kernel-fxtec-pro1x/fs/proc/task_mmu.c
Qiaowei Ren 4aae7e436f x86, mpx: Introduce VM_MPX to indicate that a VMA is MPX specific
MPX-enabled applications using large swaths of memory can
potentially have large numbers of bounds tables in process
address space to save bounds information. These tables can take
up huge swaths of memory (as much as 80% of the memory on the
system) even if we clean them up aggressively. In the worst-case
scenario, the tables can be 4x the size of the data structure
being tracked. IOW, a 1-page structure can require 4 bounds-table
pages.

Being this huge, our expectation is that folks using MPX are
going to be keen on figuring out how much memory is being
dedicated to it. So we need a way to track memory use for MPX.

If we want to specifically track MPX VMAs we need to be able to
distinguish them from normal VMAs, and keep them from getting
merged with normal VMAs. A new VM_ flag set only on MPX VMAs does
both of those things. With this flag, MPX bounds-table VMAs can
be distinguished from other VMAs, and userspace can also walk
/proc/$pid/smaps to get memory usage for MPX.

In addition to this flag, we also introduce a special ->vm_ops
specific to MPX VMAs (see the patch "add MPX specific mmap
interface"), but currently different ->vm_ops do not by
themselves prevent VMA merging, so we still need this flag.

We understand that VM_ flags are scarce and are open to other
options.

Signed-off-by: Qiaowei Ren <qiaowei.ren@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-mm@kvack.org
Cc: linux-mips@linux-mips.org
Cc: Dave Hansen <dave@sr71.net>
Link: http://lkml.kernel.org/r/20141114151825.565625B3@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-11-18 00:58:53 +01:00

1588 lines
38 KiB
C

#include <linux/mm.h>
#include <linux/vmacache.h>
#include <linux/hugetlb.h>
#include <linux/huge_mm.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <asm/elf.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
#include "internal.h"
void task_mem(struct seq_file *m, struct mm_struct *mm)
{
unsigned long data, text, lib, swap;
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
/*
* Note: to minimize their overhead, mm maintains hiwater_vm and
* hiwater_rss only when about to *lower* total_vm or rss. Any
* collector of these hiwater stats must therefore get total_vm
* and rss too, which will usually be the higher. Barriers? not
* worth the effort, such snapshots can always be inconsistent.
*/
hiwater_vm = total_vm = mm->total_vm;
if (hiwater_vm < mm->hiwater_vm)
hiwater_vm = mm->hiwater_vm;
hiwater_rss = total_rss = get_mm_rss(mm);
if (hiwater_rss < mm->hiwater_rss)
hiwater_rss = mm->hiwater_rss;
data = mm->total_vm - mm->shared_vm - mm->stack_vm;
text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
swap = get_mm_counter(mm, MM_SWAPENTS);
seq_printf(m,
"VmPeak:\t%8lu kB\n"
"VmSize:\t%8lu kB\n"
"VmLck:\t%8lu kB\n"
"VmPin:\t%8lu kB\n"
"VmHWM:\t%8lu kB\n"
"VmRSS:\t%8lu kB\n"
"VmData:\t%8lu kB\n"
"VmStk:\t%8lu kB\n"
"VmExe:\t%8lu kB\n"
"VmLib:\t%8lu kB\n"
"VmPTE:\t%8lu kB\n"
"VmSwap:\t%8lu kB\n",
hiwater_vm << (PAGE_SHIFT-10),
total_vm << (PAGE_SHIFT-10),
mm->locked_vm << (PAGE_SHIFT-10),
mm->pinned_vm << (PAGE_SHIFT-10),
hiwater_rss << (PAGE_SHIFT-10),
total_rss << (PAGE_SHIFT-10),
data << (PAGE_SHIFT-10),
mm->stack_vm << (PAGE_SHIFT-10), text, lib,
(PTRS_PER_PTE * sizeof(pte_t) *
atomic_long_read(&mm->nr_ptes)) >> 10,
swap << (PAGE_SHIFT-10));
}
unsigned long task_vsize(struct mm_struct *mm)
{
return PAGE_SIZE * mm->total_vm;
}
unsigned long task_statm(struct mm_struct *mm,
unsigned long *shared, unsigned long *text,
unsigned long *data, unsigned long *resident)
{
*shared = get_mm_counter(mm, MM_FILEPAGES);
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
>> PAGE_SHIFT;
*data = mm->total_vm - mm->shared_vm;
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
return mm->total_vm;
}
#ifdef CONFIG_NUMA
/*
* Save get_task_policy() for show_numa_map().
*/
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
struct task_struct *task = priv->task;
task_lock(task);
priv->task_mempolicy = get_task_policy(task);
mpol_get(priv->task_mempolicy);
task_unlock(task);
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
mpol_put(priv->task_mempolicy);
}
#else
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
}
#endif
static void vma_stop(struct proc_maps_private *priv)
{
struct mm_struct *mm = priv->mm;
release_task_mempolicy(priv);
up_read(&mm->mmap_sem);
mmput(mm);
}
static struct vm_area_struct *
m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
{
if (vma == priv->tail_vma)
return NULL;
return vma->vm_next ?: priv->tail_vma;
}
static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
{
if (m->count < m->size) /* vma is copied successfully */
m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
}
static void *m_start(struct seq_file *m, loff_t *ppos)
{
struct proc_maps_private *priv = m->private;
unsigned long last_addr = m->version;
struct mm_struct *mm;
struct vm_area_struct *vma;
unsigned int pos = *ppos;
/* See m_cache_vma(). Zero at the start or after lseek. */
if (last_addr == -1UL)
return NULL;
priv->task = get_proc_task(priv->inode);
if (!priv->task)
return ERR_PTR(-ESRCH);
mm = priv->mm;
if (!mm || !atomic_inc_not_zero(&mm->mm_users))
return NULL;
down_read(&mm->mmap_sem);
hold_task_mempolicy(priv);
priv->tail_vma = get_gate_vma(mm);
if (last_addr) {
vma = find_vma(mm, last_addr);
if (vma && (vma = m_next_vma(priv, vma)))
return vma;
}
m->version = 0;
if (pos < mm->map_count) {
for (vma = mm->mmap; pos; pos--) {
m->version = vma->vm_start;
vma = vma->vm_next;
}
return vma;
}
/* we do not bother to update m->version in this case */
if (pos == mm->map_count && priv->tail_vma)
return priv->tail_vma;
vma_stop(priv);
return NULL;
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *next;
(*pos)++;
next = m_next_vma(priv, v);
if (!next)
vma_stop(priv);
return next;
}
static void m_stop(struct seq_file *m, void *v)
{
struct proc_maps_private *priv = m->private;
if (!IS_ERR_OR_NULL(v))
vma_stop(priv);
if (priv->task) {
put_task_struct(priv->task);
priv->task = NULL;
}
}
static int proc_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops, int psize)
{
struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
if (!priv)
return -ENOMEM;
priv->inode = inode;
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
if (IS_ERR(priv->mm)) {
int err = PTR_ERR(priv->mm);
seq_release_private(inode, file);
return err;
}
return 0;
}
static int proc_map_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct proc_maps_private *priv = seq->private;
if (priv->mm)
mmdrop(priv->mm);
return seq_release_private(inode, file);
}
static int do_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
return proc_maps_open(inode, file, ops,
sizeof(struct proc_maps_private));
}
static pid_t pid_of_stack(struct proc_maps_private *priv,
struct vm_area_struct *vma, bool is_pid)
{
struct inode *inode = priv->inode;
struct task_struct *task;
pid_t ret = 0;
rcu_read_lock();
task = pid_task(proc_pid(inode), PIDTYPE_PID);
if (task) {
task = task_of_stack(task, vma, is_pid);
if (task)
ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
}
rcu_read_unlock();
return ret;
}
static void
show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
{
struct mm_struct *mm = vma->vm_mm;
struct file *file = vma->vm_file;
struct proc_maps_private *priv = m->private;
vm_flags_t flags = vma->vm_flags;
unsigned long ino = 0;
unsigned long long pgoff = 0;
unsigned long start, end;
dev_t dev = 0;
const char *name = NULL;
if (file) {
struct inode *inode = file_inode(vma->vm_file);
dev = inode->i_sb->s_dev;
ino = inode->i_ino;
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
}
/* We don't show the stack guard page in /proc/maps */
start = vma->vm_start;
if (stack_guard_page_start(vma, start))
start += PAGE_SIZE;
end = vma->vm_end;
if (stack_guard_page_end(vma, end))
end -= PAGE_SIZE;
seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
start,
end,
flags & VM_READ ? 'r' : '-',
flags & VM_WRITE ? 'w' : '-',
flags & VM_EXEC ? 'x' : '-',
flags & VM_MAYSHARE ? 's' : 'p',
pgoff,
MAJOR(dev), MINOR(dev), ino);
/*
* Print the dentry name for named mappings, and a
* special [heap] marker for the heap:
*/
if (file) {
seq_pad(m, ' ');
seq_path(m, &file->f_path, "\n");
goto done;
}
if (vma->vm_ops && vma->vm_ops->name) {
name = vma->vm_ops->name(vma);
if (name)
goto done;
}
name = arch_vma_name(vma);
if (!name) {
pid_t tid;
if (!mm) {
name = "[vdso]";
goto done;
}
if (vma->vm_start <= mm->brk &&
vma->vm_end >= mm->start_brk) {
name = "[heap]";
goto done;
}
tid = pid_of_stack(priv, vma, is_pid);
if (tid != 0) {
/*
* Thread stack in /proc/PID/task/TID/maps or
* the main process stack.
*/
if (!is_pid || (vma->vm_start <= mm->start_stack &&
vma->vm_end >= mm->start_stack)) {
name = "[stack]";
} else {
/* Thread stack in /proc/PID/maps */
seq_pad(m, ' ');
seq_printf(m, "[stack:%d]", tid);
}
}
}
done:
if (name) {
seq_pad(m, ' ');
seq_puts(m, name);
}
seq_putc(m, '\n');
}
static int show_map(struct seq_file *m, void *v, int is_pid)
{
show_map_vma(m, v, is_pid);
m_cache_vma(m, v);
return 0;
}
static int show_pid_map(struct seq_file *m, void *v)
{
return show_map(m, v, 1);
}
static int show_tid_map(struct seq_file *m, void *v)
{
return show_map(m, v, 0);
}
static const struct seq_operations proc_pid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_map
};
static const struct seq_operations proc_tid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_map
};
static int pid_maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_maps_op);
}
static int tid_maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_tid_maps_op);
}
const struct file_operations proc_pid_maps_operations = {
.open = pid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_maps_operations = {
.open = tid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
/*
* Proportional Set Size(PSS): my share of RSS.
*
* PSS of a process is the count of pages it has in memory, where each
* page is divided by the number of processes sharing it. So if a
* process has 1000 pages all to itself, and 1000 shared with one other
* process, its PSS will be 1500.
*
* To keep (accumulated) division errors low, we adopt a 64bit
* fixed-point pss counter to minimize division errors. So (pss >>
* PSS_SHIFT) would be the real byte count.
*
* A shift of 12 before division means (assuming 4K page size):
* - 1M 3-user-pages add up to 8KB errors;
* - supports mapcount up to 2^24, or 16M;
* - supports PSS up to 2^52 bytes, or 4PB.
*/
#define PSS_SHIFT 12
#ifdef CONFIG_PROC_PAGE_MONITOR
struct mem_size_stats {
struct vm_area_struct *vma;
unsigned long resident;
unsigned long shared_clean;
unsigned long shared_dirty;
unsigned long private_clean;
unsigned long private_dirty;
unsigned long referenced;
unsigned long anonymous;
unsigned long anonymous_thp;
unsigned long swap;
unsigned long nonlinear;
u64 pss;
};
static void smaps_pte_entry(pte_t ptent, unsigned long addr,
unsigned long ptent_size, struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = mss->vma;
pgoff_t pgoff = linear_page_index(vma, addr);
struct page *page = NULL;
int mapcount;
if (pte_present(ptent)) {
page = vm_normal_page(vma, addr, ptent);
} else if (is_swap_pte(ptent)) {
swp_entry_t swpent = pte_to_swp_entry(ptent);
if (!non_swap_entry(swpent))
mss->swap += ptent_size;
else if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
} else if (pte_file(ptent)) {
if (pte_to_pgoff(ptent) != pgoff)
mss->nonlinear += ptent_size;
}
if (!page)
return;
if (PageAnon(page))
mss->anonymous += ptent_size;
if (page->index != pgoff)
mss->nonlinear += ptent_size;
mss->resident += ptent_size;
/* Accumulate the size in pages that have been accessed. */
if (pte_young(ptent) || PageReferenced(page))
mss->referenced += ptent_size;
mapcount = page_mapcount(page);
if (mapcount >= 2) {
if (pte_dirty(ptent) || PageDirty(page))
mss->shared_dirty += ptent_size;
else
mss->shared_clean += ptent_size;
mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
} else {
if (pte_dirty(ptent) || PageDirty(page))
mss->private_dirty += ptent_size;
else
mss->private_clean += ptent_size;
mss->pss += (ptent_size << PSS_SHIFT);
}
}
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = mss->vma;
pte_t *pte;
spinlock_t *ptl;
if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
spin_unlock(ptl);
mss->anonymous_thp += HPAGE_PMD_SIZE;
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
/*
* The mmap_sem held all the way back in m_start() is what
* keeps khugepaged out of here and from collapsing things
* in here.
*/
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
{
/*
* Don't forget to update Documentation/ on changes.
*/
static const char mnemonics[BITS_PER_LONG][2] = {
/*
* In case if we meet a flag we don't know about.
*/
[0 ... (BITS_PER_LONG-1)] = "??",
[ilog2(VM_READ)] = "rd",
[ilog2(VM_WRITE)] = "wr",
[ilog2(VM_EXEC)] = "ex",
[ilog2(VM_SHARED)] = "sh",
[ilog2(VM_MAYREAD)] = "mr",
[ilog2(VM_MAYWRITE)] = "mw",
[ilog2(VM_MAYEXEC)] = "me",
[ilog2(VM_MAYSHARE)] = "ms",
[ilog2(VM_GROWSDOWN)] = "gd",
[ilog2(VM_PFNMAP)] = "pf",
[ilog2(VM_DENYWRITE)] = "dw",
#ifdef CONFIG_X86_INTEL_MPX
[ilog2(VM_MPX)] = "mp",
#endif
[ilog2(VM_LOCKED)] = "lo",
[ilog2(VM_IO)] = "io",
[ilog2(VM_SEQ_READ)] = "sr",
[ilog2(VM_RAND_READ)] = "rr",
[ilog2(VM_DONTCOPY)] = "dc",
[ilog2(VM_DONTEXPAND)] = "de",
[ilog2(VM_ACCOUNT)] = "ac",
[ilog2(VM_NORESERVE)] = "nr",
[ilog2(VM_HUGETLB)] = "ht",
[ilog2(VM_NONLINEAR)] = "nl",
[ilog2(VM_ARCH_1)] = "ar",
[ilog2(VM_DONTDUMP)] = "dd",
#ifdef CONFIG_MEM_SOFT_DIRTY
[ilog2(VM_SOFTDIRTY)] = "sd",
#endif
[ilog2(VM_MIXEDMAP)] = "mm",
[ilog2(VM_HUGEPAGE)] = "hg",
[ilog2(VM_NOHUGEPAGE)] = "nh",
[ilog2(VM_MERGEABLE)] = "mg",
};
size_t i;
seq_puts(m, "VmFlags: ");
for (i = 0; i < BITS_PER_LONG; i++) {
if (vma->vm_flags & (1UL << i)) {
seq_printf(m, "%c%c ",
mnemonics[i][0], mnemonics[i][1]);
}
}
seq_putc(m, '\n');
}
static int show_smap(struct seq_file *m, void *v, int is_pid)
{
struct vm_area_struct *vma = v;
struct mem_size_stats mss;
struct mm_walk smaps_walk = {
.pmd_entry = smaps_pte_range,
.mm = vma->vm_mm,
.private = &mss,
};
memset(&mss, 0, sizeof mss);
mss.vma = vma;
/* mmap_sem is held in m_start */
if (vma->vm_mm && !is_vm_hugetlb_page(vma))
walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
show_map_vma(m, vma, is_pid);
seq_printf(m,
"Size: %8lu kB\n"
"Rss: %8lu kB\n"
"Pss: %8lu kB\n"
"Shared_Clean: %8lu kB\n"
"Shared_Dirty: %8lu kB\n"
"Private_Clean: %8lu kB\n"
"Private_Dirty: %8lu kB\n"
"Referenced: %8lu kB\n"
"Anonymous: %8lu kB\n"
"AnonHugePages: %8lu kB\n"
"Swap: %8lu kB\n"
"KernelPageSize: %8lu kB\n"
"MMUPageSize: %8lu kB\n"
"Locked: %8lu kB\n",
(vma->vm_end - vma->vm_start) >> 10,
mss.resident >> 10,
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
mss.shared_clean >> 10,
mss.shared_dirty >> 10,
mss.private_clean >> 10,
mss.private_dirty >> 10,
mss.referenced >> 10,
mss.anonymous >> 10,
mss.anonymous_thp >> 10,
mss.swap >> 10,
vma_kernel_pagesize(vma) >> 10,
vma_mmu_pagesize(vma) >> 10,
(vma->vm_flags & VM_LOCKED) ?
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
if (vma->vm_flags & VM_NONLINEAR)
seq_printf(m, "Nonlinear: %8lu kB\n",
mss.nonlinear >> 10);
show_smap_vma_flags(m, vma);
m_cache_vma(m, vma);
return 0;
}
static int show_pid_smap(struct seq_file *m, void *v)
{
return show_smap(m, v, 1);
}
static int show_tid_smap(struct seq_file *m, void *v)
{
return show_smap(m, v, 0);
}
static const struct seq_operations proc_pid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_smap
};
static const struct seq_operations proc_tid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_smap
};
static int pid_smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_smaps_op);
}
static int tid_smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_tid_smaps_op);
}
const struct file_operations proc_pid_smaps_operations = {
.open = pid_smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_smaps_operations = {
.open = tid_smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
/*
* We do not want to have constant page-shift bits sitting in
* pagemap entries and are about to reuse them some time soon.
*
* Here's the "migration strategy":
* 1. when the system boots these bits remain what they are,
* but a warning about future change is printed in log;
* 2. once anyone clears soft-dirty bits via clear_refs file,
* these flag is set to denote, that user is aware of the
* new API and those page-shift bits change their meaning.
* The respective warning is printed in dmesg;
* 3. In a couple of releases we will remove all the mentions
* of page-shift in pagemap entries.
*/
static bool soft_dirty_cleared __read_mostly;
enum clear_refs_types {
CLEAR_REFS_ALL = 1,
CLEAR_REFS_ANON,
CLEAR_REFS_MAPPED,
CLEAR_REFS_SOFT_DIRTY,
CLEAR_REFS_LAST,
};
struct clear_refs_private {
struct vm_area_struct *vma;
enum clear_refs_types type;
};
static inline void clear_soft_dirty(struct vm_area_struct *vma,
unsigned long addr, pte_t *pte)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
/*
* The soft-dirty tracker uses #PF-s to catch writes
* to pages, so write-protect the pte as well. See the
* Documentation/vm/soft-dirty.txt for full description
* of how soft-dirty works.
*/
pte_t ptent = *pte;
if (pte_present(ptent)) {
ptent = pte_wrprotect(ptent);
ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
} else if (is_swap_pte(ptent)) {
ptent = pte_swp_clear_soft_dirty(ptent);
} else if (pte_file(ptent)) {
ptent = pte_file_clear_soft_dirty(ptent);
}
set_pte_at(vma->vm_mm, addr, pte, ptent);
#endif
}
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct clear_refs_private *cp = walk->private;
struct vm_area_struct *vma = cp->vma;
pte_t *pte, ptent;
spinlock_t *ptl;
struct page *page;
split_huge_page_pmd(vma, addr, pmd);
if (pmd_trans_unstable(pmd))
return 0;
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE) {
ptent = *pte;
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
clear_soft_dirty(vma, addr, pte);
continue;
}
if (!pte_present(ptent))
continue;
page = vm_normal_page(vma, addr, ptent);
if (!page)
continue;
/* Clear accessed and referenced bits. */
ptep_test_and_clear_young(vma, addr, pte);
ClearPageReferenced(page);
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF];
struct mm_struct *mm;
struct vm_area_struct *vma;
enum clear_refs_types type;
int itype;
int rv;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
rv = kstrtoint(strstrip(buffer), 10, &itype);
if (rv < 0)
return rv;
type = (enum clear_refs_types)itype;
if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
return -EINVAL;
if (type == CLEAR_REFS_SOFT_DIRTY) {
soft_dirty_cleared = true;
pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
" See the linux/Documentation/vm/pagemap.txt for "
"details.\n");
}
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
mm = get_task_mm(task);
if (mm) {
struct clear_refs_private cp = {
.type = type,
};
struct mm_walk clear_refs_walk = {
.pmd_entry = clear_refs_pte_range,
.mm = mm,
.private = &cp,
};
down_read(&mm->mmap_sem);
if (type == CLEAR_REFS_SOFT_DIRTY) {
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (!(vma->vm_flags & VM_SOFTDIRTY))
continue;
up_read(&mm->mmap_sem);
down_write(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
vma->vm_flags &= ~VM_SOFTDIRTY;
vma_set_page_prot(vma);
}
downgrade_write(&mm->mmap_sem);
break;
}
mmu_notifier_invalidate_range_start(mm, 0, -1);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
cp.vma = vma;
if (is_vm_hugetlb_page(vma))
continue;
/*
* Writing 1 to /proc/pid/clear_refs affects all pages.
*
* Writing 2 to /proc/pid/clear_refs only affects
* Anonymous pages.
*
* Writing 3 to /proc/pid/clear_refs only affects file
* mapped pages.
*
* Writing 4 to /proc/pid/clear_refs affects all pages.
*/
if (type == CLEAR_REFS_ANON && vma->vm_file)
continue;
if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
continue;
walk_page_range(vma->vm_start, vma->vm_end,
&clear_refs_walk);
}
if (type == CLEAR_REFS_SOFT_DIRTY)
mmu_notifier_invalidate_range_end(mm, 0, -1);
flush_tlb_mm(mm);
up_read(&mm->mmap_sem);
mmput(mm);
}
put_task_struct(task);
return count;
}
const struct file_operations proc_clear_refs_operations = {
.write = clear_refs_write,
.llseek = noop_llseek,
};
typedef struct {
u64 pme;
} pagemap_entry_t;
struct pagemapread {
int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
pagemap_entry_t *buffer;
bool v2;
};
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
#define PAGEMAP_WALK_MASK (PMD_MASK)
#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
#define PM_STATUS_BITS 3
#define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
#define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
#define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
#define PM_PSHIFT_BITS 6
#define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
#define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
#define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
#define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
#define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
/* in "new" pagemap pshift bits are occupied with more status bits */
#define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
#define __PM_SOFT_DIRTY (1LL)
#define PM_PRESENT PM_STATUS(4LL)
#define PM_SWAP PM_STATUS(2LL)
#define PM_FILE PM_STATUS(1LL)
#define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
#define PM_END_OF_BUFFER 1
static inline pagemap_entry_t make_pme(u64 val)
{
return (pagemap_entry_t) { .pme = val };
}
static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
struct pagemapread *pm)
{
pm->buffer[pm->pos++] = *pme;
if (pm->pos >= pm->len)
return PM_END_OF_BUFFER;
return 0;
}
static int pagemap_pte_hole(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
unsigned long addr = start;
int err = 0;
while (addr < end) {
struct vm_area_struct *vma = find_vma(walk->mm, addr);
pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
/* End of address space hole, which we mark as non-present. */
unsigned long hole_end;
if (vma)
hole_end = min(end, vma->vm_start);
else
hole_end = end;
for (; addr < hole_end; addr += PAGE_SIZE) {
err = add_to_pagemap(addr, &pme, pm);
if (err)
goto out;
}
if (!vma)
break;
/* Addresses in the VMA. */
if (vma->vm_flags & VM_SOFTDIRTY)
pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
err = add_to_pagemap(addr, &pme, pm);
if (err)
goto out;
}
}
out:
return err;
}
static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
struct vm_area_struct *vma, unsigned long addr, pte_t pte)
{
u64 frame, flags;
struct page *page = NULL;
int flags2 = 0;
if (pte_present(pte)) {
frame = pte_pfn(pte);
flags = PM_PRESENT;
page = vm_normal_page(vma, addr, pte);
if (pte_soft_dirty(pte))
flags2 |= __PM_SOFT_DIRTY;
} else if (is_swap_pte(pte)) {
swp_entry_t entry;
if (pte_swp_soft_dirty(pte))
flags2 |= __PM_SOFT_DIRTY;
entry = pte_to_swp_entry(pte);
frame = swp_type(entry) |
(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
flags = PM_SWAP;
if (is_migration_entry(entry))
page = migration_entry_to_page(entry);
} else {
if (vma->vm_flags & VM_SOFTDIRTY)
flags2 |= __PM_SOFT_DIRTY;
*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
return;
}
if (page && !PageAnon(page))
flags |= PM_FILE;
if ((vma->vm_flags & VM_SOFTDIRTY))
flags2 |= __PM_SOFT_DIRTY;
*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
pmd_t pmd, int offset, int pmd_flags2)
{
/*
* Currently pmd for thp is always present because thp can not be
* swapped-out, migrated, or HWPOISONed (split in such cases instead.)
* This if-check is just to prepare for future implementation.
*/
if (pmd_present(pmd))
*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
else
*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
}
#else
static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
pmd_t pmd, int offset, int pmd_flags2)
{
}
#endif
static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma;
struct pagemapread *pm = walk->private;
spinlock_t *ptl;
pte_t *pte;
int err = 0;
/* find the first VMA at or above 'addr' */
vma = find_vma(walk->mm, addr);
if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
int pmd_flags2;
if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
pmd_flags2 = __PM_SOFT_DIRTY;
else
pmd_flags2 = 0;
for (; addr != end; addr += PAGE_SIZE) {
unsigned long offset;
pagemap_entry_t pme;
offset = (addr & ~PAGEMAP_WALK_MASK) >>
PAGE_SHIFT;
thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
err = add_to_pagemap(addr, &pme, pm);
if (err)
break;
}
spin_unlock(ptl);
return err;
}
if (pmd_trans_unstable(pmd))
return 0;
while (1) {
/* End of address space hole, which we mark as non-present. */
unsigned long hole_end;
if (vma)
hole_end = min(end, vma->vm_start);
else
hole_end = end;
for (; addr < hole_end; addr += PAGE_SIZE) {
pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
err = add_to_pagemap(addr, &pme, pm);
if (err)
return err;
}
if (!vma || vma->vm_start >= end)
break;
/*
* We can't possibly be in a hugetlb VMA. In general,
* for a mm_walk with a pmd_entry and a hugetlb_entry,
* the pmd_entry can only be called on addresses in a
* hugetlb if the walk starts in a non-hugetlb VMA and
* spans a hugepage VMA. Since pagemap_read walks are
* PMD-sized and PMD-aligned, this will never be true.
*/
BUG_ON(is_vm_hugetlb_page(vma));
/* Addresses in the VMA. */
for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
pagemap_entry_t pme;
pte = pte_offset_map(pmd, addr);
pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
pte_unmap(pte);
err = add_to_pagemap(addr, &pme, pm);
if (err)
return err;
}
if (addr == end)
break;
vma = find_vma(walk->mm, addr);
}
cond_resched();
return err;
}
#ifdef CONFIG_HUGETLB_PAGE
static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
pte_t pte, int offset, int flags2)
{
if (pte_present(pte))
*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
PM_STATUS2(pm->v2, flags2) |
PM_PRESENT);
else
*pme = make_pme(PM_NOT_PRESENT(pm->v2) |
PM_STATUS2(pm->v2, flags2));
}
/* This function walks within one hugetlb entry in the single call */
static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
struct vm_area_struct *vma;
int err = 0;
int flags2;
pagemap_entry_t pme;
vma = find_vma(walk->mm, addr);
WARN_ON_ONCE(!vma);
if (vma && (vma->vm_flags & VM_SOFTDIRTY))
flags2 = __PM_SOFT_DIRTY;
else
flags2 = 0;
for (; addr != end; addr += PAGE_SIZE) {
int offset = (addr & ~hmask) >> PAGE_SHIFT;
huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
err = add_to_pagemap(addr, &pme, pm);
if (err)
return err;
}
cond_resched();
return err;
}
#endif /* HUGETLB_PAGE */
/*
* /proc/pid/pagemap - an array mapping virtual pages to pfns
*
* For each page in the address space, this file contains one 64-bit entry
* consisting of the following:
*
* Bits 0-54 page frame number (PFN) if present
* Bits 0-4 swap type if swapped
* Bits 5-54 swap offset if swapped
* Bits 55-60 page shift (page size = 1<<page shift)
* Bit 61 page is file-page or shared-anon
* Bit 62 page swapped
* Bit 63 page present
*
* If the page is not present but in swap, then the PFN contains an
* encoding of the swap file number and the page's offset into the
* swap. Unmapped pages return a null PFN. This allows determining
* precisely which pages are mapped (or in swap) and comparing mapped
* pages between processes.
*
* Efficient users of this interface will use /proc/pid/maps to
* determine which areas of memory are actually mapped and llseek to
* skip over unmapped regions.
*/
static ssize_t pagemap_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file_inode(file));
struct mm_struct *mm;
struct pagemapread pm;
int ret = -ESRCH;
struct mm_walk pagemap_walk = {};
unsigned long src;
unsigned long svpfn;
unsigned long start_vaddr;
unsigned long end_vaddr;
int copied = 0;
if (!task)
goto out;
ret = -EINVAL;
/* file position must be aligned */
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
goto out_task;
ret = 0;
if (!count)
goto out_task;
pm.v2 = soft_dirty_cleared;
pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
ret = -ENOMEM;
if (!pm.buffer)
goto out_task;
mm = mm_access(task, PTRACE_MODE_READ);
ret = PTR_ERR(mm);
if (!mm || IS_ERR(mm))
goto out_free;
pagemap_walk.pmd_entry = pagemap_pte_range;
pagemap_walk.pte_hole = pagemap_pte_hole;
#ifdef CONFIG_HUGETLB_PAGE
pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
#endif
pagemap_walk.mm = mm;
pagemap_walk.private = &pm;
src = *ppos;
svpfn = src / PM_ENTRY_BYTES;
start_vaddr = svpfn << PAGE_SHIFT;
end_vaddr = TASK_SIZE_OF(task);
/* watch out for wraparound */
if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
start_vaddr = end_vaddr;
/*
* The odds are that this will stop walking way
* before end_vaddr, because the length of the
* user buffer is tracked in "pm", and the walk
* will stop when we hit the end of the buffer.
*/
ret = 0;
while (count && (start_vaddr < end_vaddr)) {
int len;
unsigned long end;
pm.pos = 0;
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
/* overflow ? */
if (end < start_vaddr || end > end_vaddr)
end = end_vaddr;
down_read(&mm->mmap_sem);
ret = walk_page_range(start_vaddr, end, &pagemap_walk);
up_read(&mm->mmap_sem);
start_vaddr = end;
len = min(count, PM_ENTRY_BYTES * pm.pos);
if (copy_to_user(buf, pm.buffer, len)) {
ret = -EFAULT;
goto out_mm;
}
copied += len;
buf += len;
count -= len;
}
*ppos += copied;
if (!ret || ret == PM_END_OF_BUFFER)
ret = copied;
out_mm:
mmput(mm);
out_free:
kfree(pm.buffer);
out_task:
put_task_struct(task);
out:
return ret;
}
static int pagemap_open(struct inode *inode, struct file *file)
{
pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
"to stop being page-shift some time soon. See the "
"linux/Documentation/vm/pagemap.txt for details.\n");
return 0;
}
const struct file_operations proc_pagemap_operations = {
.llseek = mem_lseek, /* borrow this */
.read = pagemap_read,
.open = pagemap_open,
};
#endif /* CONFIG_PROC_PAGE_MONITOR */
#ifdef CONFIG_NUMA
struct numa_maps {
struct vm_area_struct *vma;
unsigned long pages;
unsigned long anon;
unsigned long active;
unsigned long writeback;
unsigned long mapcount_max;
unsigned long dirty;
unsigned long swapcache;
unsigned long node[MAX_NUMNODES];
};
struct numa_maps_private {
struct proc_maps_private proc_maps;
struct numa_maps md;
};
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
unsigned long nr_pages)
{
int count = page_mapcount(page);
md->pages += nr_pages;
if (pte_dirty || PageDirty(page))
md->dirty += nr_pages;
if (PageSwapCache(page))
md->swapcache += nr_pages;
if (PageActive(page) || PageUnevictable(page))
md->active += nr_pages;
if (PageWriteback(page))
md->writeback += nr_pages;
if (PageAnon(page))
md->anon += nr_pages;
if (count > md->mapcount_max)
md->mapcount_max = count;
md->node[page_to_nid(page)] += nr_pages;
}
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
int nid;
if (!pte_present(pte))
return NULL;
page = vm_normal_page(vma, addr, pte);
if (!page)
return NULL;
if (PageReserved(page))
return NULL;
nid = page_to_nid(page);
if (!node_isset(nid, node_states[N_MEMORY]))
return NULL;
return page;
}
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct numa_maps *md;
spinlock_t *ptl;
pte_t *orig_pte;
pte_t *pte;
md = walk->private;
if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
pte_t huge_pte = *(pte_t *)pmd;
struct page *page;
page = can_gather_numa_stats(huge_pte, md->vma, addr);
if (page)
gather_stats(page, md, pte_dirty(huge_pte),
HPAGE_PMD_SIZE/PAGE_SIZE);
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
do {
struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
if (!page)
continue;
gather_stats(page, md, pte_dirty(*pte), 1);
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(orig_pte, ptl);
return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
struct numa_maps *md;
struct page *page;
if (!pte_present(*pte))
return 0;
page = pte_page(*pte);
if (!page)
return 0;
md = walk->private;
gather_stats(page, md, pte_dirty(*pte), 1);
return 0;
}
#else
static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
return 0;
}
#endif
/*
* Display pages allocated per node and memory policy via /proc.
*/
static int show_numa_map(struct seq_file *m, void *v, int is_pid)
{
struct numa_maps_private *numa_priv = m->private;
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
struct vm_area_struct *vma = v;
struct numa_maps *md = &numa_priv->md;
struct file *file = vma->vm_file;
struct mm_struct *mm = vma->vm_mm;
struct mm_walk walk = {};
struct mempolicy *pol;
char buffer[64];
int nid;
if (!mm)
return 0;
/* Ensure we start with an empty set of numa_maps statistics. */
memset(md, 0, sizeof(*md));
md->vma = vma;
walk.hugetlb_entry = gather_hugetbl_stats;
walk.pmd_entry = gather_pte_stats;
walk.private = md;
walk.mm = mm;
pol = __get_vma_policy(vma, vma->vm_start);
if (pol) {
mpol_to_str(buffer, sizeof(buffer), pol);
mpol_cond_put(pol);
} else {
mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
}
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
if (file) {
seq_puts(m, " file=");
seq_path(m, &file->f_path, "\n\t= ");
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
seq_puts(m, " heap");
} else {
pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
if (tid != 0) {
/*
* Thread stack in /proc/PID/task/TID/maps or
* the main process stack.
*/
if (!is_pid || (vma->vm_start <= mm->start_stack &&
vma->vm_end >= mm->start_stack))
seq_puts(m, " stack");
else
seq_printf(m, " stack:%d", tid);
}
}
if (is_vm_hugetlb_page(vma))
seq_puts(m, " huge");
walk_page_range(vma->vm_start, vma->vm_end, &walk);
if (!md->pages)
goto out;
if (md->anon)
seq_printf(m, " anon=%lu", md->anon);
if (md->dirty)
seq_printf(m, " dirty=%lu", md->dirty);
if (md->pages != md->anon && md->pages != md->dirty)
seq_printf(m, " mapped=%lu", md->pages);
if (md->mapcount_max > 1)
seq_printf(m, " mapmax=%lu", md->mapcount_max);
if (md->swapcache)
seq_printf(m, " swapcache=%lu", md->swapcache);
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
seq_printf(m, " active=%lu", md->active);
if (md->writeback)
seq_printf(m, " writeback=%lu", md->writeback);
for_each_node_state(nid, N_MEMORY)
if (md->node[nid])
seq_printf(m, " N%d=%lu", nid, md->node[nid]);
out:
seq_putc(m, '\n');
m_cache_vma(m, vma);
return 0;
}
static int show_pid_numa_map(struct seq_file *m, void *v)
{
return show_numa_map(m, v, 1);
}
static int show_tid_numa_map(struct seq_file *m, void *v)
{
return show_numa_map(m, v, 0);
}
static const struct seq_operations proc_pid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_numa_map,
};
static const struct seq_operations proc_tid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_numa_map,
};
static int numa_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
return proc_maps_open(inode, file, ops,
sizeof(struct numa_maps_private));
}
static int pid_numa_maps_open(struct inode *inode, struct file *file)
{
return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
}
static int tid_numa_maps_open(struct inode *inode, struct file *file)
{
return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
}
const struct file_operations proc_pid_numa_maps_operations = {
.open = pid_numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_numa_maps_operations = {
.open = tid_numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
#endif /* CONFIG_NUMA */