kernel-fxtec-pro1x/net/hsr/hsr_device.c
Arvid Brodin f421436a59 net/hsr: Add support for the High-availability Seamless Redundancy protocol (HSRv0)
High-availability Seamless Redundancy ("HSR") provides instant failover
redundancy for Ethernet networks. It requires a special network topology where
all nodes are connected in a ring (each node having two physical network
interfaces). It is suited for applications that demand high availability and
very short reaction time.

HSR acts on the Ethernet layer, using a registered Ethernet protocol type to
send special HSR frames in both directions over the ring. The driver creates
virtual network interfaces that can be used just like any ordinary Linux
network interface, for IP/TCP/UDP traffic etc. All nodes in the network ring
must be HSR capable.

This code is a "best effort" to comply with the HSR standard as described in
IEC 62439-3:2010 (HSRv0).

Signed-off-by: Arvid Brodin <arvid.brodin@xdin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-03 23:20:14 -05:00

596 lines
15 KiB
C

/* Copyright 2011-2013 Autronica Fire and Security AS
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* Author(s):
* 2011-2013 Arvid Brodin, arvid.brodin@xdin.com
*
* This file contains device methods for creating, using and destroying
* virtual HSR devices.
*/
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/pkt_sched.h>
#include "hsr_device.h"
#include "hsr_framereg.h"
#include "hsr_main.h"
static bool is_admin_up(struct net_device *dev)
{
return dev && (dev->flags & IFF_UP);
}
static bool is_slave_up(struct net_device *dev)
{
return dev && is_admin_up(dev) && netif_oper_up(dev);
}
static void __hsr_set_operstate(struct net_device *dev, int transition)
{
write_lock_bh(&dev_base_lock);
if (dev->operstate != transition) {
dev->operstate = transition;
write_unlock_bh(&dev_base_lock);
netdev_state_change(dev);
} else {
write_unlock_bh(&dev_base_lock);
}
}
void hsr_set_operstate(struct net_device *hsr_dev, struct net_device *slave1,
struct net_device *slave2)
{
if (!is_admin_up(hsr_dev)) {
__hsr_set_operstate(hsr_dev, IF_OPER_DOWN);
return;
}
if (is_slave_up(slave1) || is_slave_up(slave2))
__hsr_set_operstate(hsr_dev, IF_OPER_UP);
else
__hsr_set_operstate(hsr_dev, IF_OPER_LOWERLAYERDOWN);
}
void hsr_set_carrier(struct net_device *hsr_dev, struct net_device *slave1,
struct net_device *slave2)
{
if (is_slave_up(slave1) || is_slave_up(slave2))
netif_carrier_on(hsr_dev);
else
netif_carrier_off(hsr_dev);
}
void hsr_check_announce(struct net_device *hsr_dev, int old_operstate)
{
struct hsr_priv *hsr_priv;
hsr_priv = netdev_priv(hsr_dev);
if ((hsr_dev->operstate == IF_OPER_UP) && (old_operstate != IF_OPER_UP)) {
/* Went up */
hsr_priv->announce_count = 0;
hsr_priv->announce_timer.expires = jiffies +
msecs_to_jiffies(HSR_ANNOUNCE_INTERVAL);
add_timer(&hsr_priv->announce_timer);
}
if ((hsr_dev->operstate != IF_OPER_UP) && (old_operstate == IF_OPER_UP))
/* Went down */
del_timer(&hsr_priv->announce_timer);
}
int hsr_get_max_mtu(struct hsr_priv *hsr_priv)
{
int mtu_max;
if (hsr_priv->slave[0] && hsr_priv->slave[1])
mtu_max = min(hsr_priv->slave[0]->mtu, hsr_priv->slave[1]->mtu);
else if (hsr_priv->slave[0])
mtu_max = hsr_priv->slave[0]->mtu;
else if (hsr_priv->slave[1])
mtu_max = hsr_priv->slave[1]->mtu;
else
mtu_max = HSR_TAGLEN;
return mtu_max - HSR_TAGLEN;
}
static int hsr_dev_change_mtu(struct net_device *dev, int new_mtu)
{
struct hsr_priv *hsr_priv;
hsr_priv = netdev_priv(dev);
if (new_mtu > hsr_get_max_mtu(hsr_priv)) {
netdev_info(hsr_priv->dev, "A HSR master's MTU cannot be greater than the smallest MTU of its slaves minus the HSR Tag length (%d octets).\n",
HSR_TAGLEN);
return -EINVAL;
}
dev->mtu = new_mtu;
return 0;
}
static int hsr_dev_open(struct net_device *dev)
{
struct hsr_priv *hsr_priv;
int i;
char *slave_name;
hsr_priv = netdev_priv(dev);
for (i = 0; i < HSR_MAX_SLAVE; i++) {
if (hsr_priv->slave[i])
slave_name = hsr_priv->slave[i]->name;
else
slave_name = "null";
if (!is_slave_up(hsr_priv->slave[i]))
netdev_warn(dev, "Slave %c (%s) is not up; please bring it up to get a working HSR network\n",
'A' + i, slave_name);
}
return 0;
}
static int hsr_dev_close(struct net_device *dev)
{
/* Nothing to do here. We could try to restore the state of the slaves
* to what they were before being changed by the hsr master dev's state,
* but they might have been changed manually in the mean time too, so
* taking them up or down here might be confusing and is probably not a
* good idea.
*/
return 0;
}
static void hsr_fill_tag(struct hsr_ethhdr *hsr_ethhdr, struct hsr_priv *hsr_priv)
{
unsigned long irqflags;
/* IEC 62439-1:2010, p 48, says the 4-bit "path" field can take values
* between 0001-1001 ("ring identifier", for regular HSR frames),
* or 1111 ("HSR management", supervision frames). Unfortunately, the
* spec writers forgot to explain what a "ring identifier" is, or
* how it is used. So we just set this to 0001 for regular frames,
* and 1111 for supervision frames.
*/
set_hsr_tag_path(&hsr_ethhdr->hsr_tag, 0x1);
/* IEC 62439-1:2010, p 12: "The link service data unit in an Ethernet
* frame is the content of the frame located between the Length/Type
* field and the Frame Check Sequence."
*
* IEC 62439-3, p 48, specifies the "original LPDU" to include the
* original "LT" field (what "LT" means is not explained anywhere as
* far as I can see - perhaps "Length/Type"?). So LSDU_size might
* equal original length + 2.
* Also, the fact that this field is not used anywhere (might be used
* by a RedBox connecting HSR and PRP nets?) means I cannot test its
* correctness. Instead of guessing, I set this to 0 here, to make any
* problems immediately apparent. Anyone using this driver with PRP/HSR
* RedBoxes might need to fix this...
*/
set_hsr_tag_LSDU_size(&hsr_ethhdr->hsr_tag, 0);
spin_lock_irqsave(&hsr_priv->seqnr_lock, irqflags);
hsr_ethhdr->hsr_tag.sequence_nr = htons(hsr_priv->sequence_nr);
hsr_priv->sequence_nr++;
spin_unlock_irqrestore(&hsr_priv->seqnr_lock, irqflags);
hsr_ethhdr->hsr_tag.encap_proto = hsr_ethhdr->ethhdr.h_proto;
hsr_ethhdr->ethhdr.h_proto = htons(ETH_P_PRP);
}
static int slave_xmit(struct sk_buff *skb, struct hsr_priv *hsr_priv,
enum hsr_dev_idx dev_idx)
{
struct hsr_ethhdr *hsr_ethhdr;
hsr_ethhdr = (struct hsr_ethhdr *) skb->data;
skb->dev = hsr_priv->slave[dev_idx];
hsr_addr_subst_dest(hsr_priv, &hsr_ethhdr->ethhdr, dev_idx);
/* Address substitution (IEC62439-3 pp 26, 50): replace mac
* address of outgoing frame with that of the outgoing slave's.
*/
memcpy(hsr_ethhdr->ethhdr.h_source, skb->dev->dev_addr, ETH_ALEN);
return dev_queue_xmit(skb);
}
static int hsr_dev_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct hsr_priv *hsr_priv;
struct hsr_ethhdr *hsr_ethhdr;
struct sk_buff *skb2;
int res1, res2;
hsr_priv = netdev_priv(dev);
hsr_ethhdr = (struct hsr_ethhdr *) skb->data;
if ((skb->protocol != htons(ETH_P_PRP)) ||
(hsr_ethhdr->ethhdr.h_proto != htons(ETH_P_PRP))) {
hsr_fill_tag(hsr_ethhdr, hsr_priv);
skb->protocol = htons(ETH_P_PRP);
}
skb2 = pskb_copy(skb, GFP_ATOMIC);
res1 = NET_XMIT_DROP;
if (likely(hsr_priv->slave[HSR_DEV_SLAVE_A]))
res1 = slave_xmit(skb, hsr_priv, HSR_DEV_SLAVE_A);
res2 = NET_XMIT_DROP;
if (likely(skb2 && hsr_priv->slave[HSR_DEV_SLAVE_B]))
res2 = slave_xmit(skb2, hsr_priv, HSR_DEV_SLAVE_B);
if (likely(res1 == NET_XMIT_SUCCESS || res1 == NET_XMIT_CN ||
res2 == NET_XMIT_SUCCESS || res2 == NET_XMIT_CN)) {
hsr_priv->dev->stats.tx_packets++;
hsr_priv->dev->stats.tx_bytes += skb->len;
} else {
hsr_priv->dev->stats.tx_dropped++;
}
return NETDEV_TX_OK;
}
static int hsr_header_create(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned int len)
{
int res;
/* Make room for the HSR tag now. We will fill it in later (in
* hsr_dev_xmit)
*/
if (skb_headroom(skb) < HSR_TAGLEN + ETH_HLEN)
return -ENOBUFS;
skb_push(skb, HSR_TAGLEN);
/* To allow VLAN/HSR combos we should probably use
* res = dev_hard_header(skb, dev, type, daddr, saddr, len + HSR_TAGLEN);
* here instead. It would require other changes too, though - e.g.
* separate headers for each slave etc...
*/
res = eth_header(skb, dev, type, daddr, saddr, len + HSR_TAGLEN);
if (res <= 0)
return res;
skb_reset_mac_header(skb);
return res + HSR_TAGLEN;
}
static const struct header_ops hsr_header_ops = {
.create = hsr_header_create,
.parse = eth_header_parse,
};
/* HSR:2010 supervision frames should be padded so that the whole frame,
* including headers and FCS, is 64 bytes (without VLAN).
*/
static int hsr_pad(int size)
{
const int min_size = ETH_ZLEN - HSR_TAGLEN - ETH_HLEN;
if (size >= min_size)
return size;
return min_size;
}
static void send_hsr_supervision_frame(struct net_device *hsr_dev, u8 type)
{
struct hsr_priv *hsr_priv;
struct sk_buff *skb;
int hlen, tlen;
struct hsr_sup_tag *hsr_stag;
struct hsr_sup_payload *hsr_sp;
unsigned long irqflags;
hlen = LL_RESERVED_SPACE(hsr_dev);
tlen = hsr_dev->needed_tailroom;
skb = alloc_skb(hsr_pad(sizeof(struct hsr_sup_payload)) + hlen + tlen,
GFP_ATOMIC);
if (skb == NULL)
return;
hsr_priv = netdev_priv(hsr_dev);
skb_reserve(skb, hlen);
skb->dev = hsr_dev;
skb->protocol = htons(ETH_P_PRP);
skb->priority = TC_PRIO_CONTROL;
if (dev_hard_header(skb, skb->dev, ETH_P_PRP,
hsr_priv->sup_multicast_addr,
skb->dev->dev_addr, skb->len) < 0)
goto out;
skb_pull(skb, sizeof(struct ethhdr));
hsr_stag = (typeof(hsr_stag)) skb->data;
set_hsr_stag_path(hsr_stag, 0xf);
set_hsr_stag_HSR_Ver(hsr_stag, 0);
spin_lock_irqsave(&hsr_priv->seqnr_lock, irqflags);
hsr_stag->sequence_nr = htons(hsr_priv->sequence_nr);
hsr_priv->sequence_nr++;
spin_unlock_irqrestore(&hsr_priv->seqnr_lock, irqflags);
hsr_stag->HSR_TLV_Type = type;
hsr_stag->HSR_TLV_Length = 12;
skb_push(skb, sizeof(struct ethhdr));
/* Payload: MacAddressA */
hsr_sp = (typeof(hsr_sp)) skb_put(skb, sizeof(*hsr_sp));
memcpy(hsr_sp->MacAddressA, hsr_dev->dev_addr, ETH_ALEN);
dev_queue_xmit(skb);
return;
out:
kfree_skb(skb);
}
/* Announce (supervision frame) timer function
*/
static void hsr_announce(unsigned long data)
{
struct hsr_priv *hsr_priv;
hsr_priv = (struct hsr_priv *) data;
if (hsr_priv->announce_count < 3) {
send_hsr_supervision_frame(hsr_priv->dev, HSR_TLV_ANNOUNCE);
hsr_priv->announce_count++;
} else {
send_hsr_supervision_frame(hsr_priv->dev, HSR_TLV_LIFE_CHECK);
}
if (hsr_priv->announce_count < 3)
hsr_priv->announce_timer.expires = jiffies +
msecs_to_jiffies(HSR_ANNOUNCE_INTERVAL);
else
hsr_priv->announce_timer.expires = jiffies +
msecs_to_jiffies(HSR_LIFE_CHECK_INTERVAL);
if (is_admin_up(hsr_priv->dev))
add_timer(&hsr_priv->announce_timer);
}
static void restore_slaves(struct net_device *hsr_dev)
{
struct hsr_priv *hsr_priv;
int i;
int res;
hsr_priv = netdev_priv(hsr_dev);
rtnl_lock();
/* Restore promiscuity */
for (i = 0; i < HSR_MAX_SLAVE; i++) {
if (!hsr_priv->slave[i])
continue;
res = dev_set_promiscuity(hsr_priv->slave[i], -1);
if (res)
netdev_info(hsr_dev,
"Cannot restore slave promiscuity (%s, %d)\n",
hsr_priv->slave[i]->name, res);
}
rtnl_unlock();
}
static void reclaim_hsr_dev(struct rcu_head *rh)
{
struct hsr_priv *hsr_priv;
hsr_priv = container_of(rh, struct hsr_priv, rcu_head);
free_netdev(hsr_priv->dev);
}
/* According to comments in the declaration of struct net_device, this function
* is "Called from unregister, can be used to call free_netdev". Ok then...
*/
static void hsr_dev_destroy(struct net_device *hsr_dev)
{
struct hsr_priv *hsr_priv;
hsr_priv = netdev_priv(hsr_dev);
del_timer(&hsr_priv->announce_timer);
unregister_hsr_master(hsr_priv); /* calls list_del_rcu on hsr_priv */
restore_slaves(hsr_dev);
call_rcu(&hsr_priv->rcu_head, reclaim_hsr_dev); /* reclaim hsr_priv */
}
static const struct net_device_ops hsr_device_ops = {
.ndo_change_mtu = hsr_dev_change_mtu,
.ndo_open = hsr_dev_open,
.ndo_stop = hsr_dev_close,
.ndo_start_xmit = hsr_dev_xmit,
};
void hsr_dev_setup(struct net_device *dev)
{
random_ether_addr(dev->dev_addr);
ether_setup(dev);
dev->header_ops = &hsr_header_ops;
dev->netdev_ops = &hsr_device_ops;
dev->tx_queue_len = 0;
dev->destructor = hsr_dev_destroy;
}
/* Return true if dev is a HSR master; return false otherwise.
*/
bool is_hsr_master(struct net_device *dev)
{
return (dev->netdev_ops->ndo_start_xmit == hsr_dev_xmit);
}
static int check_slave_ok(struct net_device *dev)
{
/* Don't allow HSR on non-ethernet like devices */
if ((dev->flags & IFF_LOOPBACK) || (dev->type != ARPHRD_ETHER) ||
(dev->addr_len != ETH_ALEN)) {
netdev_info(dev, "Cannot use loopback or non-ethernet device as HSR slave.\n");
return -EINVAL;
}
/* Don't allow enslaving hsr devices */
if (is_hsr_master(dev)) {
netdev_info(dev, "Cannot create trees of HSR devices.\n");
return -EINVAL;
}
if (is_hsr_slave(dev)) {
netdev_info(dev, "This device is already a HSR slave.\n");
return -EINVAL;
}
if (dev->priv_flags & IFF_802_1Q_VLAN) {
netdev_info(dev, "HSR on top of VLAN is not yet supported in this driver.\n");
return -EINVAL;
}
/* HSR over bonded devices has not been tested, but I'm not sure it
* won't work...
*/
return 0;
}
/* Default multicast address for HSR Supervision frames */
static const unsigned char def_multicast_addr[ETH_ALEN] = {
0x01, 0x15, 0x4e, 0x00, 0x01, 0x00
};
int hsr_dev_finalize(struct net_device *hsr_dev, struct net_device *slave[2],
unsigned char multicast_spec)
{
struct hsr_priv *hsr_priv;
int i;
int res;
hsr_priv = netdev_priv(hsr_dev);
hsr_priv->dev = hsr_dev;
INIT_LIST_HEAD(&hsr_priv->node_db);
INIT_LIST_HEAD(&hsr_priv->self_node_db);
for (i = 0; i < HSR_MAX_SLAVE; i++)
hsr_priv->slave[i] = slave[i];
spin_lock_init(&hsr_priv->seqnr_lock);
/* Overflow soon to find bugs easier: */
hsr_priv->sequence_nr = USHRT_MAX - 1024;
init_timer(&hsr_priv->announce_timer);
hsr_priv->announce_timer.function = hsr_announce;
hsr_priv->announce_timer.data = (unsigned long) hsr_priv;
memcpy(hsr_priv->sup_multicast_addr, def_multicast_addr, ETH_ALEN);
hsr_priv->sup_multicast_addr[ETH_ALEN - 1] = multicast_spec;
/* FIXME: should I modify the value of these?
*
* - hsr_dev->flags - i.e.
* IFF_MASTER/SLAVE?
* - hsr_dev->priv_flags - i.e.
* IFF_EBRIDGE?
* IFF_TX_SKB_SHARING?
* IFF_HSR_MASTER/SLAVE?
*/
for (i = 0; i < HSR_MAX_SLAVE; i++) {
res = check_slave_ok(slave[i]);
if (res)
return res;
}
hsr_dev->features = slave[0]->features & slave[1]->features;
/* Prevent recursive tx locking */
hsr_dev->features |= NETIF_F_LLTX;
/* VLAN on top of HSR needs testing and probably some work on
* hsr_header_create() etc.
*/
hsr_dev->features |= NETIF_F_VLAN_CHALLENGED;
/* Set hsr_dev's MAC address to that of mac_slave1 */
memcpy(hsr_dev->dev_addr, hsr_priv->slave[0]->dev_addr, ETH_ALEN);
/* Set required header length */
for (i = 0; i < HSR_MAX_SLAVE; i++) {
if (slave[i]->hard_header_len + HSR_TAGLEN >
hsr_dev->hard_header_len)
hsr_dev->hard_header_len =
slave[i]->hard_header_len + HSR_TAGLEN;
}
/* MTU */
for (i = 0; i < HSR_MAX_SLAVE; i++)
if (slave[i]->mtu - HSR_TAGLEN < hsr_dev->mtu)
hsr_dev->mtu = slave[i]->mtu - HSR_TAGLEN;
/* Make sure the 1st call to netif_carrier_on() gets through */
netif_carrier_off(hsr_dev);
/* Promiscuity */
for (i = 0; i < HSR_MAX_SLAVE; i++) {
res = dev_set_promiscuity(slave[i], 1);
if (res) {
netdev_info(hsr_dev, "Cannot set slave promiscuity (%s, %d)\n",
slave[i]->name, res);
goto fail;
}
}
/* Make sure we recognize frames from ourselves in hsr_rcv() */
res = hsr_create_self_node(&hsr_priv->self_node_db,
hsr_dev->dev_addr,
hsr_priv->slave[1]->dev_addr);
if (res < 0)
goto fail;
res = register_netdevice(hsr_dev);
if (res)
goto fail;
register_hsr_master(hsr_priv);
return 0;
fail:
restore_slaves(hsr_dev);
return res;
}