kernel-fxtec-pro1x/drivers/ssb/driver_chipcommon_pmu.c
Hauke Mehrtens 111bd981e2 MIPS: BCM47XX: add bcm47xx prefix in front of nvram function names
The nvram functions are exported and used by some normal drivers. To
prevent name clashes with ofter parts of the kernel code add a bcm47xx_
prefix in front of the function names and the header file name.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Patchwork: http://patchwork.linux-mips.org/patch/4744/
Signed-off-by: John Crispin <blogic@openwrt.org>
2013-02-15 19:01:57 +01:00

677 lines
20 KiB
C

/*
* Sonics Silicon Backplane
* Broadcom ChipCommon Power Management Unit driver
*
* Copyright 2009, Michael Buesch <m@bues.ch>
* Copyright 2007, Broadcom Corporation
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/delay.h>
#include <linux/export.h>
#ifdef CONFIG_BCM47XX
#include <bcm47xx_nvram.h>
#endif
#include "ssb_private.h"
static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
{
chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
}
static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
u32 offset, u32 value)
{
chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
}
static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
u32 offset, u32 mask, u32 set)
{
u32 value;
chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
value &= mask;
value |= set;
chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
}
struct pmu0_plltab_entry {
u16 freq; /* Crystal frequency in kHz.*/
u8 xf; /* Crystal frequency value for PMU control */
u8 wb_int;
u32 wb_frac;
};
static const struct pmu0_plltab_entry pmu0_plltab[] = {
{ .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
{ .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
{ .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
{ .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
{ .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
{ .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
{ .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
{ .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
{ .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
{ .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
{ .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
{ .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
{ .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
{ .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
};
#define SSB_PMU0_DEFAULT_XTALFREQ 20000
static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
{
const struct pmu0_plltab_entry *e;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
e = &pmu0_plltab[i];
if (e->freq == crystalfreq)
return e;
}
return NULL;
}
/* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
u32 crystalfreq)
{
struct ssb_bus *bus = cc->dev->bus;
const struct pmu0_plltab_entry *e = NULL;
u32 pmuctl, tmp, pllctl;
unsigned int i;
if (crystalfreq)
e = pmu0_plltab_find_entry(crystalfreq);
if (!e)
e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
BUG_ON(!e);
crystalfreq = e->freq;
cc->pmu.crystalfreq = e->freq;
/* Check if the PLL already is programmed to this frequency. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
/* We're already there... */
return;
}
ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
(crystalfreq / 1000), (crystalfreq % 1000));
/* First turn the PLL off. */
switch (bus->chip_id) {
case 0x4328:
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
~(1 << SSB_PMURES_4328_BB_PLL_PU));
chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
~(1 << SSB_PMURES_4328_BB_PLL_PU));
break;
case 0x5354:
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
~(1 << SSB_PMURES_5354_BB_PLL_PU));
chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
~(1 << SSB_PMURES_5354_BB_PLL_PU));
break;
default:
SSB_WARN_ON(1);
}
for (i = 1500; i; i--) {
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
break;
udelay(10);
}
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
/* Set PDIV in PLL control 0. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
else
pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
/* Set WILD in PLL control 1. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
if (e->wb_frac == 0)
pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
/* Set WILD in PLL control 2. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
/* Set the crystalfrequency and the divisor. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
& SSB_CHIPCO_PMU_CTL_ILP_DIV;
pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
}
struct pmu1_plltab_entry {
u16 freq; /* Crystal frequency in kHz.*/
u8 xf; /* Crystal frequency value for PMU control */
u8 ndiv_int;
u32 ndiv_frac;
u8 p1div;
u8 p2div;
};
static const struct pmu1_plltab_entry pmu1_plltab[] = {
{ .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
{ .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
{ .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
{ .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
{ .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
{ .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
{ .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
{ .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
{ .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
{ .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
{ .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
{ .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
{ .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
{ .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
{ .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
};
#define SSB_PMU1_DEFAULT_XTALFREQ 15360
static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
{
const struct pmu1_plltab_entry *e;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
e = &pmu1_plltab[i];
if (e->freq == crystalfreq)
return e;
}
return NULL;
}
/* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
u32 crystalfreq)
{
struct ssb_bus *bus = cc->dev->bus;
const struct pmu1_plltab_entry *e = NULL;
u32 buffer_strength = 0;
u32 tmp, pllctl, pmuctl;
unsigned int i;
if (bus->chip_id == 0x4312) {
/* We do not touch the BCM4312 PLL and assume
* the default crystal settings work out-of-the-box. */
cc->pmu.crystalfreq = 20000;
return;
}
if (crystalfreq)
e = pmu1_plltab_find_entry(crystalfreq);
if (!e)
e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
BUG_ON(!e);
crystalfreq = e->freq;
cc->pmu.crystalfreq = e->freq;
/* Check if the PLL already is programmed to this frequency. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
/* We're already there... */
return;
}
ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
(crystalfreq / 1000), (crystalfreq % 1000));
/* First turn the PLL off. */
switch (bus->chip_id) {
case 0x4325:
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
(1 << SSB_PMURES_4325_HT_AVAIL)));
chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
(1 << SSB_PMURES_4325_HT_AVAIL)));
/* Adjust the BBPLL to 2 on all channels later. */
buffer_strength = 0x222222;
break;
default:
SSB_WARN_ON(1);
}
for (i = 1500; i; i--) {
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
break;
udelay(10);
}
tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
/* Set p1div and p2div. */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
/* Set ndiv int and ndiv mode */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
/* Set ndiv frac */
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
/* Change the drive strength, if required. */
if (buffer_strength) {
pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
}
/* Tune the crystalfreq and the divisor. */
pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
& SSB_CHIPCO_PMU_CTL_ILP_DIV;
pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
}
static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
if (bus->bustype == SSB_BUSTYPE_SSB) {
#ifdef CONFIG_BCM47XX
char buf[20];
if (bcm47xx_nvram_getenv("xtalfreq", buf, sizeof(buf)) >= 0)
crystalfreq = simple_strtoul(buf, NULL, 0);
#endif
}
switch (bus->chip_id) {
case 0x4312:
case 0x4325:
ssb_pmu1_pllinit_r0(cc, crystalfreq);
break;
case 0x4328:
ssb_pmu0_pllinit_r0(cc, crystalfreq);
break;
case 0x5354:
if (crystalfreq == 0)
crystalfreq = 25000;
ssb_pmu0_pllinit_r0(cc, crystalfreq);
break;
case 0x4322:
if (cc->pmu.rev == 2) {
chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
}
break;
case 43222:
break;
default:
ssb_printk(KERN_ERR PFX
"ERROR: PLL init unknown for device %04X\n",
bus->chip_id);
}
}
struct pmu_res_updown_tab_entry {
u8 resource; /* The resource number */
u16 updown; /* The updown value */
};
enum pmu_res_depend_tab_task {
PMU_RES_DEP_SET = 1,
PMU_RES_DEP_ADD,
PMU_RES_DEP_REMOVE,
};
struct pmu_res_depend_tab_entry {
u8 resource; /* The resource number */
u8 task; /* SET | ADD | REMOVE */
u32 depend; /* The depend mask */
};
static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
{ .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
{ .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
{ .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
{ .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
{ .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
{ .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
};
static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
{
/* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
.resource = SSB_PMURES_4328_ILP_REQUEST,
.task = PMU_RES_DEP_SET,
.depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
(1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
},
};
static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
{ .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
};
static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
{
/* Adjust HT-Available dependencies. */
.resource = SSB_PMURES_4325_HT_AVAIL,
.task = PMU_RES_DEP_ADD,
.depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
(1 << SSB_PMURES_4325_TX_PWRSW_PU) |
(1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
(1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
},
};
static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 min_msk = 0, max_msk = 0;
unsigned int i;
const struct pmu_res_updown_tab_entry *updown_tab = NULL;
unsigned int updown_tab_size = 0;
const struct pmu_res_depend_tab_entry *depend_tab = NULL;
unsigned int depend_tab_size = 0;
switch (bus->chip_id) {
case 0x4312:
min_msk = 0xCBB;
break;
case 0x4322:
case 43222:
/* We keep the default settings:
* min_msk = 0xCBB
* max_msk = 0x7FFFF
*/
break;
case 0x4325:
/* Power OTP down later. */
min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
(1 << SSB_PMURES_4325_LNLDO2_PU);
if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
SSB_CHIPCO_CHST_4325_PMUTOP_2B)
min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
/* The PLL may turn on, if it decides so. */
max_msk = 0xFFFFF;
updown_tab = pmu_res_updown_tab_4325a0;
updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
depend_tab = pmu_res_depend_tab_4325a0;
depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
break;
case 0x4328:
min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
(1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
(1 << SSB_PMURES_4328_XTAL_EN);
/* The PLL may turn on, if it decides so. */
max_msk = 0xFFFFF;
updown_tab = pmu_res_updown_tab_4328a0;
updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
depend_tab = pmu_res_depend_tab_4328a0;
depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
break;
case 0x5354:
/* The PLL may turn on, if it decides so. */
max_msk = 0xFFFFF;
break;
default:
ssb_printk(KERN_ERR PFX
"ERROR: PMU resource config unknown for device %04X\n",
bus->chip_id);
}
if (updown_tab) {
for (i = 0; i < updown_tab_size; i++) {
chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
updown_tab[i].resource);
chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
updown_tab[i].updown);
}
}
if (depend_tab) {
for (i = 0; i < depend_tab_size; i++) {
chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
depend_tab[i].resource);
switch (depend_tab[i].task) {
case PMU_RES_DEP_SET:
chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
depend_tab[i].depend);
break;
case PMU_RES_DEP_ADD:
chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
depend_tab[i].depend);
break;
case PMU_RES_DEP_REMOVE:
chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
~(depend_tab[i].depend));
break;
default:
SSB_WARN_ON(1);
}
}
}
/* Set the resource masks. */
if (min_msk)
chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
if (max_msk)
chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
}
/* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
void ssb_pmu_init(struct ssb_chipcommon *cc)
{
u32 pmucap;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
return;
pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
cc->pmu.rev, pmucap);
if (cc->pmu.rev == 1)
chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
~SSB_CHIPCO_PMU_CTL_NOILPONW);
else
chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
SSB_CHIPCO_PMU_CTL_NOILPONW);
ssb_pmu_pll_init(cc);
ssb_pmu_resources_init(cc);
}
void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
enum ssb_pmu_ldo_volt_id id, u32 voltage)
{
struct ssb_bus *bus = cc->dev->bus;
u32 addr, shift, mask;
switch (bus->chip_id) {
case 0x4328:
case 0x5354:
switch (id) {
case LDO_VOLT1:
addr = 2;
shift = 25;
mask = 0xF;
break;
case LDO_VOLT2:
addr = 3;
shift = 1;
mask = 0xF;
break;
case LDO_VOLT3:
addr = 3;
shift = 9;
mask = 0xF;
break;
case LDO_PAREF:
addr = 3;
shift = 17;
mask = 0x3F;
break;
default:
SSB_WARN_ON(1);
return;
}
break;
case 0x4312:
if (SSB_WARN_ON(id != LDO_PAREF))
return;
addr = 0;
shift = 21;
mask = 0x3F;
break;
default:
return;
}
ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
(voltage & mask) << shift);
}
void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
{
struct ssb_bus *bus = cc->dev->bus;
int ldo;
switch (bus->chip_id) {
case 0x4312:
ldo = SSB_PMURES_4312_PA_REF_LDO;
break;
case 0x4328:
ldo = SSB_PMURES_4328_PA_REF_LDO;
break;
case 0x5354:
ldo = SSB_PMURES_5354_PA_REF_LDO;
break;
default:
return;
}
if (on)
chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
else
chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
}
EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);
static u32 ssb_pmu_get_alp_clock_clk0(struct ssb_chipcommon *cc)
{
u32 crystalfreq;
const struct pmu0_plltab_entry *e = NULL;
crystalfreq = chipco_read32(cc, SSB_CHIPCO_PMU_CTL) &
SSB_CHIPCO_PMU_CTL_XTALFREQ >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT;
e = pmu0_plltab_find_entry(crystalfreq);
BUG_ON(!e);
return e->freq * 1000;
}
u32 ssb_pmu_get_alp_clock(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x5354:
ssb_pmu_get_alp_clock_clk0(cc);
default:
ssb_printk(KERN_ERR PFX
"ERROR: PMU alp clock unknown for device %04X\n",
bus->chip_id);
return 0;
}
}
u32 ssb_pmu_get_cpu_clock(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x5354:
/* 5354 chip uses a non programmable PLL of frequency 240MHz */
return 240000000;
default:
ssb_printk(KERN_ERR PFX
"ERROR: PMU cpu clock unknown for device %04X\n",
bus->chip_id);
return 0;
}
}
u32 ssb_pmu_get_controlclock(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x5354:
return 120000000;
default:
ssb_printk(KERN_ERR PFX
"ERROR: PMU controlclock unknown for device %04X\n",
bus->chip_id);
return 0;
}
}