqfcHBAdata->BadTargetCmnd[i] )
{
Scsi_Cmnd *Cmnd = cpqfcHBAdata->BadTargetCmnd[i];
cpqfcHBAdata->BadTargetCmnd[i] = NULL;
Cmnd->result = (DID_BAD_TARGET << 16);
call_scsi_done(Cmnd);
}
else
break;
}
// logged in ports -- re-login check (ports required to verify login with
// PDISC after LIP within 2 secs)
// prevent contention
while( pLoggedInPort ) // for all ports which are expecting
// PDISC after the next LIP, check to see if
// time is up!
{
// Important: we only detect "timeout" condition on TRANSITION
// from non-zero to zero
if( pLoggedInPort->LOGO_timer ) // time-out "armed"?
{
if( !(--pLoggedInPort->LOGO_timer) ) // DEC from 1 to 0?
{
// LOGOUT time! Per PLDA, PDISC hasn't complete in 2 secs, so
// issue LOGO request and destroy all I/O with other FC port(s).
/*
printk(" ~cpqfcTS heartbeat: LOGOut!~ ");
printk("Linux SCSI Chanl/Target %d/%d (port_id %06Xh) WWN %08X%08X\n",
pLoggedInPort->ScsiNexus.channel,
pLoggedInPort->ScsiNexus.target,
pLoggedInPort->port_id,
(ULONG)(pLoggedInPort->u.liWWN &0xFFFFFFFF),
(ULONG)(pLoggedInPort->u.liWWN>>32));
*/
cpqfcTSImplicitLogout( cpqfcHBAdata, pLoggedInPort);
}
// else simply decremented - maybe next time...
}
pLoggedInPort = pLoggedInPort->pNextPort;
}
// ************ FC EXCHANGE TIMEOUT CHECK **************
for( i=0; i< TACH_MAX_XID; i++)
{
if( Exchanges->fcExchange[i].type ) // exchange defined?
{
if( !Exchanges->fcExchange[i].timeOut ) // time expired
{
// Set Exchange timeout status
Exchanges->fcExchange[i].status |= FC2_TIMEOUT;
if( i >= TACH_SEST_LEN ) // Link Service Exchange
{
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, i); // Don't "abort" LinkService
}
else // SEST Exchange TO -- may post ABTS to Worker Thread Que
{
// (Make sure we don't keep timing it out; let other functions
// complete it or set the timeOut as needed)
Exchanges->fcExchange[i].timeOut = 30000; // seconds default
if( Exchanges->fcExchange[i].type
&
(BLS_ABTS | BLS_ABTS_ACC ) )
{
// For BLS_ABTS*, an upper level might still have
// an outstanding command waiting for low-level completion.
// Also, in the case of a WRITE, we MUST get confirmation
// of either ABTS ACC or RJT before re-using the Exchange.
// It's possible that the RAID cache algorithm can hang
// if we fail to complete a WRITE to a LBA, when a READ
// comes later to that same LBA. Therefore, we must
// ensure that the target verifies receipt of ABTS for
// the exchange
printk("~TO Q'd ABTS (x_ID %Xh)~ ", i);
// TriggerHBA( fcChip->Registers.ReMapMemBase);
// On timeout of a ABTS exchange, check to
// see if the FC device has a current valid login.
// If so, restart it.
pLoggedInPort = fcFindLoggedInPort( fcChip,
Exchanges->fcExchange[i].Cmnd, // find Scsi Nexus
0, // DON'T search linked list for FC port id
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
// device exists?
if( pLoggedInPort ) // device exists?
{
if( pLoggedInPort->prli ) // logged in for FCP-SCSI?
{
// attempt to restart the ABTS
printk(" ~restarting ABTS~ ");
cpqfcTSStartExchange( cpqfcHBAdata, i );
}
}
}
else // not an ABTS
{
// We expect the WorkerThread to change the xchng type to
// abort and set appropriate timeout.
cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &i ); // timed-out
}
}
}
else // time not expired...
{
// decrement timeout: 1 or more seconds left
--Exchanges->fcExchange[i].timeOut;
}
}
}
enable_irq( cpqfcHBAdata->HostAdapter->irq);
CPQ_SPINUNLOCK_HBA( cpqfcHBAdata)
cpqfcHBAdata->BoardLock = NULL; // Linux SCSI commands may be queued
// Now, complete any Cmnd we Q'd up while BoardLock was held
CompleteBoardLockCmnd( cpqfcHBAdata);
// restart the timer to run again (1 sec later)
Skip:
mod_timer( &cpqfcHBAdata->cpqfcTStimer, jiffies + HZ);
PCI_TRACEO( i, 0xA8)
return;
}
// put valid FC-AL physical address in spec order
static const UCHAR valid_al_pa[]={
0xef, 0xe8, 0xe4, 0xe2,
0xe1, 0xE0, 0xDC, 0xDA,
0xD9, 0xD6, 0xD5, 0xD4,
0xD3, 0xD2, 0xD1, 0xCe,
0xCd, 0xCc, 0xCb, 0xCa,
0xC9, 0xC7, 0xC6, 0xC5,
0xC3, 0xBc, 0xBa, 0xB9,
0xB6, 0xB5, 0xB4, 0xB3,
0xB2, 0xB1, 0xae, 0xad,
0xAc, 0xAb, 0xAa, 0xA9,
0xA7, 0xA6, 0xA5, 0xA3,
0x9f, 0x9e, 0x9d, 0x9b,
0x98, 0x97, 0x90, 0x8f,
0x88, 0x84, 0x82, 0x81,
0x80, 0x7c, 0x7a, 0x79,
0x76, 0x75, 0x74, 0x73,
0x72, 0x71, 0x6e, 0x6d,
0x6c, 0x6b, 0x6a, 0x69,
0x67, 0x66, 0x65, 0x63,
0x5c, 0x5a, 0x59, 0x56,
0x55, 0x54, 0x53, 0x52,
0x51, 0x4e, 0x4d, 0x4c,
0x4b, 0x4a, 0x49, 0x47,
0x46, 0x45, 0x43, 0x3c,
0x3a, 0x39, 0x36, 0x35,
0x34, 0x33, 0x32, 0x31,
0x2e, 0x2d, 0x2c, 0x2b,
0x2a, 0x29, 0x27, 0x26,
0x25, 0x23, 0x1f, 0x1E,
0x1d, 0x1b, 0x18, 0x17,
0x10, 0x0f, 8, 4, 2, 1 }; // ALPA 0 (Fabric) is special case
const int number_of_al_pa = (sizeof(valid_al_pa) );
// this function looks up an al_pa from the table of valid al_pa's
// we decrement from the last decimal loop ID, because soft al_pa
// (our typical case) are assigned with highest priority (and high al_pa)
// first. See "In-Depth FC-AL", R. Kembel pg. 38
// INPUTS:
// al_pa - 24 bit port identifier (8 bit al_pa on private loop)
// RETURN:
// Loop ID - serves are index to array of logged in ports
// -1 - invalid al_pa (not all 8 bit values are legal)
#if (0)
static int GetLoopID( ULONG al_pa )
{
int i;
for( i = number_of_al_pa -1; i >= 0; i--) // dec.
{
if( valid_al_pa[i] == (UCHAR)al_pa ) // take lowest 8 bits
return i; // success - found valid al_pa; return decimal LoopID
}
return -1; // failed - not found
}
#endif
extern cpqfc_passthru_private_t *cpqfc_private(Scsi_Request *sr);
// Search the singly (forward) linked list "fcPorts" looking for
// either the SCSI target (if != -1), port_id (if not NULL),
// or WWN (if not null), in that specific order.
// If we find a SCSI nexus (from Cmnd arg), set the SCp.phase
// field according to VSA or PDU
// RETURNS:
// Ptr to logged in port struct if found
// (NULL if not found)
// pLastLoggedInPort - ptr to last struct (for adding new ones)
//
PFC_LOGGEDIN_PORT fcFindLoggedInPort(
PTACHYON fcChip,
Scsi_Cmnd *Cmnd, // search linked list for Scsi Nexus (channel/target/lun)
ULONG port_id, // search linked list for al_pa, or
UCHAR wwn[8], // search linked list for WWN, or...
PFC_LOGGEDIN_PORT *pLastLoggedInPort )
{
PFC_LOGGEDIN_PORT pLoggedInPort = &fcChip->fcPorts;
BOOLEAN target_id_valid=FALSE;
BOOLEAN port_id_valid=FALSE;
BOOLEAN wwn_valid=FALSE;
int i;
if( Cmnd != NULL )
target_id_valid = TRUE;
else if( port_id ) // note! 24-bit NULL address is illegal
port_id_valid = TRUE;
else
{
if( wwn ) // non-null arg? (OK to pass NULL when not searching WWN)
{
for( i=0; i<8; i++) // valid WWN passed? NULL WWN invalid
{
if( wwn[i] != 0 )
wwn_valid = TRUE; // any non-zero byte makes (presumably) valid
}
}
}
// check other options ...
// In case multiple search options are given, we use a priority
// scheme:
// While valid pLoggedIn Ptr
// If port_id is valid
// if port_id matches, return Ptr
// If wwn is valid
// if wwn matches, return Ptr
// Next Ptr in list
//
// Return NULL (not found)
while( pLoggedInPort ) // NULL marks end of list (1st ptr always valid)
{
if( pLastLoggedInPort ) // caller's pointer valid?
*pLastLoggedInPort = pLoggedInPort; // end of linked list
if( target_id_valid )
{
// check Linux Scsi Cmnd for channel/target Nexus match
// (all luns are accessed through matching "pLoggedInPort")
if( (pLoggedInPort->ScsiNexus.target == Cmnd->device->id)
&&
(pLoggedInPort->ScsiNexus.channel == Cmnd->device->channel))
{
// For "passthru" modes, the IOCTL caller is responsible
// for setting the FCP-LUN addressing
if (Cmnd->sc_request != NULL && Cmnd->device->host != NULL &&
Cmnd->device->host->hostdata != NULL &&
is_private_data_of_cpqfc((CPQFCHBA *) Cmnd->device->host->hostdata,
Cmnd->sc_request->upper_private_data)) {
/* This is a passthru... */
cpqfc_passthru_private_t *pd;
pd = Cmnd->sc_request->upper_private_data;
Cmnd->SCp.phase = pd->bus;
// Cmnd->SCp.have_data_in = pd->pdrive;
Cmnd->SCp.have_data_in = Cmnd->device->lun;
} else {
/* This is not a passthru... */
// set the FCP-LUN addressing type
Cmnd->SCp.phase = pLoggedInPort->ScsiNexus.VolumeSetAddressing;
// set the Device Type we got from the snooped INQUIRY string
Cmnd->SCp.Message = pLoggedInPort->ScsiNexus.InqDeviceType;
// handle LUN masking; if not "default" (illegal) lun value,
// the use it. These lun values are set by a successful
// Report Luns command
if( pLoggedInPort->ScsiNexus.LunMasking == 1)
{
if (Cmnd->device->lun > sizeof(pLoggedInPort->ScsiNexus.lun))
return NULL;
// we KNOW all the valid LUNs... 0xFF is invalid!
Cmnd->SCp.have_data_in = pLoggedInPort->ScsiNexus.lun[Cmnd->device->lun];
if (pLoggedInPort->ScsiNexus.lun[Cmnd->device->lun] == 0xFF)
return NULL;
// printk("xlating lun %d to 0x%02x\n", Cmnd->lun,
// pLoggedInPort->ScsiNexus.lun[Cmnd->lun]);
}
else
Cmnd->SCp.have_data_in = Cmnd->device->lun; // Linux & target luns match
}
break; // found it!
}
}
if( port_id_valid ) // look for alpa first
{
if( pLoggedInPort->port_id == port_id )
break; // found it!
}
if( wwn_valid ) // look for wwn second
{
if( !memcmp( &pLoggedInPort->u.ucWWN[0], &wwn[0], 8))
{
// all 8 bytes of WWN match
break; // found it!
}
}
pLoggedInPort = pLoggedInPort->pNextPort; // try next port
}
return pLoggedInPort;
}
//
// We need to examine the SEST table and re-validate
// any open Exchanges for this LoggedInPort
// To make Tachyon pay attention, Freeze FCP assists,
// set VAL bits, Unfreeze FCP assists
static void RevalidateSEST( struct Scsi_Host *HostAdapter,
PFC_LOGGEDIN_PORT pLoggedInPort)
{
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG x_ID;
BOOLEAN TachFroze = FALSE;
// re-validate any SEST exchanges that are permitted
// to survive the link down (e.g., good PDISC performed)
for( x_ID = 0; x_ID < TACH_SEST_LEN; x_ID++)
{
// If the SEST entry port_id matches the pLoggedInPort,
// we need to re-validate
if( (Exchanges->fcExchange[ x_ID].type == SCSI_IRE)
||
(Exchanges->fcExchange[ x_ID].type == SCSI_IWE))
{
if( (Exchanges->fcExchange[ x_ID].fchs.d_id & 0xFFFFFF) // (24-bit port ID)
== pLoggedInPort->port_id)
{
// printk(" re-val xID %Xh ", x_ID);
if( !TachFroze ) // freeze if not already frozen
TachFroze |= FreezeTach( cpqfcHBAdata);
fcChip->SEST->u[ x_ID].IWE.Hdr_Len |= 0x80000000; // set VAL bit
}
}
}
if( TachFroze)
{
fcChip->UnFreezeTachyon( fcChip, 2); // both ERQ and FCP assists
}
}
// Complete an Linux Cmnds that we Queued because
// our FC link was down (cause immediate retry)
static void UnblockScsiDevice( struct Scsi_Host *HostAdapter,
PFC_LOGGEDIN_PORT pLoggedInPort)
{
CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata;
Scsi_Cmnd* *SCptr = &cpqfcHBAdata->LinkDnCmnd[0];
Scsi_Cmnd *Cmnd;
int indx;
// if the device was previously "blocked", make sure
// we unblock it so Linux SCSI will resume
pLoggedInPort->device_blocked = FALSE; // clear our flag
// check the Link Down command ptr buffer;
// we can complete now causing immediate retry
for( indx=0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++, SCptr++)
{
if( *SCptr != NULL ) // scsi command to complete?
{
#ifdef DUMMYCMND_DBG
printk("complete Cmnd %p in LinkDnCmnd[%d]\n", *SCptr,indx);
#endif
Cmnd = *SCptr;
// Are there any Q'd commands for this target?
if( (Cmnd->device->id == pLoggedInPort->ScsiNexus.target)
&&
(Cmnd->device->channel == pLoggedInPort->ScsiNexus.channel) )
{
Cmnd->result = (DID_SOFT_ERROR <<16); // force retry
if( Cmnd->scsi_done == NULL)
{
printk("LinkDnCmnd scsi_done ptr null, port_id %Xh\n",
pLoggedInPort->port_id);
}
else
call_scsi_done(Cmnd);
*SCptr = NULL; // free this slot for next use
}
}
}
}
//#define WWN_DBG 1
static void SetLoginFields(
PFC_LOGGEDIN_PORT pLoggedInPort,
TachFCHDR_GCMND* fchs,
BOOLEAN PDisc,
BOOLEAN Originator)
{
LOGIN_PAYLOAD logi; // FC-PH Port Login
PRLI_REQUEST prli; // copy for BIG ENDIAN switch
int i;
#ifdef WWN_DBG
ULONG ulBuff;
#endif
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&logi, sizeof(logi));
pLoggedInPort->Originator = Originator;
pLoggedInPort->port_id = fchs->s_id & 0xFFFFFF;
switch( fchs->pl[0] & 0xffff )
{
case 0x00000002: // PLOGI or PDISC ACCept?
if( PDisc ) // PDISC accept
goto PDISC_case;
case 0x00000003: // ELS_PLOGI or ELS_PLOGI_ACC
// Login BB_credit typically 0 for Tachyons
pLoggedInPort->BB_credit = logi.cmn_services.bb_credit;
// e.g. 128, 256, 1024, 2048 per FC-PH spec
// We have to use this when setting up SEST Writes,
// since that determines frame size we send.
pLoggedInPort->rx_data_size = logi.class3.rx_data_size;
pLoggedInPort->plogi = TRUE;
pLoggedInPort->pdisc = FALSE;
pLoggedInPort->prli = FALSE; // ELS_PLOGI resets
pLoggedInPort->flogi = FALSE; // ELS_PLOGI resets
pLoggedInPort->logo = FALSE; // ELS_PLOGI resets
pLoggedInPort->LOGO_counter = 0;// ELS_PLOGI resets
pLoggedInPort->LOGO_timer = 0;// ELS_PLOGI resets
// was this PLOGI to a Fabric?
if( pLoggedInPort->port_id == 0xFFFFFC ) // well know address
pLoggedInPort->flogi = TRUE;
for( i=0; i<8; i++) // copy the LOGIN port's WWN
pLoggedInPort->u.ucWWN[i] = logi.port_name[i];
#ifdef WWN_DBG
ulBuff = (ULONG)pLoggedInPort->u.liWWN;
if( pLoggedInPort->Originator)
printk("o");
else
printk("r");
printk("PLOGI port_id %Xh, WWN %08X",
pLoggedInPort->port_id, ulBuff);
ulBuff = (ULONG)(pLoggedInPort->u.liWWN >> 32);
printk("%08Xh fcPort %p\n", ulBuff, pLoggedInPort);
#endif
break;
case 0x00000005: // ELS_LOGO (logout)
pLoggedInPort->plogi = FALSE;
pLoggedInPort->pdisc = FALSE;
pLoggedInPort->prli = FALSE; // ELS_PLOGI resets
pLoggedInPort->flogi = FALSE; // ELS_PLOGI resets
pLoggedInPort->logo = TRUE; // ELS_PLOGI resets
pLoggedInPort->LOGO_counter++; // ELS_PLOGI resets
pLoggedInPort->LOGO_timer = 0;
#ifdef WWN_DBG
ulBuff = (ULONG)pLoggedInPort->u.liWWN;
if( pLoggedInPort->Originator)
printk("o");
else
printk("r");
printk("LOGO port_id %Xh, WWN %08X",
pLoggedInPort->port_id, ulBuff);
ulBuff = (ULONG)(pLoggedInPort->u.liWWN >> 32);
printk("%08Xh\n", ulBuff);
#endif
break;
PDISC_case:
case 0x00000050: // ELS_PDISC or ELS_PDISC_ACC
pLoggedInPort->LOGO_timer = 0; // stop the time-out
pLoggedInPort->prli = TRUE; // ready to accept FCP-SCSI I/O
#ifdef WWN_DBG
ulBuff = (ULONG)pLoggedInPort->u.liWWN;
if( pLoggedInPort->Originator)
printk("o");
else
printk("r");
printk("PDISC port_id %Xh, WWN %08X",
pLoggedInPort->port_id, ulBuff);
ulBuff = (ULONG)(pLoggedInPort->u.liWWN >> 32);
printk("%08Xh\n", ulBuff);
#endif
break;
case 0x1020L: // PRLI?
case 0x1002L: // PRLI ACCept?
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&prli, sizeof(prli));
pLoggedInPort->fcp_info = prli.fcp_info; // target/initiator flags
pLoggedInPort->prli = TRUE; // PLOGI resets, PDISC doesn't
pLoggedInPort->pdisc = TRUE; // expect to send (or receive) PDISC
// next time
pLoggedInPort->LOGO_timer = 0; // will be set next LinkDown
#ifdef WWN_DBG
ulBuff = (ULONG)pLoggedInPort->u.liWWN;
if( pLoggedInPort->Originator)
printk("o");
else
printk("r");
printk("PRLI port_id %Xh, WWN %08X",
pLoggedInPort->port_id, ulBuff);
ulBuff = (ULONG)(pLoggedInPort->u.liWWN >> 32);
printk("%08Xh\n", ulBuff);
#endif
break;
}
return;
}
static void BuildLinkServicePayload( PTACHYON fcChip, ULONG type, void* payload)
{
LOGIN_PAYLOAD *plogi; // FC-PH Port Login
LOGIN_PAYLOAD PlogiPayload; // copy for BIG ENDIAN switch
PRLI_REQUEST *prli; // FCP-SCSI Process Login
PRLI_REQUEST PrliPayload; // copy for BIG ENDIAN switch
LOGOUT_PAYLOAD *logo;
LOGOUT_PAYLOAD LogoutPayload;
// PRLO_REQUEST *prlo;
// PRLO_REQUEST PrloPayload;
REJECT_MESSAGE rjt, *prjt;
memset( &PlogiPayload, 0, sizeof( PlogiPayload));
plogi = &PlogiPayload; // load into stack buffer,
// then BIG-ENDIAN switch a copy to caller
switch( type ) // payload type can be ELS_PLOGI, ELS_PRLI, ADISC, ...
{
case ELS_FDISC:
case ELS_FLOGI:
case ELS_PLOGI_ACC: // FC-PH PORT Login Accept
case ELS_PLOGI: // FC-PH PORT Login
case ELS_PDISC: // FC-PH2 Port Discovery - same payload as ELS_PLOGI
plogi->login_cmd = LS_PLOGI;
if( type == ELS_PDISC)
plogi->login_cmd = LS_PDISC;
else if( type == ELS_PLOGI_ACC )
plogi->login_cmd = LS_ACC;
plogi->cmn_services.bb_credit = 0x00;
plogi->cmn_services.lowest_ver = fcChip->lowest_FCPH_ver;
plogi->cmn_services.highest_ver = fcChip->highest_FCPH_ver;
plogi->cmn_services.bb_rx_size = TACHLITE_TS_RX_SIZE;
plogi->cmn_services.common_features = CONTINUOSLY_INCREASING |
RANDOM_RELATIVE_OFFSET;
// fill in with World Wide Name based Port Name - 8 UCHARs
// get from Tach registers WWN hi & lo
LoadWWN( fcChip, plogi->port_name, 0);
// fill in with World Wide Name based Node/Fabric Name - 8 UCHARs
// get from Tach registers WWN hi & lo
LoadWWN( fcChip, plogi->node_name, 1);
// For Seagate Drives.
//
plogi->cmn_services.common_features |= 0x800;
plogi->cmn_services.rel_offset = 0xFE;
plogi->cmn_services.concurrent_seq = 1;
plogi->class1.service_options = 0x00;
plogi->class2.service_options = 0x00;
plogi->class3.service_options = CLASS_VALID;
plogi->class3.initiator_control = 0x00;
plogi->class3.rx_data_size = MAX_RX_PAYLOAD;
plogi->class3.recipient_control =
ERROR_DISCARD | ONE_CATEGORY_SEQUENCE;
plogi->class3.concurrent_sequences = 1;
plogi->class3.open_sequences = 1;
plogi->vendor_id[0] = 'C'; plogi->vendor_id[1] = 'Q';
plogi->vendor_version[0] = 'C'; plogi->vendor_version[1] = 'Q';
plogi->vendor_version[2] = ' '; plogi->vendor_version[3] = '0';
plogi->vendor_version[4] = '0'; plogi->vendor_version[5] = '0';
// FLOGI specific fields... (see FC-FLA, Rev 2.7, Aug 1999, sec 5.1)
if( (type == ELS_FLOGI) || (type == ELS_FDISC) )
{
if( type == ELS_FLOGI )
plogi->login_cmd = LS_FLOGI;
else
plogi->login_cmd = LS_FDISC;
plogi->cmn_services.lowest_ver = 0x20;
plogi->cmn_services.common_features = 0x0800;
plogi->cmn_services.rel_offset = 0;
plogi->cmn_services.concurrent_seq = 0;
plogi->class3.service_options = 0x8800;
plogi->class3.rx_data_size = 0;
plogi->class3.recipient_control = 0;
plogi->class3.concurrent_sequences = 0;
plogi->class3.open_sequences = 0;
}
// copy back to caller's buff, w/ BIG ENDIAN swap
BigEndianSwap( (UCHAR*)&PlogiPayload, payload, sizeof(PlogiPayload));
break;
case ELS_ACC: // generic Extended Link Service ACCept
plogi->login_cmd = LS_ACC;
// copy back to caller's buff, w/ BIG ENDIAN swap
BigEndianSwap( (UCHAR*)&PlogiPayload, payload, 4);
break;
case ELS_SCR: // Fabric State Change Registration
{
SCR_PL scr; // state change registration
memset( &scr, 0, sizeof(scr));
scr.command = LS_SCR; // 0x62000000
// see FC-FLA, Rev 2.7, Table A.22 (pg 82)
scr.function = 3; // 1 = Events detected by Fabric
// 2 = N_Port detected registration
// 3 = Full registration
// copy back to caller's buff, w/ BIG ENDIAN swap
BigEndianSwap( (UCHAR*)&scr, payload, sizeof(SCR_PL));
}
break;
case FCS_NSR: // Fabric Name Service Request
{
NSR_PL nsr; // Name Server Req. payload
memset( &nsr, 0, sizeof(NSR_PL));
// see Brocade Fabric Programming Guide,
// Rev 1.3, pg 4-44
nsr.CT_Rev = 0x01000000;
nsr.FCS_Type = 0xFC020000;
nsr.Command_code = 0x01710000;
nsr.FCP = 8;
// copy back to caller's buff, w/ BIG ENDIAN swap
BigEndianSwap( (UCHAR*)&nsr, payload, sizeof(NSR_PL));
}
break;
case ELS_LOGO: // FC-PH PORT LogOut
logo = &LogoutPayload; // load into stack buffer,
// then BIG-ENDIAN switch a copy to caller
logo->cmd = LS_LOGO;
// load the 3 UCHARs of the node name
// (if private loop, upper two UCHARs 0)
logo->reserved = 0;
logo->n_port_identifier[0] = (UCHAR)(fcChip->Registers.my_al_pa);
logo->n_port_identifier[1] =
(UCHAR)(fcChip->Registers.my_al_pa>>8);
logo->n_port_identifier[2] =
(UCHAR)(fcChip->Registers.my_al_pa>>16);
// fill in with World Wide Name based Port Name - 8 UCHARs
// get from Tach registers WWN hi & lo
LoadWWN( fcChip, logo->port_name, 0);
BigEndianSwap( (UCHAR*)&LogoutPayload,
payload, sizeof(LogoutPayload) ); // 16 UCHAR struct
break;
case ELS_LOGO_ACC: // Logout Accept (FH-PH pg 149, table 74)
logo = &LogoutPayload; // load into stack buffer,
// then BIG-ENDIAN switch a copy to caller
logo->cmd = LS_ACC;
BigEndianSwap( (UCHAR*)&LogoutPayload, payload, 4 ); // 4 UCHAR cmnd
break;
case ELS_RJT: // ELS_RJT link service reject (FH-PH pg 155)
prjt = (REJECT_MESSAGE*)payload; // pick up passed data
rjt.command_code = ELS_RJT;
// reverse fields, because of Swap that follows...
rjt.vendor = prjt->reserved; // vendor specific
rjt.explain = prjt->reason; //
rjt.reason = prjt->explain; //
rjt.reserved = prjt->vendor; //
// BIG-ENDIAN switch a copy to caller
BigEndianSwap( (UCHAR*)&rjt, payload, 8 ); // 8 UCHAR cmnd
break;
case ELS_PRLI_ACC: // Process Login ACCept
case ELS_PRLI: // Process Login
case ELS_PRLO: // Process Logout
memset( &PrliPayload, 0, sizeof( PrliPayload));
prli = &PrliPayload; // load into stack buffer,
if( type == ELS_PRLI )
prli->cmd = 0x20; // Login
else if( type == ELS_PRLO )
prli->cmd = 0x21; // Logout
else if( type == ELS_PRLI_ACC )
{
prli->cmd = 0x02; // Login ACCept
prli->valid = REQUEST_EXECUTED;
}
prli->valid |= SCSI_FCP | ESTABLISH_PAIR;
prli->fcp_info = READ_XFER_RDY;
prli->page_length = 0x10;
prli->payload_length = 20;
// Can be initiator AND target
if( fcChip->Options.initiator )
prli->fcp_info |= INITIATOR_FUNCTION;
if( fcChip->Options.target )
prli->fcp_info |= TARGET_FUNCTION;
BigEndianSwap( (UCHAR*)&PrliPayload, payload, prli->payload_length);
break;
default: // no can do - programming error
printk(" BuildLinkServicePayload unknown!\n");
break;
}
}
// loads 8 UCHARs for PORT name or NODE name base on
// controller's WWN.
void LoadWWN( PTACHYON fcChip, UCHAR* dest, UCHAR type)
{
UCHAR* bPtr, i;
switch( type )
{
case 0: // Port_Name
bPtr = (UCHAR*)&fcChip->Registers.wwn_hi;
for( i =0; i<4; i++)
dest[i] = *bPtr++;
bPtr = (UCHAR*)&fcChip->Registers.wwn_lo;
for( i =4; i<8; i++)
dest[i] = *bPtr++;
break;
case 1: // Node/Fabric _Name
bPtr = (UCHAR*)&fcChip->Registers.wwn_hi;
for( i =0; i<4; i++)
dest[i] = *bPtr++;
bPtr = (UCHAR*)&fcChip->Registers.wwn_lo;
for( i =4; i<8; i++)
dest[i] = *bPtr++;
break;
}
}
// We check the Port Login payload for required values. Note that
// ELS_PLOGI and ELS_PDISC (Port DISCover) use the same payload.
int verify_PLOGI( PTACHYON fcChip,
TachFCHDR_GCMND* fchs,
ULONG* reject_explain)
{
LOGIN_PAYLOAD login;
// source, dest, len (should be mult. of 4)
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&login, sizeof(login));
// check FC version
// if other port's highest supported version
// is less than our lowest, and
// if other port's lowest
if( login.cmn_services.highest_ver < fcChip->lowest_FCPH_ver ||
login.cmn_services.lowest_ver > fcChip->highest_FCPH_ver )
{
*reject_explain = LS_RJT_REASON( LOGICAL_ERROR, OPTIONS_ERROR);
return LOGICAL_ERROR;
}
// Receive Data Field Size must be >=128
// per FC-PH
if (login.cmn_services.bb_rx_size < 128)
{
*reject_explain = LS_RJT_REASON( LOGICAL_ERROR, DATA_FIELD_SIZE_ERROR);
return LOGICAL_ERROR;
}
// Only check Class 3 params
if( login.class3.service_options & CLASS_VALID)
{
if (login.class3.rx_data_size < 128)
{
*reject_explain = LS_RJT_REASON( LOGICAL_ERROR, INVALID_CSP);
return LOGICAL_ERROR;
}
if( login.class3.initiator_control & XID_REQUIRED)
{
*reject_explain = LS_RJT_REASON( LOGICAL_ERROR, INITIATOR_CTL_ERROR);
return LOGICAL_ERROR;
}
}
return 0; // success
}
int verify_PRLI( TachFCHDR_GCMND* fchs, ULONG* reject_explain)
{
PRLI_REQUEST prli; // buffer for BIG ENDIAN
// source, dest, len (should be mult. of 4)
BigEndianSwap( (UCHAR*)&fchs->pl[0], (UCHAR*)&prli, sizeof(prli));
if( prli.fcp_info == 0 ) // i.e., not target or initiator?
{
*reject_explain = LS_RJT_REASON( LOGICAL_ERROR, OPTIONS_ERROR);
return LOGICAL_ERROR;
}
return 0; // success
}
// SWAP UCHARs as required by Fibre Channel (i.e. BIG ENDIAN)
// INPUTS:
// source - ptr to LITTLE ENDIAN ULONGS
// cnt - number of UCHARs to switch (should be mult. of ULONG)
// OUTPUTS:
// dest - ptr to BIG ENDIAN copy
// RETURN:
// none
//
void BigEndianSwap( UCHAR *source, UCHAR *dest, USHORT cnt)
{
int i,j;
source+=3; // start at MSB of 1st ULONG
for( j=0; j < cnt; j+=4, source+=4, dest+=4) // every ULONG
{
for( i=0; i<4; i++) // every UCHAR in ULONG
*(dest+i) = *(source-i);
}
}
// Build FC Exchanges............
static void buildFCPstatus(
PTACHYON fcChip,
ULONG ExchangeID);
static LONG FindFreeExchange( PTACHYON fcChip, ULONG type );
static ULONG build_SEST_sgList(
struct pci_dev *pcidev,
ULONG *SESTalPairStart,
Scsi_Cmnd *Cmnd,
ULONG *sgPairs,
PSGPAGES *sgPages_head // link list of TL Ext. S/G pages from O/S Pool
);
static int build_FCP_payload( Scsi_Cmnd *Cmnd,
UCHAR* payload, ULONG type, ULONG fcp_dl );
/*
IRB
ERQ __________________
| | / | Req_A_SFS_Len | ____________________
|----------| / | Req_A_SFS_Addr |------->| Reserved |
| IRB | / | Req_A_D_ID | | SOF EOF TimeStamp |
|-----------/ | Req_A_SEST_Index |-+ | R_CTL | D_ID |
| IRB | | Req_B... | | | CS_CTL| S_ID |
|-----------\ | | | | TYPE | F_CTL |
| IRB | \ | | | | SEQ_ID | SEQ_CNT |
|----------- \ | | +-->+--| OX_ID | RX_ID |
| | \ |__________________| | | RO |
| | pl (payload/cmnd) |
| | ..... |
| |___________________|
|
|
+-------------------------------------------+
|
|
| e.g. IWE
| SEST __________________ for FCP_DATA
| | | / | | Hdr_Len | ____________________
| |----------| / | Hdr_Addr_Addr |------->| Reserved |
| | [0] | / |Remote_ID| RSP_Len| | SOF EOF TimeStamp |
| |-----------/ | RSP_Addr |---+ | R_CTL | D_ID |
+-> [1] | | | Buff_Off | | | CS_CTL| S_ID |
|-----------\ |BuffIndex| Link | | | TYPE | F_CTL |
| [2] | \ | Rsvd | RX_ID | | | SEQ_ID | SEQ_CNT |
|----------- \ | Data_Len | | | OX_ID | RX_ID |
| ... | \ | Exp_RO | | | RO |
|----------| | Exp_Byte_Cnt | | |___________________|
| SEST_LEN | +--| Len | |
|__________| | | Address | |
| | ... | | for FCP_RSP
| |__________________| | ____________________
| +----| Reserved |
| | SOF EOF TimeStamp |
| | R_CTL | D_ID |
| | CS_CTL| S_ID |
+--- local or extended | .... |
scatter/gather lists
defining upper-layer
data (e.g. from user's App)
*/
// All TachLite commands must start with a SFS (Single Frame Sequence)
// command. In the simplest case (a NOP Basic Link command),
// only one frame header and ERQ entry is required. The most complex
// case is the SCSI assisted command, which requires an ERQ entry,
// SEST entry, and several frame headers and data buffers all
// logically linked together.
// Inputs:
// cpqfcHBAdata - controller struct
// type - PLOGI, SCSI_IWE, etc.
// InFCHS - Incoming Tachlite FCHS which prompted this exchange
// (only s_id set if we are originating)
// Data - PVOID to data struct consistent with "type"
// fcExchangeIndex - pointer to OX/RD ID value of built exchange
// Return:
// fcExchangeIndex - OX/RD ID value if successful
// 0 - success
// INVALID_ARGS - NULL/ invalid passed args
// BAD_ALPA - Bad source al_pa address
// LNKDWN_OSLS - Link Down (according to this controller)
// OUTQUE_FULL - Outbound Que full
// DRIVERQ_FULL - controller's Exchange array full
// SEST_FULL - SEST table full
//
// Remarks:
// Psuedo code:
// Check for NULL pointers / bad args
// Build outgoing FCHS - the header/payload struct
// Build IRB (for ERQ entry)
// if SCSI command, build SEST entry (e.g. IWE, TRE,...)
// return success
//sbuildex
ULONG cpqfcTSBuildExchange(
CPQFCHBA *cpqfcHBAdata,
ULONG type, // e.g. PLOGI
TachFCHDR_GCMND* InFCHS, // incoming FCHS
void *Data, // the CDB, scatter/gather, etc.
LONG *fcExchangeIndex ) // points to allocated exchange,
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG ulStatus = 0; // assume OK
USHORT ox_ID, rx_ID=0xFFFF;
ULONG SfsLen=0L;
TachLiteIRB* pIRB;
IRBflags IRB_flags;
UCHAR *pIRB_flags = (UCHAR*)&IRB_flags;
TachFCHDR_GCMND* CMDfchs;
TachFCHDR* dataHDR; // 32 byte HEADER ONLY FCP-DATA buffer
TachFCHDR_RSP* rspHDR; // 32 byte header + RSP payload
Scsi_Cmnd *Cmnd = (Scsi_Cmnd*)Data; // Linux Scsi CDB, S/G, ...
TachLiteIWE* pIWE;
TachLiteIRE* pIRE;
TachLiteTWE* pTWE;
TachLiteTRE* pTRE;
ULONG fcp_dl; // total byte length of DATA transferred
ULONG fl; // frame length (FC frame size, 128, 256, 512, 1024)
ULONG sgPairs; // number of valid scatter/gather pairs
int FCP_SCSI_command;
BA_ACC_PAYLOAD *ba_acc;
BA_RJT_PAYLOAD *ba_rjt;
// check passed ARGS
if( !fcChip->ERQ ) // NULL ptr means uninitialized Tachlite chip
return INVALID_ARGS;
if( type == SCSI_IRE ||
type == SCSI_TRE ||
type == SCSI_IWE ||
type == SCSI_TWE)
FCP_SCSI_command = 1;
else
FCP_SCSI_command = 0;
// for commands that pass payload data (e.g. SCSI write)
// examine command struct - verify that the
// length of s/g buffers is adequate for total payload
// length (end of list is NULL address)
if( FCP_SCSI_command )
{
if( Data ) // must have data descriptor (S/G list -- at least
// one address with at least 1 byte of data)
{
// something to do (later)?
}
else
return INVALID_ARGS; // invalid DATA ptr
}
// we can build an Exchange for later Queuing (on the TL chip)
// if an empty slot is available in the DevExt for this controller
// look for available Exchange slot...
if( type != FCP_RESPONSE &&
type != BLS_ABTS &&
type != BLS_ABTS_ACC ) // already have Exchange slot!
*fcExchangeIndex = FindFreeExchange( fcChip, type );
if( *fcExchangeIndex != -1 ) // Exchange is available?
{
// assign tmp ptr (shorthand)
CMDfchs = &Exchanges->fcExchange[ *fcExchangeIndex].fchs;
if( Cmnd != NULL ) // (necessary for ABTS cases)
{
Exchanges->fcExchange[ *fcExchangeIndex].Cmnd = Cmnd; // Linux Scsi
Exchanges->fcExchange[ *fcExchangeIndex].pLoggedInPort =
fcFindLoggedInPort( fcChip,
Exchanges->fcExchange[ *fcExchangeIndex].Cmnd, // find Scsi Nexus
0, // DON'T search linked list for FC port id
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
}
// Build the command frame header (& data) according
// to command type
// fields common for all SFS frame types
CMDfchs->reserved = 0L; // must clear
CMDfchs->sof_eof = 0x75000000L; // SOFi3:EOFn no UAM; LCr=0, no TS
// get the destination port_id from incoming FCHS
// (initialized before calling if we're Originator)
// Frame goes to port it was from - the source_id
CMDfchs->d_id = InFCHS->s_id &0xFFFFFF; // destination (add R_CTL later)
CMDfchs->s_id = fcChip->Registers.my_al_pa; // CS_CTL = 0
// now enter command-specific fields
switch( type )
{
case BLS_NOP: // FC defined basic link service command NO-OP
// ensure unique X_IDs! (use tracking function)
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += 32L; // add len to LSB (header only - no payload)
// TYPE[31-24] 00 Basic Link Service
// f_ctl[23:0] exchg originator, 1st seq, xfer S.I.
CMDfchs->d_id |= 0x80000000L; // R_CTL = 80 for NOP (Basic Link Ser.)
CMDfchs->f_ctl = 0x00310000L; // xchng originator, 1st seq,....
CMDfchs->seq_cnt = 0x0L;
CMDfchs->ox_rx_id = 0xFFFF; // RX_ID for now; OX_ID on start
CMDfchs->ro = 0x0L; // relative offset (n/a)
CMDfchs->pl[0] = 0xaabbccddL; // words 8-15 frame data payload (n/a)
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 1; // seconds
// (NOP should complete ~instantly)
break;
case BLS_ABTS_ACC: // Abort Sequence ACCept
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += 32 + 12; // add len to LSB (header + 3 DWORD payload)
CMDfchs->d_id |= 0x84000000L; // R_CTL = 84 for BASIC ACCept
// TYPE[31-24] 00 Basic Link Service
// f_ctl[23:0] exchg originator, not 1st seq, xfer S.I.
CMDfchs->f_ctl = 0x00910000L; // xchnge responder, last seq, xfer SI
// CMDfchs->seq_id & count might be set from DataHdr?
CMDfchs->ro = 0x0L; // relative offset (n/a)
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 5; // seconds
// (Timeout in case of weird error)
// now set the ACCept payload...
ba_acc = (BA_ACC_PAYLOAD*)&CMDfchs->pl[0];
memset( ba_acc, 0, sizeof( BA_ACC_PAYLOAD));
// Since PLDA requires (only) entire Exchange aborts, we don't need
// to worry about what the last sequence was.
// We expect that a "target" task is accepting the abort, so we
// can use the OX/RX ID pair
ba_acc->ox_rx_id = CMDfchs->ox_rx_id;
// source, dest, #bytes
BigEndianSwap((UCHAR *)&CMDfchs->ox_rx_id, (UCHAR *)&ba_acc->ox_rx_id, 4);
ba_acc->low_seq_cnt = 0;
ba_acc->high_seq_cnt = 0xFFFF;
break;
case BLS_ABTS_RJT: // Abort Sequence ACCept
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += 32 + 12; // add len to LSB (header + 3 DWORD payload)
CMDfchs->d_id |= 0x85000000L; // R_CTL = 85 for BASIC ReJecT
// f_ctl[23:0] exchg originator, not 1st seq, xfer S.I.
// TYPE[31-24] 00 Basic Link Service
CMDfchs->f_ctl = 0x00910000L; // xchnge responder, last seq, xfer SI
// CMDfchs->seq_id & count might be set from DataHdr?
CMDfchs->ro = 0x0L; // relative offset (n/a)
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 5; // seconds
// (Timeout in case of weird error)
CMDfchs->ox_rx_id = InFCHS->ox_rx_id; // copy from sender!
// now set the ReJecT payload...
ba_rjt = (BA_RJT_PAYLOAD*)&CMDfchs->pl[0];
memset( ba_rjt, 0, sizeof( BA_RJT_PAYLOAD));
// We expect that a "target" task couldn't find the Exhange in the
// array of active exchanges, so we use a new LinkService X_ID.
// See Reject payload description in FC-PH (Rev 4.3), pg. 140
ba_rjt->reason_code = 0x09; // "unable to perform command request"
ba_rjt->reason_explain = 0x03; // invalid OX/RX ID pair
break;
case BLS_ABTS: // FC defined basic link service command ABTS
// Abort Sequence
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += 32L; // add len to LSB (header only - no payload)
// TYPE[31-24] 00 Basic Link Service
// f_ctl[23:0] exchg originator, not 1st seq, xfer S.I.
CMDfchs->d_id |= 0x81000000L; // R_CTL = 81 for ABTS
CMDfchs->f_ctl = 0x00110000L; // xchnge originator, last seq, xfer SI
// CMDfchs->seq_id & count might be set from DataHdr?
CMDfchs->ro = 0x0L; // relative offset (n/a)
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 2; // seconds
// (ABTS must timeout when responder is gone)
break;
case FCS_NSR: // Fabric Name Service Request
Exchanges->fcExchange[ *fcExchangeIndex].reTries = 2;
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 2; // seconds
// OX_ID, linked to Driver Transaction ID
// (fix-up at Queing time)
CMDfchs->ox_rx_id = 0xFFFF; // RX_ID - Responder (target) to modify
// OX_ID set at ERQueing time
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += (32L + sizeof(NSR_PL)); // add len (header & NSR payload)
CMDfchs->d_id |= 0x02000000L; // R_CTL = 02 for -
// Name Service Request: Unsolicited
// TYPE[31-24] 01 Extended Link Service
// f_ctl[23:0] exchg originator, 1st seq, xfer S.I.
CMDfchs->f_ctl = 0x20210000L;
// OX_ID will be fixed-up at Tachyon enqueing time
CMDfchs->seq_cnt = 0; // seq ID, DF_ctl, seq cnt
CMDfchs->ro = 0x0L; // relative offset (n/a)
BuildLinkServicePayload( fcChip, type, &CMDfchs->pl[0]);
break;
case ELS_PLOGI: // FC-PH extended link service command Port Login
// (May, 2000)
// NOTE! This special case facilitates SANMark testing. The SANMark
// test script for initialization-timeout.fcal.SANMark-1.fc
// "eats" the OPN() primitive without issuing an R_RDY, causing
// Tachyon to report LST (loop state timeout), which causes a
// LIP. To avoid this, simply send out the frame (i.e. assuming a
// buffer credit of 1) without waiting for R_RDY. Many FC devices
// (other than Tachyon) have been doing this for years. We don't
// ever want to do this for non-Link Service frames unless the
// other device really did report non-zero login BB credit (i.e.
// in the PLOGI ACCept frame).
// CMDfchs->sof_eof |= 0x00000400L; // LCr=1
case ELS_FDISC: // Fabric Discovery (Login)
case ELS_FLOGI: // Fabric Login
case ELS_SCR: // Fabric State Change Registration
case ELS_LOGO: // FC-PH extended link service command Port Logout
case ELS_PDISC: // FC-PH extended link service cmnd Port Discovery
case ELS_PRLI: // FC-PH extended link service cmnd Process Login
Exchanges->fcExchange[ *fcExchangeIndex].reTries = 2;
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 2; // seconds
// OX_ID, linked to Driver Transaction ID
// (fix-up at Queing time)
CMDfchs->ox_rx_id = 0xFFFF; // RX_ID - Responder (target) to modify
// OX_ID set at ERQueing time
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
if( type == ELS_LOGO )
SfsLen += (32L + 16L); // add len (header & PLOGI payload)
else if( type == ELS_PRLI )
SfsLen += (32L + 20L); // add len (header & PRLI payload)
else if( type == ELS_SCR )
SfsLen += (32L + sizeof(SCR_PL)); // add len (header & SCR payload)
else
SfsLen += (32L + 116L); // add len (header & PLOGI payload)
CMDfchs->d_id |= 0x22000000L; // R_CTL = 22 for -
// Extended Link_Data: Unsolicited Control
// TYPE[31-24] 01 Extended Link Service
// f_ctl[23:0] exchg originator, 1st seq, xfer S.I.
CMDfchs->f_ctl = 0x01210000L;
// OX_ID will be fixed-up at Tachyon enqueing time
CMDfchs->seq_cnt = 0; // seq ID, DF_ctl, seq cnt
CMDfchs->ro = 0x0L; // relative offset (n/a)
BuildLinkServicePayload( fcChip, type, &CMDfchs->pl[0]);
break;
case ELS_LOGO_ACC: // FC-PH extended link service logout accept
case ELS_RJT: // extended link service reject (add reason)
case ELS_ACC: // ext. link service generic accept
case ELS_PLOGI_ACC:// ext. link service login accept (PLOGI or PDISC)
case ELS_PRLI_ACC: // ext. link service process login accept
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 1; // assume done
// ensure unique X_IDs! (use tracking function)
// OX_ID from initiator cmd
ox_ID = (USHORT)(InFCHS->ox_rx_id >> 16);
rx_ID = 0xFFFF; // RX_ID, linked to Driver Exchange ID
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (not SEST index)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
if( type == ELS_RJT )
{
SfsLen += (32L + 8L); // add len (header + payload)
// ELS_RJT reason codes (utilize unused "reserved" field)
CMDfchs->pl[0] = 1;
CMDfchs->pl[1] = InFCHS->reserved;
}
else if( (type == ELS_LOGO_ACC) || (type == ELS_ACC) )
SfsLen += (32L + 4L); // add len (header + payload)
else if( type == ELS_PLOGI_ACC )
SfsLen += (32L + 116L); // add len (header + payload)
else if( type == ELS_PRLI_ACC )
SfsLen += (32L + 20L); // add len (header + payload)
CMDfchs->d_id |= 0x23000000L; // R_CTL = 23 for -
// Extended Link_Data: Control Reply
// TYPE[31-24] 01 Extended Link Service
// f_ctl[23:0] exchg responder, last seq, e_s, tsi
CMDfchs->f_ctl = 0x01990000L;
CMDfchs->seq_cnt = 0x0L;
CMDfchs->ox_rx_id = 0L; // clear
CMDfchs->ox_rx_id = ox_ID; // load upper 16 bits
CMDfchs->ox_rx_id <<= 16; // shift them
CMDfchs->ro = 0x0L; // relative offset (n/a)
BuildLinkServicePayload( fcChip, type, &CMDfchs->pl[0]);
break;
// Fibre Channel SCSI 'originator' sequences...
// (originator means 'initiator' in FCP-SCSI)
case SCSI_IWE: // TachLite Initiator Write Entry
{
PFC_LOGGEDIN_PORT pLoggedInPort =
Exchanges->fcExchange[ *fcExchangeIndex].pLoggedInPort;
Exchanges->fcExchange[ *fcExchangeIndex].reTries = 1;
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 7; // FC2 timeout
// first, build FCP_CMND
// unique X_ID fix-ups in StartExchange
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS FCP-CMND (not SEST index)
// NOTE: unlike FC LinkService login frames, normal
// SCSI commands are sent without outgoing verification
IRB_flags.DCM = 1; // Disable completion message for Cmnd frame
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += 64L; // add len to LSB (header & CMND payload)
CMDfchs->d_id |= (0x06000000L); // R_CTL = 6 for command
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] exchg originator, 1st seq, xfer S.I.
// valid RO
CMDfchs->f_ctl = 0x08210008L;
CMDfchs->seq_cnt = 0x0L;
CMDfchs->ox_rx_id = 0L; // clear for now (-or- in later)
CMDfchs->ro = 0x0L; // relative offset (n/a)
// now, fill out FCP-DATA header
// (use buffer inside SEST object)
dataHDR = &fcChip->SEST->DataHDR[ *fcExchangeIndex ];
dataHDR->reserved = 0L; // must clear
dataHDR->sof_eof = 0x75002000L; // SOFi3:EOFn no UAM; no CLS, noLCr, no TS
dataHDR->d_id = (InFCHS->s_id | 0x01000000L); // R_CTL= FCP_DATA
dataHDR->s_id = fcChip->Registers.my_al_pa; // CS_CTL = 0
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] xfer S.I.| valid RO
dataHDR->f_ctl = 0x08010008L;
dataHDR->seq_cnt = 0x02000000L; // sequence ID: df_ctl : seqence count
dataHDR->ox_rx_id = 0L; // clear; fix-up dataHDR fields later
dataHDR->ro = 0x0L; // relative offset (n/a)
// Now setup the SEST entry
pIWE = &fcChip->SEST->u[ *fcExchangeIndex ].IWE;
// fill out the IWE:
// VALid entry:Dir outbound:DCM:enable CM:enal INT: FC frame len
pIWE->Hdr_Len = 0x8e000020L; // data frame Len always 32 bytes
// from login parameters with other port, what's the largest frame
// we can send?
if( pLoggedInPort == NULL)
{
ulStatus = INVALID_ARGS; // failed! give up
break;
}
if( pLoggedInPort->rx_data_size >= 2048)
fl = 0x00020000; // 2048 code (only support 1024!)
else if( pLoggedInPort->rx_data_size >= 1024)
fl = 0x00020000; // 1024 code
else if( pLoggedInPort->rx_data_size >= 512)
fl = 0x00010000; // 512 code
else
fl = 0; // 128 bytes -- should never happen
pIWE->Hdr_Len |= fl; // add xmit FC frame len for data phase
pIWE->Hdr_Addr = fcChip->SEST->base +
((unsigned long)&fcChip->SEST->DataHDR[*fcExchangeIndex] -
(unsigned long)fcChip->SEST);
pIWE->RSP_Len = sizeof(TachFCHDR_RSP) ; // hdr+data (recv'd RSP frame)
pIWE->RSP_Len |= (InFCHS->s_id << 8); // MS 24 bits Remote_ID
memset( &fcChip->SEST->RspHDR[ *fcExchangeIndex].pl, 0,
sizeof( FCP_STATUS_RESPONSE) ); // clear out previous status
pIWE->RSP_Addr = fcChip->SEST->base +
((unsigned long)&fcChip->SEST->RspHDR[*fcExchangeIndex] -
(unsigned long)fcChip->SEST);
// Do we need local or extended gather list?
// depends on size - we can handle 3 len/addr pairs
// locally.
fcp_dl = build_SEST_sgList(
cpqfcHBAdata->PciDev,
&pIWE->GLen1,
Cmnd, // S/G list
&sgPairs, // return # of pairs in S/G list (from "Data" descriptor)
&fcChip->SEST->sgPages[ *fcExchangeIndex ]);// (for Freeing later)
if( !fcp_dl ) // error building S/G list?
{
ulStatus = MEMPOOL_FAIL;
break; // give up
}
// Now that we know total data length in
// the passed S/G buffer, set FCP CMND frame
build_FCP_payload( Cmnd, (UCHAR*)&CMDfchs->pl[0], type, fcp_dl );
if( sgPairs > 3 ) // need extended s/g list
pIWE->Buff_Off = 0x78000000L; // extended data | (no offset)
else // local data pointers (in SEST)
pIWE->Buff_Off = 0xf8000000L; // local data | (no offset)
// ULONG 5
pIWE->Link = 0x0000ffffL; // Buff_Index | Link
pIWE->RX_ID = 0x0L; // DWord 6: RX_ID set by target XFER_RDY
// DWord 7
pIWE->Data_Len = 0L; // TL enters rcv'd XFER_RDY BURST_LEN
pIWE->Exp_RO = 0L; // DWord 8
// DWord 9
pIWE->Exp_Byte_Cnt = fcp_dl; // sum of gather buffers
}
break;
case SCSI_IRE: // TachLite Initiator Read Entry
if( Cmnd->timeout != 0)
{
// printk("Cmnd->timeout %d\n", Cmnd->timeout);
// per Linux Scsi
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = Cmnd->timeout;
}
else // use our best guess, based on FC & device
{
if( Cmnd->SCp.Message == 1 ) // Tape device? (from INQUIRY)
{
// turn off our timeouts (for now...)
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 0xFFFFFFFF;
}
else
{
Exchanges->fcExchange[ *fcExchangeIndex].reTries = 1;
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 7; // per SCSI req.
}
}
// first, build FCP_CMND
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS FCP-CMND (not SEST index)
// NOTE: unlike FC LinkService login frames,
// normal SCSI commands are sent "open loop"
IRB_flags.DCM = 1; // Disable completion message for Cmnd frame
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += 64L; // add len to LSB (header & CMND payload)
CMDfchs->d_id |= (0x06000000L); // R_CTL = 6 for command
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] exchg originator, 1st seq, xfer S.I.
// valid RO
CMDfchs->f_ctl = 0x08210008L;
CMDfchs->seq_cnt = 0x0L;
// x_ID & data direction bit set later
CMDfchs->ox_rx_id = 0xFFFF; // clear
CMDfchs->ro = 0x0L; // relative offset (n/a)
// Now setup the SEST entry
pIRE = &fcChip->SEST->u[ *fcExchangeIndex ].IRE;
// fill out the IRE:
// VALid entry:Dir outbound:enable CM:enal INT:
pIRE->Seq_Accum = 0xCE000000L; // VAL,DIR inbound,DCM| INI,DAT,RSP
pIRE->reserved = 0L;
pIRE->RSP_Len = sizeof(TachFCHDR_RSP) ; // hdr+data (recv'd RSP frame)
pIRE->RSP_Len |= (InFCHS->s_id << 8); // MS 24 bits Remote_ID
pIRE->RSP_Addr = fcChip->SEST->base +
((unsigned long)&fcChip->SEST->RspHDR[*fcExchangeIndex] -
(unsigned long)fcChip->SEST);
// Do we need local or extended gather list?
// depends on size - we can handle 3 len/addr pairs
// locally.
fcp_dl = build_SEST_sgList(
cpqfcHBAdata->PciDev,
&pIRE->SLen1,
Cmnd, // SCSI command Data desc. with S/G list
&sgPairs, // return # of pairs in S/G list (from "Data" descriptor)
&fcChip->SEST->sgPages[ *fcExchangeIndex ]);// (for Freeing later)
if( !fcp_dl ) // error building S/G list?
{
// It is permissible to have a ZERO LENGTH Read command.
// If there is the case, simply set fcp_dl (and Exp_Byte_Cnt)
// to 0 and continue.
if( Cmnd->request_bufflen == 0 )
{
fcp_dl = 0; // no FC DATA frames expected
}
else
{
ulStatus = MEMPOOL_FAIL;
break; // give up
}
}
// now that we know the S/G length, build CMND payload
build_FCP_payload( Cmnd, (UCHAR*)&CMDfchs->pl[0], type, fcp_dl );
if( sgPairs > 3 ) // need extended s/g list
pIRE->Buff_Off = 0x00000000; // DWord 4: extended s/g list, no offset
else
pIRE->Buff_Off = 0x80000000; // local data, no offset
pIRE->Buff_Index = 0x0L; // DWord 5: Buff_Index | Reserved
pIRE->Exp_RO = 0x0L; // DWord 6: Expected Rel. Offset
pIRE->Byte_Count = 0; // DWord 7: filled in by TL on err
pIRE->reserved_ = 0; // DWord 8: reserved
// NOTE: 0 length READ is OK.
pIRE->Exp_Byte_Cnt = fcp_dl;// DWord 9: sum of scatter buffers
break;
// Fibre Channel SCSI 'responder' sequences...
// (originator means 'target' in FCP-SCSI)
case SCSI_TWE: // TachLite Target Write Entry
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 10; // per SCSI req.
// first, build FCP_CMND
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (XFER_RDY)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += (32L + 12L);// add SFS len (header & XFER_RDY payload)
CMDfchs->d_id |= (0x05000000L); // R_CTL = 5 for XFER_RDY
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] exchg responder, 1st seq, xfer S.I.
// valid RO
CMDfchs->f_ctl = 0x08810008L;
CMDfchs->seq_cnt = 0x01000000; // sequence ID: df_ctl: sequence count
// use originator (other port's) OX_ID
CMDfchs->ox_rx_id = InFCHS->ox_rx_id; // we want upper 16 bits
CMDfchs->ro = 0x0L; // relative offset (n/a)
// now, fill out FCP-RSP header
// (use buffer inside SEST object)
rspHDR = &fcChip->SEST->RspHDR[ *fcExchangeIndex ];
rspHDR->reserved = 0L; // must clear
rspHDR->sof_eof = 0x75000000L; // SOFi3:EOFn no UAM; no CLS, noLCr, no TS
rspHDR->d_id = (InFCHS->s_id | 0x07000000L); // R_CTL= FCP_RSP
rspHDR->s_id = fcChip->Registers.my_al_pa; // CS_CTL = 0
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] responder|last seq| xfer S.I.
rspHDR->f_ctl = 0x08910000L;
rspHDR->seq_cnt = 0x03000000; // sequence ID
rspHDR->ox_rx_id = InFCHS->ox_rx_id; // gives us OX_ID
rspHDR->ro = 0x0L; // relative offset (n/a)
// Now setup the SEST entry
pTWE = &fcChip->SEST->u[ *fcExchangeIndex ].TWE;
// fill out the TWE:
// VALid entry:Dir outbound:enable CM:enal INT:
pTWE->Seq_Accum = 0xC4000000L; // upper word flags
pTWE->reserved = 0L;
pTWE->Remote_Node_ID = 0L; // no more auto RSP frame! (TL/TS change)
pTWE->Remote_Node_ID |= (InFCHS->s_id << 8); // MS 24 bits Remote_ID
// Do we need local or extended gather list?
// depends on size - we can handle 3 len/addr pairs
// locally.
fcp_dl = build_SEST_sgList(
cpqfcHBAdata->PciDev,
&pTWE->SLen1,
Cmnd, // S/G list
&sgPairs, // return # of pairs in S/G list (from "Data" descriptor)
&fcChip->SEST->sgPages[ *fcExchangeIndex ]);// (for Freeing later)
if( !fcp_dl ) // error building S/G list?
{
ulStatus = MEMPOOL_FAIL;
break; // give up
}
// now that we know the S/G length, build CMND payload
build_FCP_payload( Cmnd, (UCHAR*)&CMDfchs->pl[0], type, fcp_dl );
if( sgPairs > 3 ) // need extended s/g list
pTWE->Buff_Off = 0x00000000; // extended s/g list, no offset
else
pTWE->Buff_Off = 0x80000000; // local data, no offset
pTWE->Buff_Index = 0; // Buff_Index | Link
pTWE->Exp_RO = 0;
pTWE->Byte_Count = 0; // filled in by TL on err
pTWE->reserved_ = 0;
pTWE->Exp_Byte_Cnt = fcp_dl;// sum of scatter buffers
break;
case SCSI_TRE: // TachLite Target Read Entry
// It doesn't make much sense for us to "time-out" a READ,
// but we'll use it for design consistency and internal error recovery.
Exchanges->fcExchange[ *fcExchangeIndex].timeOut = 10; // per SCSI req.
// I/O request block settings...
*pIRB_flags = 0; // clear IRB flags
// check PRLI (process login) info
// to see if Initiator Requires XFER_RDY
// if not, don't send one!
// { PRLI check...}
IRB_flags.SFA = 0; // don't send XFER_RDY - start data
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += (32L + 12L);// add SFS len (header & XFER_RDY payload)
// now, fill out FCP-DATA header
// (use buffer inside SEST object)
dataHDR = &fcChip->SEST->DataHDR[ *fcExchangeIndex ];
dataHDR->reserved = 0L; // must clear
dataHDR->sof_eof = 0x75000000L; // SOFi3:EOFn no UAM; no CLS,noLCr,no TS
dataHDR->d_id = (InFCHS->s_id | 0x01000000L); // R_CTL= FCP_DATA
dataHDR->s_id = fcChip->Registers.my_al_pa; // CS_CTL = 0
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] exchg responder, not 1st seq, xfer S.I.
// valid RO
dataHDR->f_ctl = 0x08810008L;
dataHDR->seq_cnt = 0x01000000; // sequence ID (no XRDY)
dataHDR->ox_rx_id = InFCHS->ox_rx_id & 0xFFFF0000; // we want upper 16 bits
dataHDR->ro = 0x0L; // relative offset (n/a)
// now, fill out FCP-RSP header
// (use buffer inside SEST object)
rspHDR = &fcChip->SEST->RspHDR[ *fcExchangeIndex ];
rspHDR->reserved = 0L; // must clear
rspHDR->sof_eof = 0x75000000L; // SOFi3:EOFn no UAM; no CLS, noLCr, no TS
rspHDR->d_id = (InFCHS->s_id | 0x07000000L); // R_CTL= FCP_RSP
rspHDR->s_id = fcChip->Registers.my_al_pa; // CS_CTL = 0
// TYPE[31-24] 8 for FCP SCSI
// f_ctl[23:0] responder|last seq| xfer S.I.
rspHDR->f_ctl = 0x08910000L;
rspHDR->seq_cnt = 0x02000000; // sequence ID: df_ctl: sequence count
rspHDR->ro = 0x0L; // relative offset (n/a)
// Now setup the SEST entry
pTRE = &fcChip->SEST->u[ *fcExchangeIndex ].TRE;
// VALid entry:Dir outbound:enable CM:enal INT:
pTRE->Hdr_Len = 0x86010020L; // data frame Len always 32 bytes
pTRE->Hdr_Addr = // bus address of dataHDR;
fcChip->SEST->base +
((unsigned long)&fcChip->SEST->DataHDR[ *fcExchangeIndex ] -
(unsigned long)fcChip->SEST);
pTRE->RSP_Len = 64L; // hdr+data (TL assisted RSP frame)
pTRE->RSP_Len |= (InFCHS->s_id << 8); // MS 24 bits Remote_ID
pTRE->RSP_Addr = // bus address of rspHDR
fcChip->SEST->base +
((unsigned long)&fcChip->SEST->RspHDR[ *fcExchangeIndex ] -
(unsigned long)fcChip->SEST);
// Do we need local or extended gather list?
// depends on size - we can handle 3 len/addr pairs
// locally.
fcp_dl = build_SEST_sgList(
cpqfcHBAdata->PciDev,
&pTRE->GLen1,
Cmnd, // S/G list
&sgPairs, // return # of pairs in S/G list (from "Data" descriptor)
&fcChip->SEST->sgPages[ *fcExchangeIndex ]);// (for Freeing later)
if( !fcp_dl ) // error building S/G list?
{
ulStatus = MEMPOOL_FAIL;
break; // give up
}
// no payload or command to build -- READ doesn't need XRDY
if( sgPairs > 3 ) // need extended s/g list
pTRE->Buff_Off = 0x78000000L; // extended data | (no offset)
else // local data pointers (in SEST)
pTRE->Buff_Off = 0xf8000000L; // local data | (no offset)
// ULONG 5
pTRE->Buff_Index = 0L; // Buff_Index | reserved
pTRE->reserved = 0x0L; // DWord 6
// DWord 7: NOTE: zero length will
// hang TachLite!
pTRE->Data_Len = fcp_dl; // e.g. sum of scatter buffers
pTRE->reserved_ = 0L; // DWord 8
pTRE->reserved__ = 0L; // DWord 9
break;
case FCP_RESPONSE:
// Target response frame: this sequence uses an OX/RX ID
// pair from a completed SEST exchange. We built most
// of the response frame when we created the TWE/TRE.
*pIRB_flags = 0; // clear IRB flags
IRB_flags.SFA = 1; // send SFS (RSP)
SfsLen = *pIRB_flags;
SfsLen <<= 24; // shift flags to MSB
SfsLen += sizeof(TachFCHDR_RSP);// add SFS len (header & RSP payload)
Exchanges->fcExchange[ *fcExchangeIndex].type =
FCP_RESPONSE; // change Exchange type to "response" phase
// take advantage of prior knowledge of OX/RX_ID pair from
// previous XFER outbound frame (still in fchs of exchange)
fcChip->SEST->RspHDR[ *fcExchangeIndex ].ox_rx_id =
CMDfchs->ox_rx_id;
// Check the status of the DATA phase of the exchange so we can report
// status to the initiator
buildFCPstatus( fcChip, *fcExchangeIndex); // set RSP payload fields
memcpy(
CMDfchs, // re-use same XFER fchs for Response frame
&fcChip->SEST->RspHDR[ *fcExchangeIndex ],
sizeof( TachFCHDR_RSP ));
break;
default:
printk("cpqfcTS: don't know how to build FC type: %Xh(%d)\n", type,type);
break;
}
if( !ulStatus) // no errors above?
{
// FCHS is built; now build IRB
// link the just built FCHS (the "command") to the IRB entry
// for this Exchange.
pIRB = &Exchanges->fcExchange[ *fcExchangeIndex].IRB;
// len & flags according to command type above
pIRB->Req_A_SFS_Len = SfsLen; // includes IRB flags & len
pIRB->Req_A_SFS_Addr = // TL needs physical addr of frame to send
fcChip->exch_dma_handle + (unsigned long)CMDfchs -
(unsigned long)Exchanges;
pIRB->Req_A_SFS_D_ID = CMDfchs->d_id << 8; // Dest_ID must be consistent!
// Exchange is complete except for "fix-up" fields to be set
// at Tachyon Queuing time:
// IRB->Req_A_Trans_ID (OX_ID/ RX_ID):
// for SEST entry, lower bits correspond to actual FC Exchange ID
// fchs->OX_ID or RX_ID
}
else
{
#ifdef DBG
printk( "FC Error: SEST build Pool Allocation failed\n");
#endif
// return resources...
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, *fcExchangeIndex); // SEST build failed
}
}
else // no Exchanges available
{
ulStatus = SEST_FULL;
printk( "FC Error: no fcExchanges available\n");
}
return ulStatus;
}
// set RSP payload fields
static void buildFCPstatus( PTACHYON fcChip, ULONG ExchangeID)
{
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
FC_EXCHANGE *pExchange = &Exchanges->fcExchange[ExchangeID]; // shorthand
PFCP_STATUS_RESPONSE pFcpStatus;
memset( &fcChip->SEST->RspHDR[ ExchangeID ].pl, 0,
sizeof( FCP_STATUS_RESPONSE) );
if( pExchange->status ) // something wrong?
{
pFcpStatus = (PFCP_STATUS_RESPONSE) // cast RSP buffer for this xchng
&fcChip->SEST->RspHDR[ ExchangeID ].pl;
if( pExchange->status & COUNT_ERROR )
{
// set FCP response len valid (so we can report count error)
pFcpStatus->fcp_status |= FCP_RSP_LEN_VALID;
pFcpStatus->fcp_rsp_len = 0x04000000; // 4 byte len (BIG Endian)
pFcpStatus->fcp_rsp_info = FCP_DATA_LEN_NOT_BURST_LEN; // RSP_CODE
}
}
}
static dma_addr_t
cpqfc_pci_map_sg_page(
struct pci_dev *pcidev,
ULONG *hw_paddr, // where to put phys addr for HW use
void *sgp_vaddr, // the virtual address of the sg page
dma_addr_t *umap_paddr, // where to put phys addr for unmap
unsigned int *maplen, // where to store sg entry length
int PairCount) // number of sg pairs used in the page.
{
unsigned long aligned_addr = (unsigned long) sgp_vaddr;
*maplen = PairCount * 8;
aligned_addr += TL_EXT_SG_PAGE_BYTELEN;
aligned_addr &= ~(TL_EXT_SG_PAGE_BYTELEN -1);
*umap_paddr = pci_map_single(pcidev, (void *) aligned_addr,
*maplen, PCI_DMA_TODEVICE);
*hw_paddr = (ULONG) *umap_paddr;
# if BITS_PER_LONG > 32
if( *umap_paddr >>32 ) {
printk("cqpfcTS:Tach SG DMA addr %p>32 bits\n",
(void*)umap_paddr);
return 0;
}
# endif
return *umap_paddr;
}
static void
cpqfc_undo_SEST_mappings(struct pci_dev *pcidev,
unsigned long contigaddr, int len, int dir,
struct scatterlist *sgl, int use_sg,
PSGPAGES *sgPages_head,
int allocated_pages)
{
PSGPAGES i, next;
if (contigaddr != (unsigned long) NULL)
pci_unmap_single(pcidev, contigaddr, len, dir);
if (sgl != NULL)
pci_unmap_sg(pcidev, sgl, use_sg, dir);
for (i=*sgPages_head; i != NULL ;i = next)
{
pci_unmap_single(pcidev, i->busaddr, i->maplen,
scsi_to_pci_dma_dir(PCI_DMA_TODEVICE));
i->busaddr = (dma_addr_t) NULL;
i->maplen = 0L;
next = i->next;
kfree(i);
}
*sgPages_head = NULL;
}
// This routine builds scatter/gather lists into SEST entries
// INPUTS:
// SESTalPair - SEST address @DWordA "Local Buffer Length"
// sgList - Scatter/Gather linked list of Len/Address data buffers
// OUTPUT:
// sgPairs - number of valid address/length pairs
// Remarks:
// The SEST data buffer pointers only depend on number of
// length/ address pairs, NOT on the type (IWE, TRE,...)
// Up to 3 pairs can be referenced in the SEST - more than 3
// require this Extended S/G list page. The page holds 4, 8, 16...
// len/addr pairs, per Scatter/Gather List Page Length Reg.
// TachLite allows pages to be linked to any depth.
//#define DBG_SEST_SGLIST 1 // for printing out S/G pairs with Ext. pages
static int ap_hi_water = TL_DANGER_SGPAGES;
static ULONG build_SEST_sgList(
struct pci_dev *pcidev,
ULONG *SESTalPairStart, // the 3 len/address buffers in SEST
Scsi_Cmnd *Cmnd,
ULONG *sgPairs,
PSGPAGES *sgPages_head) // link list of TL Ext. S/G pages from O/S Pool
{
ULONG i, AllocatedPages=0; // Tach Ext. S/G page allocations
ULONG* alPair = SESTalPairStart;
ULONG* ext_sg_page_phys_addr_place = NULL;
int PairCount;
unsigned long ulBuff, contigaddr;
ULONG total_data_len=0; // (in bytes)
ULONG bytes_to_go = Cmnd->request_bufflen; // total xfer (S/G sum)
ULONG thisMappingLen;
struct scatterlist *sgl = NULL; // S/G list (Linux format)
int sg_count, totalsgs;
dma_addr_t busaddr;
unsigned long thislen, offset;
PSGPAGES *sgpage = sgPages_head;
PSGPAGES prev_page = NULL;
# define WE_HAVE_SG_LIST (sgl != (unsigned long) NULL)
contigaddr = (unsigned long) NULL;
if( !Cmnd->use_sg ) // no S/G list?
{
if (bytes_to_go <= TL_MAX_SG_ELEM_LEN)
{
*sgPairs = 1; // use "local" S/G pair in SEST entry
// (for now, ignore address bits above #31)
*alPair++ = bytes_to_go; // bits 18-0, length
if (bytes_to_go != 0) {
contigaddr = ulBuff = pci_map_single(pcidev,
Cmnd->request_buffer,
Cmnd->request_bufflen,
scsi_to_pci_dma_dir(Cmnd->sc_data_direction));
// printk("ms %p ", ulBuff);
}
else {
// No data transfer, (e.g.: Test Unit Ready)
// printk("btg=0 ");
*sgPairs = 0;
memset(alPair, 0, sizeof(*alPair));
return 0;
}
# if BITS_PER_LONG > 32
if( ulBuff >>32 ) {
printk("FATAL! Tachyon DMA address %p "
"exceeds 32 bits\n", (void*)ulBuff );
return 0;
}
# endif
*alPair = (ULONG)ulBuff;
return bytes_to_go;
}
else // We have a single large (too big) contiguous buffer.
{ // We will have to break it up. We'll use the scatter
// gather code way below, but use contigaddr instead
// of sg_dma_addr(). (this is a very rare case).
unsigned long btg;
contigaddr = pci_map_single(pcidev, Cmnd->request_buffer,
Cmnd->request_bufflen,
scsi_to_pci_dma_dir(Cmnd->sc_data_direction));
// printk("contigaddr = %p, len = %d\n",
// (void *) contigaddr, bytes_to_go);
totalsgs = 0;
for (btg = bytes_to_go; btg > 0; ) {
btg -= ( btg > TL_MAX_SG_ELEM_LEN ?
TL_MAX_SG_ELEM_LEN : btg );
totalsgs++;
}
sgl = NULL;
*sgPairs = totalsgs;
}
}
else // we do have a scatter gather list
{
// [TBD - update for Linux to support > 32 bits addressing]
// since the format for local & extended S/G lists is different,
// check if S/G pairs exceeds 3.
// *sgPairs = Cmnd->use_sg; Nope, that's wrong.
sgl = (struct scatterlist*)Cmnd->request_buffer;
sg_count = pci_map_sg(pcidev, sgl, Cmnd->use_sg,
scsi_to_pci_dma_dir(Cmnd->sc_data_direction));
if( sg_count <= 3 ) {
// we need to be careful here that no individual mapping
// is too large, and if any is, that breaking it up
// doesn't push us over 3 sgs, or, if it does, that we
// handle that case. Tachyon can take 0x7FFFF bits for length,
// but sg structure uses "unsigned int", on the face of it,
// up to 0xFFFFFFFF or even more.
int i;
unsigned long thislen;
totalsgs = 0;
for (i=0;i<sg_count;i++) {
thislen = sg_dma_len(&sgl[i]);
while (thislen >= TL_MAX_SG_ELEM_LEN) {
totalsgs++;
thislen -= TL_MAX_SG_ELEM_LEN;
}
if (thislen > 0) totalsgs++;
}
*sgPairs = totalsgs;
} else totalsgs = 999; // as a first estimate, definitely >3,
// if (totalsgs != sg_count)
// printk("totalsgs = %d, sgcount=%d\n",totalsgs,sg_count);
}
if( totalsgs <= 3 ) // can (must) use "local" SEST list
{
while( bytes_to_go)
{
offset = 0L;
if ( WE_HAVE_SG_LIST )
thisMappingLen = sg_dma_len(sgl);
else // or contiguous buffer?
thisMappingLen = bytes_to_go;
while (thisMappingLen > 0)
{
thislen = thisMappingLen > TL_MAX_SG_ELEM_LEN ?
TL_MAX_SG_ELEM_LEN : thisMappingLen;
bytes_to_go = bytes_to_go - thislen;
// we have L/A pair; L = thislen, A = physicalAddress
// load into SEST...
total_data_len += thislen;
*alPair = thislen; // bits 18-0, length
alPair++;
if ( WE_HAVE_SG_LIST )
ulBuff = sg_dma_address(sgl) + offset;
else
ulBuff = contigaddr + offset;
offset += thislen;
# if BITS_PER_LONG > 32
if( ulBuff >>32 ) {
printk("cqpfcTS: 2Tach DMA address %p > 32 bits\n",
(void*)ulBuff );
printk("%s = %p, offset = %ld\n",
WE_HAVE_SG_LIST ? "ulBuff" : "contigaddr",
WE_HAVE_SG_LIST ? (void *) ulBuff : (void *) contigaddr,
offset);
return 0;
}
# endif
*alPair++ = (ULONG)ulBuff; // lower 32 bits (31-0)
thisMappingLen -= thislen;
}
if ( WE_HAVE_SG_LIST ) ++sgl; // next S/G pair
else if (bytes_to_go != 0) printk("BTG not zero!\n");
# ifdef DBG_SEST_SGLIST
printk("L=%d ", thisMappingLen);
printk("btg=%d ", bytes_to_go);
# endif
}
// printk("i:%d\n", *sgPairs);
}
else // more than 3 pairs requires Extended S/G page (Pool Allocation)
{
// clear out SEST DWORDs (local S/G addr) C-F (A-B set in following logic)
for( i=2; i<6; i++)
alPair[i] = 0;
PairCount = TL_EXT_SG_PAGE_COUNT; // forces initial page allocation
totalsgs = 0;
while( bytes_to_go )
{
// Per SEST format, we can support 524287 byte lengths per
// S/G pair. Typical user buffers are 4k, and very rarely
// exceed 12k due to fragmentation of physical memory pages.
// However, on certain O/S system (not "user") buffers (on platforms
// with huge memories), it's possible to exceed this
// length in a single S/G address/len mapping, so we have to handle
// that.
offset = 0L;
if ( WE_HAVE_SG_LIST )
thisMappingLen = sg_dma_len(sgl);
else
thisMappingLen = bytes_to_go;
while (thisMappingLen > 0)
{
thislen = thisMappingLen > TL_MAX_SG_ELEM_LEN ?
TL_MAX_SG_ELEM_LEN : thisMappingLen;
// printk("%d/%d/%d\n", thislen, thisMappingLen, bytes_to_go);
// should we load into "this" extended S/G page, or allocate
// new page?
if( PairCount >= TL_EXT_SG_PAGE_COUNT )
{
// Now, we have to map the previous page, (triggering buffer bounce)
// The first time thru the loop, there won't be a previous page.
if (prev_page != NULL) // is there a prev page?
{
// this code is normally kind of hard to trigger,
// you have to use up more than 256 scatter gather
// elements to get here. Cranking down TL_MAX_SG_ELEM_LEN
// to an absurdly low value (128 bytes or so) to artificially
// break i/o's into a zillion pieces is how I tested it.
busaddr = cpqfc_pci_map_sg_page(pcidev,
ext_sg_page_phys_addr_place,
prev_page->page,
&prev_page->busaddr,
&prev_page->maplen,
PairCount);
}
// Allocate the TL Extended S/G list page. We have
// to allocate twice what we want to ensure required TL alignment
// (Tachlite TL/TS User Man. Rev 6.0, p 168)
// We store the original allocated PVOID so we can free later
*sgpage = kmalloc( sizeof(SGPAGES), GFP_ATOMIC);
if ( ! *sgpage )
{
printk("cpqfc: Allocation failed @ %d S/G page allocations\n",
AllocatedPages);
total_data_len = 0; // failure!! Ext. S/G is All-or-none affair
// unmap the previous mappings, if any.
cpqfc_undo_SEST_mappings(pcidev, contigaddr,
Cmnd->request_bufflen,
scsi_to_pci_dma_dir(Cmnd->sc_data_direction),
sgl, Cmnd->use_sg, sgPages_head, AllocatedPages+1);
// FIXME: testing shows that if we get here,
// it's bad news. (this has been this way for a long
// time though, AFAIK. Not that that excuses it.)
return 0; // give up (and probably hang the system)
}
// clear out memory we just allocated
memset( (*sgpage)->page,0,TL_EXT_SG_PAGE_BYTELEN*2);
(*sgpage)->next = NULL;
(*sgpage)->busaddr = (dma_addr_t) NULL;
(*sgpage)->maplen = 0L;
// align the memory - TL requires sizeof() Ext. S/G page alignment.
// We doubled the actual required size so we could mask off LSBs
// to get desired offset
ulBuff = (unsigned long) (*sgpage)->page;
ulBuff += TL_EXT_SG_PAGE_BYTELEN;
ulBuff &= ~(TL_EXT_SG_PAGE_BYTELEN -1);
// set pointer, in SEST if first Ext. S/G page, or in last pair
// of linked Ext. S/G pages... (Only 32-bit PVOIDs, so just
// load lower 32 bits)
// NOTE: the Len field must be '0' if this is the first Ext. S/G
// pointer in SEST, and not 0 otherwise (we know thislen != 0).
*alPair = (alPair != SESTalPairStart) ? thislen : 0;
# ifdef DBG_SEST_SGLIST
printk("PairCount %d @%p even %Xh, ",
PairCount, alPair, *alPair);
# endif
// Save the place where we need to store the physical
// address of this scatter gather page which we get when we map it
// (and mapping we can do only after we fill it in.)
alPair++; // next DWORD, will contain phys addr of the ext page
ext_sg_page_phys_addr_place = alPair;
// Now, set alPair = the virtual addr of the (Extended) S/G page
// which will accept the Len/ PhysicalAddress pairs
alPair = (ULONG *) ulBuff;
AllocatedPages++;
if (AllocatedPages >= ap_hi_water)
{
// This message should rarely, if ever, come out.
// Previously (cpqfc version <= 2.0.5) the driver would
// just puke if more than 4 SG pages were used, and nobody
// ever complained about that. This only comes out if
// more than 8 pages are used.
printk(KERN_WARNING
"cpqfc: Possible danger. %d scatter gather pages used.\n"
"cpqfc: detected seemingly extreme memory "
"fragmentation or huge data transfers.\n",
AllocatedPages);
ap_hi_water = AllocatedPages+1;
}
PairCount = 1; // starting new Ext. S/G page
prev_page = (*sgpage); // remember this page, for next time thru
sgpage = &((*sgpage)->next);
} // end of new TL Ext. S/G page allocation
*alPair = thislen; // bits 18-0, length (range check above)
# ifdef DBG_SEST_SGLIST
printk("PairCount %d @%p, even %Xh, ", PairCount, alPair, *alPair);
# endif
alPair++; // next DWORD, physical address
if ( WE_HAVE_SG_LIST )
ulBuff = sg_dma_address(sgl) + offset;
else
ulBuff = contigaddr + offset;
offset += thislen;
# if BITS_PER_LONG > 32
if( ulBuff >>32 )
{
printk("cqpfcTS: 1Tach DMA address %p > 32 bits\n", (void*)ulBuff );
printk("%s = %p, offset = %ld\n",
WE_HAVE_SG_LIST ? "ulBuff" : "contigaddr",
WE_HAVE_SG_LIST ? (void *) ulBuff : (void *) contigaddr,
offset);
return 0;
}
# endif
*alPair = (ULONG) ulBuff; // lower 32 bits (31-0)
# ifdef DBG_SEST_SGLIST
printk("odd %Xh\n", *alPair);
# endif
alPair++; // next DWORD, next address/length pair
PairCount++; // next Length/Address pair
// if (PairCount > pc_hi_water)
// {
// printk("pc hi = %d ", PairCount);
// pc_hi_water = PairCount;
// }
bytes_to_go -= thislen;
total_data_len += thislen;
thisMappingLen -= thislen;
totalsgs++;
} // while (thisMappingLen > 0)
if ( WE_HAVE_SG_LIST ) sgl++; // next S/G pair
} // while (bytes_to_go)
// printk("Totalsgs=%d\n", totalsgs);
*sgPairs = totalsgs;
// PCI map (and bounce) the last (and usually only) extended SG page
busaddr = cpqfc_pci_map_sg_page(pcidev,
ext_sg_page_phys_addr_place,
prev_page->page,
&prev_page->busaddr,
&prev_page->maplen,
PairCount);
}
return total_data_len;
}
// The Tachlite SEST table is referenced to OX_ID (or RX_ID). To optimize
// performance and debuggability, we index the Exchange structure to FC X_ID
// This enables us to build exchanges for later en-queing to Tachyon,
// provided we have an open X_ID slot. At Tachyon queing time, we only
// need an ERQ slot; then "fix-up" references in the
// IRB, FCHS, etc. as needed.
// RETURNS:
// 0 if successful
// non-zero on error
//sstartex
ULONG cpqfcTSStartExchange(
CPQFCHBA *cpqfcHBAdata,
LONG ExchangeID )
{
PTACHYON fcChip = &cpqfcHBAdata->fcChip;
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
FC_EXCHANGE *pExchange = &Exchanges->fcExchange[ ExchangeID ]; // shorthand
USHORT producer, consumer;
ULONG ulStatus=0;
short int ErqIndex;
BOOLEAN CompleteExchange = FALSE; // e.g. ACC replies are complete
BOOLEAN SestType=FALSE;
ULONG InboundData=0;
// We will manipulate Tachlite chip registers here to successfully
// start exchanges.
// Check that link is not down -- we can't start an exchange on a
// down link!
if( fcChip->Registers.FMstatus.value & 0x80) // LPSM offline?
{
printk("fcStartExchange: PSM offline (%Xh), x_ID %Xh, type %Xh, port_id %Xh\n",
fcChip->Registers.FMstatus.value & 0xFF,
ExchangeID,
pExchange->type,
pExchange->fchs.d_id);
if( ExchangeID >= TACH_SEST_LEN ) // Link Service Outbound frame?
{
// Our most popular LinkService commands are port discovery types
// (PLOGI/ PDISC...), which are implicitly nullified by Link Down
// events, so it makes no sense to Que them. However, ABTS should
// be queued, since exchange sequences are likely destroyed by
// Link Down events, and we want to notify other ports of broken
// sequences by aborting the corresponding exchanges.
if( pExchange->type != BLS_ABTS )
{
ulStatus = LNKDWN_OSLS;
goto Done;
// don't Que most LinkServ exchanges on LINK DOWN
}
}
printk("fcStartExchange: Que x_ID %Xh, type %Xh\n",
ExchangeID, pExchange->type);
pExchange->status |= EXCHANGE_QUEUED;
ulStatus = EXCHANGE_QUEUED;
goto Done;
}
// Make sure ERQ has available space.
producer = (USHORT)fcChip->ERQ->producerIndex; // copies for logical arith.
consumer = (USHORT)fcChip->ERQ->consumerIndex;
producer++; // We are testing for full que by incrementing
if( producer >= ERQ_LEN ) // rollover condition?
producer = 0;
if( consumer != producer ) // ERQ not full?
{
// ****************** Need Atomic access to chip registers!!********
// remember ERQ PI for copying IRB
ErqIndex = (USHORT)fcChip->ERQ->producerIndex;
fcChip->ERQ->producerIndex = producer; // this is written to Tachyon
// we have an ERQ slot! If SCSI command, need SEST slot
// otherwise we are done.
// Note that Tachyon requires that bit 15 of the OX_ID or RX_ID be
// set according to direction of data to/from Tachyon for SEST assists.
// For consistency, enforce this rule for Link Service (non-SEST)
// exchanges as well.
// fix-up the X_ID field in IRB
pExchange->IRB.Req_A_Trans_ID = ExchangeID & 0x7FFF; // 15-bit field
// fix-up the X_ID field in fchs -- depends on Originator or Responder,
// outgoing or incoming data?
switch( pExchange->type )
{
// ORIGINATOR types... we're setting our OX_ID and
// defaulting the responder's RX_ID to 0xFFFF
case SCSI_IRE:
// Requirement: set MSB of x_ID for Incoming TL data
// (see "Tachyon TL/TS User's Manual", Rev 6.0, Sept.'98, pg. 50)
InboundData = 0x8000;
case SCSI_IWE:
SestType = TRUE;
pExchange->fchs.ox_rx_id = (ExchangeID | InboundData);
pExchange->fchs.ox_rx_id <<= 16; // MSW shift
pExchange->fchs.ox_rx_id |= 0xffff; // add default RX_ID
// now fix-up the Data HDR OX_ID (TL automatically does rx_id)
// (not necessary for IRE -- data buffer unused)
if( pExchange->type == SCSI_IWE)
{
fcChip->SEST->DataHDR[ ExchangeID ].ox_rx_id =
pExchange->fchs.ox_rx_id;
}
break;
case FCS_NSR: // ext. link service Name Service Request
case ELS_SCR: // ext. link service State Change Registration
case ELS_FDISC:// ext. link service login
case ELS_FLOGI:// ext. link service login
case ELS_LOGO: // FC-PH extended link service logout
case BLS_NOP: // Basic link service No OPeration
case ELS_PLOGI:// ext. link service login (PLOGI)
case ELS_PDISC:// ext. link service login (PDISC)
case ELS_PRLI: // ext. link service process login
pExchange->fchs.ox_rx_id = ExchangeID;
pExchange->fchs.ox_rx_id <<= 16; // MSW shift
pExchange->fchs.ox_rx_id |= 0xffff; // and RX_ID
break;
// RESPONDER types... we must set our RX_ID while preserving
// sender's OX_ID
// outgoing (or no) data
case ELS_RJT: // extended link service reject
case ELS_LOGO_ACC: // FC-PH extended link service logout accept
case ELS_ACC: // ext. generic link service accept
case ELS_PLOGI_ACC:// ext. link service login accept (PLOGI or PDISC)
case ELS_PRLI_ACC: // ext. link service process login accept
CompleteExchange = TRUE; // Reply (ACC or RJT) is end of exchange
pExchange->fchs.ox_rx_id |= (ExchangeID & 0xFFFF);
break;
// since we are a Responder, OX_ID should already be set by
// cpqfcTSBuildExchange(). We need to -OR- in RX_ID
case SCSI_TWE:
SestType = TRUE;
// Requirement: set MSB of x_ID for Incoming TL data
// (see "Tachyon TL/TS User's Manual", Rev 6.0, Sept.'98, pg. 50)
pExchange->fchs.ox_rx_id &= 0xFFFF0000; // clear RX_ID
// Requirement: set MSB of RX_ID for Incoming TL data
// (see "Tachyon TL/TS User's Manual", Rev 6.0, Sept.'98, pg. 50)
pExchange->fchs.ox_rx_id |= (ExchangeID | 0x8000);
break;
case SCSI_TRE:
SestType = TRUE;
// there is no XRDY for SEST target read; the data
// header needs to be updated. Also update the RSP
// exchange IDs for the status frame, in case it is sent automatically
fcChip->SEST->DataHDR[ ExchangeID ].ox_rx_id |= ExchangeID;
fcChip->SEST->RspHDR[ ExchangeID ].ox_rx_id =
fcChip->SEST->DataHDR[ ExchangeID ].ox_rx_id;
// for easier FCP response logic (works for TWE and TRE),
// copy exchange IDs. (Not needed if TRE 'RSP' bit set)
pExchange->fchs.ox_rx_id =
fcChip->SEST->DataHDR[ ExchangeID ].ox_rx_id;
break;
case FCP_RESPONSE: // using existing OX_ID/ RX_ID pair,
// start SFS FCP-RESPONSE frame
// OX/RX_ID should already be set! (See "fcBuild" above)
CompleteExchange = TRUE; // RSP is end of FCP-SCSI exchange
break;
case BLS_ABTS_RJT: // uses new RX_ID, since SEST x_ID non-existent
case BLS_ABTS_ACC: // using existing OX_ID/ RX_ID pair from SEST entry
CompleteExchange = TRUE; // ACC or RJT marks end of FCP-SCSI exchange
case BLS_ABTS: // using existing OX_ID/ RX_ID pair from SEST entry
break;
default:
printk("Error on fcStartExchange: undefined type %Xh(%d)\n",
pExchange->type, pExchange->type);
return INVALID_ARGS;
}
// X_ID fields are entered -- copy IRB to Tachyon's ERQ
memcpy(
&fcChip->ERQ->QEntry[ ErqIndex ], // dest.
&pExchange->IRB,
32); // fixed (hardware) length!
PCI_TRACEO( ExchangeID, 0xA0)
// ACTION! May generate INT and IMQ entry
writel( fcChip->ERQ->producerIndex,
fcChip->Registers.ERQproducerIndex.address);
if( ExchangeID >= TACH_SEST_LEN ) // Link Service Outbound frame?
{
// wait for completion! (TDB -- timeout and chip reset)
PCI_TRACEO( ExchangeID, 0xA4)
enable_irq( cpqfcHBAdata->HostAdapter->irq); // only way to get Sem.
down_interruptible( cpqfcHBAdata->TYOBcomplete);
disable_irq( cpqfcHBAdata->HostAdapter->irq);
PCI_TRACE( 0xA4)
// On login exchanges, BAD_ALPA (non-existent port_id) results in
// FTO (Frame Time Out) on the Outbound Completion message.
// If we got an FTO status, complete the exchange (free up slot)
if( CompleteExchange || // flag from Reply frames
pExchange->status ) // typically, can get FRAME_TO
{
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, ExchangeID);
}
}
else // SEST Exchange
{
ulStatus = 0; // ship & pray success (e.g. FCP-SCSI)
if( CompleteExchange ) // by Type of exchange (e.g. end-of-xchng)
{
cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, ExchangeID);
}
else
pExchange->status &= ~EXCHANGE_QUEUED; // clear ExchangeQueued flag
}
}
else // ERQ 'producer' = 'consumer' and QUE is full
{
ulStatus = OUTQUE_FULL; // Outbound (ERQ) Que full
}
Done:
PCI_TRACE( 0xA0)
return ulStatus;
}
// Scan fcController->fcExchanges array for a usuable index (a "free"
// exchange).
// Inputs:
// fcChip - pointer to TachLite chip structure
// Return:
// index - exchange array element where exchange can be built
// -1 - exchange array is full
// REMARKS:
// Although this is a (yuk!) linear search, we presume
// that the system will complete exchanges about as quickly as
// they are submitted. A full Exchange array (and hence, max linear
// search time for free exchange slot) almost guarantees a Fibre problem
// of some sort.
// In the interest of making exchanges easier to debug, we want a LRU
// (Least Recently Used) scheme.
static LONG FindFreeExchange( PTACHYON fcChip, ULONG type )
{
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
ULONG i;
ULONG ulStatus=-1; // assume failure
if( type == SCSI_IRE ||
type == SCSI_TRE ||
type == SCSI_IWE ||
type == SCSI_TWE)
{
// SCSI type - X_IDs should be from 0 to TACH_SEST_LEN-1
if( fcChip->fcSestExchangeLRU >= TACH_SEST_LEN) // rollover?
fcChip->fcSestExchangeLRU = 0;
i = fcChip->fcSestExchangeLRU; // typically it's already free!
if( Exchanges->fcExchange[i].type == 0 ) // check for "free" element
{
ulStatus = 0; // success!
}
else
{ // YUK! we need to do a linear search for free element.
// Fragmentation of the fcExchange array is due to excessively
// long completions or timeouts.
while( TRUE )
{
if( ++i >= TACH_SEST_LEN ) // rollover check
i = 0; // beginning of SEST X_IDs
// printk( "looping for SCSI xchng ID: i=%d, type=%Xh\n",
// i, Exchanges->fcExchange[i].type);
if( Exchanges->fcExchange[i].type == 0 ) // "free"?
{
ulStatus = 0; // success!
break;
}
if( i == fcChip->fcSestExchangeLRU ) // wrapped-around array?
{
printk( "SEST X_ID space full\n");
break; // failed - prevent inf. loop
}
}
}
fcChip->fcSestExchangeLRU = i + 1; // next! (rollover check next pass)
}
else // Link Service type - X_IDs should be from TACH_SEST_LEN
// to TACH_MAX_XID
{
if( fcChip->fcLsExchangeLRU >= TACH_MAX_XID || // range check
fcChip->fcLsExchangeLRU < TACH_SEST_LEN ) // (e.g. startup)
fcChip->fcLsExchangeLRU = TACH_SEST_LEN;
i = fcChip->fcLsExchangeLRU; // typically it's already free!
if( Exchanges->fcExchange[i].type == 0 ) // check for "free" element
{
ulStatus = 0; // success!
}
else
{ // YUK! we need to do a linear search for free element
// Fragmentation of the fcExchange array is due to excessively
// long completions or timeouts.
while( TRUE )
{
if( ++i >= TACH_MAX_XID ) // rollover check
i = TACH_SEST_LEN;// beginning of Link Service X_IDs
// printk( "looping for xchng ID: i=%d, type=%Xh\n",
// i, Exchanges->fcExchange[i].type);
if( Exchanges->fcExchange[i].type == 0 ) // "free"?
{
ulStatus = 0; // success!
break;
}
if( i == fcChip->fcLsExchangeLRU ) // wrapped-around array?
{
printk( "LinkService X_ID space full\n");
break; // failed - prevent inf. loop
}
}
}
fcChip->fcLsExchangeLRU = i + 1; // next! (rollover check next pass)
}
if( !ulStatus ) // success?
Exchanges->fcExchange[i].type = type; // allocate it.
else
i = -1; // error - all exchanges "open"
return i;
}
static void
cpqfc_pci_unmap_extended_sg(struct pci_dev *pcidev,
PTACHYON fcChip,
ULONG x_ID)
{
// Unmaps the memory regions used to hold the scatter gather lists
PSGPAGES i;
// Were there any such regions needing unmapping?
if (! USES_EXTENDED_SGLIST(fcChip->SEST, x_ID))
return; // No such regions, we're outta here.
// for each extended scatter gather region needing unmapping...
for (i=fcChip->SEST->sgPages[x_ID] ; i != NULL ; i = i->next)
pci_unmap_single(pcidev, i->busaddr, i->maplen,
scsi_to_pci_dma_dir(PCI_DMA_TODEVICE));
}
// Called also from cpqfcTScontrol.o, so can't be static
void
cpqfc_pci_unmap(struct pci_dev *pcidev,
Scsi_Cmnd *cmd,
PTACHYON fcChip,
ULONG x_ID)
{
// Undo the DMA mappings
if (cmd->use_sg) { // Used scatter gather list for data buffer?
cpqfc_pci_unmap_extended_sg(pcidev, fcChip, x_ID);
pci_unmap_sg(pcidev, cmd->buffer, cmd->use_sg,
scsi_to_pci_dma_dir(cmd->sc_data_direction));
// printk("umsg %d\n", cmd->use_sg);
}
else if (cmd->request_bufflen) {
// printk("ums %p ", fcChip->SEST->u[ x_ID ].IWE.GAddr1);
pci_unmap_single(pcidev, fcChip->SEST->u[ x_ID ].IWE.GAddr1,
cmd->request_bufflen,
scsi_to_pci_dma_dir(cmd->sc_data_direction));
}
}
// We call this routine to free an Exchange for any reason:
// completed successfully, completed with error, aborted, etc.
// returns FALSE if Exchange failed and "retry" is acceptable
// returns TRUE if Exchange was successful, or retry is impossible
// (e.g. port/device gone).
//scompleteexchange
void cpqfcTSCompleteExchange(
struct pci_dev *pcidev,
PTACHYON fcChip,
ULONG x_ID)
{
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
int already_unmapped = 0;
if( x_ID < TACH_SEST_LEN ) // SEST-based (or LinkServ for FCP exchange)
{
if( Exchanges->fcExchange[ x_ID ].Cmnd == NULL ) // what#@!
{
// TriggerHBA( fcChip->Registers.ReMapMemBase, 0);
printk(" x_ID %Xh, type %Xh, NULL ptr!\n", x_ID,
Exchanges->fcExchange[ x_ID ].type);
goto CleanUpSestResources; // this path should be very rare.
}
// we have Linux Scsi Cmnd ptr..., now check our Exchange status
// to decide how to complete this SEST FCP exchange
if( Exchanges->fcExchange[ x_ID ].status ) // perhaps a Tach indicated problem,
// or abnormal exchange completion
{
// set FCP Link statistics
if( Exchanges->fcExchange[ x_ID ].status & FC2_TIMEOUT)
fcChip->fcStats.timeouts++;
if( Exchanges->fcExchange[ x_ID ].status & INITIATOR_ABORT)
fcChip->fcStats.FC4aborted++;
if( Exchanges->fcExchange[ x_ID ].status & COUNT_ERROR)
fcChip->fcStats.CntErrors++;
if( Exchanges->fcExchange[ x_ID ].status & LINKFAIL_TX)
fcChip->fcStats.linkFailTX++;
if( Exchanges->fcExchange[ x_ID ].status & LINKFAIL_RX)
fcChip->fcStats.linkFailRX++;
if( Exchanges->fcExchange[ x_ID ].status & OVERFLOW)
fcChip->fcStats.CntErrors++;
// First, see if the Scsi upper level initiated an ABORT on this
// exchange...
if( Exchanges->fcExchange[ x_ID ].status == INITIATOR_ABORT )
{
printk(" DID_ABORT, x_ID %Xh, Cmnd %p ",
x_ID, Exchanges->fcExchange[ x_ID ].Cmnd);
goto CleanUpSestResources; // (we don't expect Linux _aborts)
}
// Did our driver timeout the Exchange, or did Tachyon indicate
// a failure during transmission? Ask for retry with "SOFT_ERROR"
else if( Exchanges->fcExchange[ x_ID ].status & FC2_TIMEOUT)
{
// printk("result DID_SOFT_ERROR, x_ID %Xh, Cmnd %p\n",
// x_ID, Exchanges->fcExchange[ x_ID ].Cmnd);
Exchanges->fcExchange[ x_ID ].Cmnd->result = (DID_SOFT_ERROR <<16);
}
// Did frame(s) for an open exchange arrive in the SFQ,
// meaning the SEST was unable to process them?
else if( Exchanges->fcExchange[ x_ID ].status & SFQ_FRAME)
{
// printk("result DID_SOFT_ERROR, x_ID %Xh, Cmnd %p\n",
// x_ID, Exchanges->fcExchange[ x_ID ].Cmnd);
Exchanges->fcExchange[ x_ID ].Cmnd->result = (DID_SOFT_ERROR <<16);
}
// Did our driver timeout the Exchange, or did Tachyon indicate
// a failure during transmission? Ask for retry with "SOFT_ERROR"
else if(
(Exchanges->fcExchange[ x_ID ].status & LINKFAIL_TX) ||
(Exchanges->fcExchange[ x_ID ].status & PORTID_CHANGED) ||
(Exchanges->fcExchange[ x_ID ].status & FRAME_TO) ||
(Exchanges->fcExchange[ x_ID ].status & INV_ENTRY) ||
(Exchanges->fcExchange[ x_ID ].status & ABORTSEQ_NOTIFY) )
{
// printk("result DID_SOFT_ERROR, x_ID %Xh, Cmnd %p\n",
// x_ID, Exchanges->fcExchange[ x_ID ].Cmnd);
Exchanges->fcExchange[ x_ID ].Cmnd->result = (DID_SOFT_ERROR <<16);
}
// e.g., a LOGOut happened, or device never logged back in.
else if( Exchanges->fcExchange[ x_ID ].status & DEVICE_REMOVED)
{
// printk(" *LOGOut or timeout on login!* ");
// trigger?
// TriggerHBA( fcChip->Registers.ReMapMemBase, 0);
Exchanges->fcExchange[ x_ID ].Cmnd->result = (DID_BAD_TARGET <<16);
}
// Did Tachyon indicate a CNT error? We need further analysis
// to determine if the exchange is acceptable
else if( Exchanges->fcExchange[ x_ID ].status == COUNT_ERROR)
{
UCHAR ScsiStatus;
FCP_STATUS_RESPONSE *pFcpStatus =
(PFCP_STATUS_RESPONSE)&fcChip->SEST->RspHDR[ x_ID ].pl;
ScsiStatus = pFcpStatus->fcp_status >>24;
// If the command is a SCSI Read/Write type, we don't tolerate
// count errors of any kind; assume the count error is due to
// a dropped frame and ask for retry...
if(( (Exchanges->fcExchange[ x_ID ].Cmnd->cmnd[0] == 0x8) ||
(Exchanges->fcExchange[ x_ID ].Cmnd->cmnd[0] == 0x28) ||
(Exchanges->fcExchange[ x_ID ].Cmnd->cmnd[0] == 0xA) ||
(Exchanges->fcExchange[ x_ID ].Cmnd->cmnd[0] == 0x2A) )
&&
ScsiStatus == 0 )
{
// ask for retry
/* printk("COUNT_ERROR retry, x_ID %Xh, status %Xh, Cmnd %p\n",
x_ID, Exchanges->fcExchange[ x_ID ].status,
Exchanges->fcExchange[ x_ID ].Cmnd);*/
Exchanges->fcExchange[ x_ID ].Cmnd->result = (DID_SOFT_ERROR <<16);
}
else // need more analysis
{
cpqfcTSCheckandSnoopFCP(fcChip, x_ID); // (will set ->result)
}
}
// default: NOTE! We don't ever want to get here. Getting here
// implies something new is happening that we've never had a test
// case for. Need code maintenance! Return "ERROR"
else
{
unsigned int stat = Exchanges->fcExchange[ x_ID ].status;
printk("DEFAULT result %Xh, x_ID %Xh, Cmnd %p",
Exchanges->fcExchange[ x_ID ].status, x_ID,
Exchanges->fcExchange[ x_ID ].Cmnd);
if (stat & INVALID_ARGS) printk(" INVALID_ARGS ");
if (stat & LNKDWN_OSLS) printk(" LNKDWN_OSLS ");
if (stat & LNKDWN_LASER) printk(" LNKDWN_LASER ");
if (stat & OUTQUE_FULL) printk(" OUTQUE_FULL ");
if (stat & DRIVERQ_FULL) printk(" DRIVERQ_FULL ");
if (stat & SEST_FULL) printk(" SEST_FULL ");
if (stat & BAD_ALPA) printk(" BAD_ALPA ");
if (stat & OVERFLOW) printk(" OVERFLOW ");
if (stat & COUNT_ERROR) printk(" COUNT_ERROR ");
if (stat & LINKFAIL_RX) printk(" LINKFAIL_RX ");
if (stat & ABORTSEQ_NOTIFY) printk(" ABORTSEQ_NOTIFY ");
if (stat & LINKFAIL_TX) printk(" LINKFAIL_TX ");
if (stat & HOSTPROG_ERR) printk(" HOSTPROG_ERR ");
if (stat & FRAME_TO) printk(" FRAME_TO ");
if (stat & INV_ENTRY) printk(" INV_ENTRY ");
if (stat & SESTPROG_ERR) printk(" SESTPROG_ERR ");
if (stat & OUTBOUND_TIMEOUT) printk(" OUTBOUND_TIMEOUT ");
if (stat & INITIATOR_ABORT) printk(" INITIATOR_ABORT ");
if (stat & MEMPOOL_FAIL) printk(" MEMPOOL_FAIL ");
if (stat & FC2_TIMEOUT) printk(" FC2_TIMEOUT ");
if (stat & TARGET_ABORT) printk(" TARGET_ABORT ");
if (stat & EXCHANGE_QUEUED) printk(" EXCHANGE_QUEUED ");
if (stat & PORTID_CHANGED) printk(" PORTID_CHANGED ");
if (stat & DEVICE_REMOVED) printk(" DEVICE_REMOVED ");
if (stat & SFQ_FRAME) printk(" SFQ_FRAME ");
printk("\n");
Exchanges->fcExchange[ x_ID ].Cmnd->result = (DID_ERROR <<16);
}
}
else // definitely no Tach problem, but perhaps an FCP problem
{
// set FCP Link statistic
fcChip->fcStats.ok++;
cpqfcTSCheckandSnoopFCP( fcChip, x_ID); // (will set ->result)
}
cpqfc_pci_unmap(pcidev, Exchanges->fcExchange[x_ID].Cmnd,
fcChip, x_ID); // undo DMA mappings.
already_unmapped = 1;
// OK, we've set the Scsi "->result" field, so proceed with calling
// Linux Scsi "done" (if not NULL), and free any kernel memory we
// may have allocated for the exchange.
PCI_TRACEO( (ULONG)Exchanges->fcExchange[x_ID].Cmnd, 0xAC);
// complete the command back to upper Scsi drivers
if( Exchanges->fcExchange[ x_ID ].Cmnd->scsi_done != NULL)
{
// Calling "done" on an Linux _abort() aborted
// Cmnd causes a kernel panic trying to re-free mem.
// Actually, we shouldn't do anything with an _abort CMND
if( Exchanges->fcExchange[ x_ID ].Cmnd->result != (DID_ABORT<<16) )
{
PCI_TRACE(0xAC)
call_scsi_done(Exchanges->fcExchange[ x_ID ].Cmnd);
}
else
{
// printk(" not calling scsi_done on x_ID %Xh, Cmnd %p\n",
// x_ID, Exchanges->fcExchange[ x_ID ].Cmnd);
}
}
else{
printk(" x_ID %Xh, type %Xh, Cdb0 %Xh\n", x_ID,
Exchanges->fcExchange[ x_ID ].type,
Exchanges->fcExchange[ x_ID ].Cmnd->cmnd[0]);
printk(" cpqfcTS: Null scsi_done function pointer!\n");
}
// Now, clean up non-Scsi_Cmnd items...
CleanUpSestResources:
if (!already_unmapped)
cpqfc_pci_unmap(pcidev, Exchanges->fcExchange[x_ID].Cmnd,
fcChip, x_ID); // undo DMA mappings.
// Was an Extended Scatter/Gather page allocated? We know
// this by checking DWORD 4, bit 31 ("LOC") of SEST entry
if( !(fcChip->SEST->u[ x_ID ].IWE.Buff_Off & 0x80000000))
{
PSGPAGES p, next;
// extended S/G list was used -- Free the allocated ext. S/G pages
for (p = fcChip->SEST->sgPages[x_ID]; p != NULL; p = next) {
next = p->next;
kfree(p);
}
fcChip->SEST->sgPages[x_ID] = NULL;
}
Exchanges->fcExchange[ x_ID ].Cmnd = NULL;
} // Done with FCP (SEST) exchanges
// the remaining logic is common to ALL Exchanges:
// FCP(SEST) and LinkServ.
Exchanges->fcExchange[ x_ID ].type = 0; // there -- FREE!
Exchanges->fcExchange[ x_ID ].status = 0;
PCI_TRACEO( x_ID, 0xAC)
return;
} // (END of CompleteExchange function)
// Unfortunately, we must snoop all command completions in
// order to manipulate certain return fields, and take note of
// device types, etc., to facilitate the Fibre-Channel to SCSI
// "mapping".
// (Watch for BIG Endian confusion on some payload fields)
void cpqfcTSCheckandSnoopFCP( PTACHYON fcChip, ULONG x_ID)
{
FC_EXCHANGES *Exchanges = fcChip->Exchanges;
Scsi_Cmnd *Cmnd = Exchanges->fcExchange[ x_ID].Cmnd;
FCP_STATUS_RESPONSE *pFcpStatus =
(PFCP_STATUS_RESPONSE)&fcChip->SEST->RspHDR[ x_ID ].pl;
UCHAR ScsiStatus;
ScsiStatus = pFcpStatus->fcp_status >>24;
#ifdef FCP_COMPLETION_DBG
printk("ScsiStatus = 0x%X\n", ScsiStatus);
#endif
// First, check FCP status
if( pFcpStatus->fcp_status & FCP_RSP_LEN_VALID )
{
// check response code (RSP_CODE) -- most popular is bad len
// 1st 4 bytes of rsp info -- only byte 3 interesting
if( pFcpStatus->fcp_rsp_info & FCP_DATA_LEN_NOT_BURST_LEN )
{
// do we EVER get here?
printk("cpqfcTS: FCP data len not burst len, x_ID %Xh\n", x_ID);
}
}
// for now, go by the ScsiStatus, and manipulate certain
// commands when necessary...
if( ScsiStatus == 0) // SCSI status byte "good"?
{
Cmnd->result = 0; // everything's OK
if( (Cmnd->cmnd[0] == INQUIRY))
{
UCHAR *InquiryData = Cmnd->request_buffer;
PFC_LOGGEDIN_PORT pLoggedInPort;
// We need to manipulate INQUIRY
// strings for COMPAQ RAID controllers to force
// Linux to scan additional LUNs. Namely, set
// the Inquiry string byte 2 (ANSI-approved version)
// to 2.
if( !memcmp( &InquiryData[8], "COMPAQ", 6 ))
{
InquiryData[2] = 0x2; // claim SCSI-2 compliance,
// so multiple LUNs may be scanned.
// (no SCSI-2 problems known in CPQ)
}
// snoop the Inquiry to detect Disk, Tape, etc. type
// (search linked list for the port_id we sent INQUIRY to)
pLoggedInPort = fcFindLoggedInPort( fcChip,
NULL, // DON'T search Scsi Nexus (we will set it)
Exchanges->fcExchange[ x_ID].fchs.d_id & 0xFFFFFF,
NULL, // DON'T search linked list for FC WWN
NULL); // DON'T care about end of list
if( pLoggedInPort )
{
pLoggedInPort->ScsiNexus.InqDeviceType = InquiryData[0];
}
else
{
printk("cpqfcTS: can't find LoggedIn FC port %06X for INQUIRY\n",
Exchanges->fcExchange[ x_ID].fchs.d_id & 0xFFFFFF);
}
}
}
// Scsi Status not good -- pass it back to caller
else
{
Cmnd->result = ScsiStatus; // SCSI status byte is 1st
// check for valid "sense" data
if( pFcpStatus->fcp_status & FCP_SNS_LEN_VALID )
{ // limit Scsi Sense field length!
int SenseLen = pFcpStatus->fcp_sns_len >>24; // (BigEndian) lower byte
SenseLen = SenseLen > sizeof( Cmnd->sense_buffer) ?
sizeof( Cmnd->sense_buffer) : SenseLen;
#ifdef FCP_COMPLETION_DBG
printk("copy sense_buffer %p, len %d, result %Xh\n",
Cmnd->sense_buffer, SenseLen, Cmnd->result);
#endif
// NOTE: There is some dispute over the FCP response
// format. Most FC devices assume that FCP_RSP_INFO
// is 8 bytes long, in spite of the fact that FCP_RSP_LEN
// is (virtually) always 0 and the field is "invalid".
// Some other devices assume that
// the FCP_SNS_INFO begins after FCP_RSP_LEN bytes (i.e. 0)
// when the FCP_RSP is invalid (this almost appears to be
// one of those "religious" issues).
// Consequently, we test the usual position of FCP_SNS_INFO
// for 7Xh, since the SCSI sense format says the first
// byte ("error code") should be 0x70 or 0x71. In practice,
// we find that every device does in fact have 0x70 or 0x71
// in the first byte position, so this test works for all
// FC devices.
// (This logic is especially effective for the CPQ/DEC HSG80
// & HSG60 controllers).
if( (pFcpStatus->fcp_sns_info[0] & 0x70) == 0x70 )
memcpy( Cmnd->sense_buffer,
&pFcpStatus->fcp_sns_info[0], SenseLen);
else
{
unsigned char *sbPtr =
(unsigned char *)&pFcpStatus->fcp_sns_info[0];
sbPtr -= 8; // back up 8 bytes hoping to find the
// start of the sense buffer
memcpy( Cmnd->sense_buffer, sbPtr, SenseLen);
}
// in the special case of Device Reset, tell upper layer
// to immediately retry (with SOFT_ERROR status)
// look for Sense Key Unit Attention (0x6) with ASC Device
// Reset (0x29)
// printk("SenseLen %d, Key = 0x%X, ASC = 0x%X\n",
// SenseLen, Cmnd->sense_buffer[2],
// Cmnd->sense_buffer[12]);
if( ((Cmnd->sense_buffer[2] & 0xF) == 0x6) &&
(Cmnd->sense_buffer[12] == 0x29) ) // Sense Code "reset"
{
Cmnd->result |= (DID_SOFT_ERROR << 16); // "Host" status byte 3rd
}
// check for SenseKey "HARDWARE ERROR", ASC InternalTargetFailure
else if( ((Cmnd->sense_buffer[2] & 0xF) == 0x4) && // "hardware error"
(Cmnd->sense_buffer[12] == 0x44) ) // Addtl. Sense Code
{
// printk("HARDWARE_ERROR, Channel/Target/Lun %d/%d/%d\n",
// Cmnd->channel, Cmnd->target, Cmnd->lun);
Cmnd->result |= (DID_ERROR << 16); // "Host" status byte 3rd
}
} // (end of sense len valid)
// there is no sense data to help out Linux's Scsi layers...
// We'll just return the Scsi status and hope he will "do the
// right thing"
else
{
// as far as we know, the Scsi status is sufficient
Cmnd->result |= (DID_OK << 16); // "Host" status byte 3rd
}
}
}
//PPPPPPPPPPPPPPPPPPPPPPPPP PAYLOAD PPPPPPPPP
// build data PAYLOAD; SCSI FCP_CMND I.U.
// remember BIG ENDIAN payload - DWord values must be byte-reversed
// (hence the affinity for byte pointer building).
static int build_FCP_payload( Scsi_Cmnd *Cmnd,
UCHAR* payload, ULONG type, ULONG fcp_dl )
{
int i;
switch( type)
{
case SCSI_IWE:
case SCSI_IRE:
// 8 bytes FCP_LUN
// Peripheral Device or Volume Set addressing, and LUN mapping
// When the FC port was looked up, we copied address mode
// and any LUN mask to the scratch pad SCp.phase & .mode
*payload++ = (UCHAR)Cmnd->SCp.phase;
// Now, because of "lun masking"
// (aka selective storage presentation),
// the contiguous Linux Scsi lun number may not match the
// device's lun number, so we may have to "map".
*payload++ = (UCHAR)Cmnd->SCp.have_data_in;
// We don't know of anyone in the FC business using these
// extra "levels" of addressing. In fact, confusion still exists
// just using the FIRST level... ;-)
*payload++ = 0; // 2nd level addressing
*payload++ = 0;
*payload++ = 0; // 3rd level addressing
*payload++ = 0;
*payload++ = 0; // 4th level addressing
*payload++ = 0;
// 4 bytes Control Field FCP_CNTL
*payload++ = 0; // byte 0: (MSB) reserved
*payload++ = 0; // byte 1: task codes
// byte 2: task management flags
// another "use" of the spare field to accomplish TDR
// note combination needed
if( (Cmnd->cmnd[0] == RELEASE) &&
(Cmnd->SCp.buffers_residual == FCP_TARGET_RESET) )
{
Cmnd->cmnd[0] = 0; // issue "Test Unit Ready" for TDR
*payload++ = 0x20; // target device reset bit
}
else
*payload++ = 0; // no TDR
// byte 3: (LSB) execution management codes
// bit 0 write, bit 1 read (don't set together)
if( fcp_dl != 0 )
{
if( type == SCSI_IWE ) // WRITE
*payload++ = 1;
else // READ
*payload++ = 2;
}
else
{
// On some devices, if RD or WR bits are set,
// and fcp_dl is 0, they will generate an error on the command.
// (i.e., if direction is specified, they insist on a length).
*payload++ = 0; // no data (necessary for CPQ)
}
// NOTE: clean this up if/when MAX_COMMAND_SIZE is increased to 16
// FCP_CDB allows 16 byte SCSI command descriptor blk;
// Linux SCSI CDB array is MAX_COMMAND_SIZE (12 at this time...)
for( i=0; (i < Cmnd->cmd_len) && i < MAX_COMMAND_SIZE; i++)
*payload++ = Cmnd->cmnd[i];
// if( Cmnd->cmd_len == 16 )
// {
// memcpy( payload, &Cmnd->SCp.buffers_residual, 4);
// }
payload+= (16 - i);
// FCP_DL is largest number of expected data bytes
// per CDB (i.e. read/write command)
*payload++ = (UCHAR)(fcp_dl >>24); // (MSB) 8 bytes data len FCP_DL
*payload++ = (UCHAR)(fcp_dl >>16);
*payload++ = (UCHAR)(fcp_dl >>8);
*payload++ = (UCHAR)fcp_dl; // (LSB)
break;
case SCSI_TWE: // need FCP_XFER_RDY
*payload++ = 0; // (4 bytes) DATA_RO (MSB byte 0)
*payload++ = 0;
*payload++ = 0;
*payload++ = 0; // LSB (byte 3)
// (4 bytes) BURST_LEN
// size of following FCP_DATA payload
*payload++ = (UCHAR)(fcp_dl >>24); // (MSB) 8 bytes data len FCP_DL
*payload++ = (UCHAR)(fcp_dl >>16);
*payload++ = (UCHAR)(fcp_dl >>8);
*payload++ = (UCHAR)fcp_dl; // (LSB)
// 4 bytes RESERVED
*payload++ = 0;
*payload++ = 0;
*payload++ = 0;
*payload++ = 0;
break;
default:
break;
}
return 0;
}