kernel-fxtec-pro1x/arch/powerpc/mm/stab.c
Benjamin Herrenschmidt 3c726f8dee [PATCH] ppc64: support 64k pages
Adds a new CONFIG_PPC_64K_PAGES which, when enabled, changes the kernel
base page size to 64K.  The resulting kernel still boots on any
hardware.  On current machines with 4K pages support only, the kernel
will maintain 16 "subpages" for each 64K page transparently.

Note that while real 64K capable HW has been tested, the current patch
will not enable it yet as such hardware is not released yet, and I'm
still verifying with the firmware architects the proper to get the
information from the newer hypervisors.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-06 16:56:47 -08:00

279 lines
7.2 KiB
C

/*
* PowerPC64 Segment Translation Support.
*
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
* Copyright (c) 2001 Dave Engebretsen
*
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/paca.h>
#include <asm/cputable.h>
#include <asm/lmb.h>
#include <asm/abs_addr.h>
struct stab_entry {
unsigned long esid_data;
unsigned long vsid_data;
};
#define NR_STAB_CACHE_ENTRIES 8
DEFINE_PER_CPU(long, stab_cache_ptr);
DEFINE_PER_CPU(long, stab_cache[NR_STAB_CACHE_ENTRIES]);
/*
* Create a segment table entry for the given esid/vsid pair.
*/
static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
{
unsigned long esid_data, vsid_data;
unsigned long entry, group, old_esid, castout_entry, i;
unsigned int global_entry;
struct stab_entry *ste, *castout_ste;
unsigned long kernel_segment = (esid << SID_SHIFT) >= KERNELBASE;
vsid_data = vsid << STE_VSID_SHIFT;
esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V;
if (! kernel_segment)
esid_data |= STE_ESID_KS;
/* Search the primary group first. */
global_entry = (esid & 0x1f) << 3;
ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
/* Find an empty entry, if one exists. */
for (group = 0; group < 2; group++) {
for (entry = 0; entry < 8; entry++, ste++) {
if (!(ste->esid_data & STE_ESID_V)) {
ste->vsid_data = vsid_data;
asm volatile("eieio":::"memory");
ste->esid_data = esid_data;
return (global_entry | entry);
}
}
/* Now search the secondary group. */
global_entry = ((~esid) & 0x1f) << 3;
ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
}
/*
* Could not find empty entry, pick one with a round robin selection.
* Search all entries in the two groups.
*/
castout_entry = get_paca()->stab_rr;
for (i = 0; i < 16; i++) {
if (castout_entry < 8) {
global_entry = (esid & 0x1f) << 3;
ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
castout_ste = ste + castout_entry;
} else {
global_entry = ((~esid) & 0x1f) << 3;
ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
castout_ste = ste + (castout_entry - 8);
}
/* Dont cast out the first kernel segment */
if ((castout_ste->esid_data & ESID_MASK) != KERNELBASE)
break;
castout_entry = (castout_entry + 1) & 0xf;
}
get_paca()->stab_rr = (castout_entry + 1) & 0xf;
/* Modify the old entry to the new value. */
/* Force previous translations to complete. DRENG */
asm volatile("isync" : : : "memory");
old_esid = castout_ste->esid_data >> SID_SHIFT;
castout_ste->esid_data = 0; /* Invalidate old entry */
asm volatile("sync" : : : "memory"); /* Order update */
castout_ste->vsid_data = vsid_data;
asm volatile("eieio" : : : "memory"); /* Order update */
castout_ste->esid_data = esid_data;
asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT));
/* Ensure completion of slbie */
asm volatile("sync" : : : "memory");
return (global_entry | (castout_entry & 0x7));
}
/*
* Allocate a segment table entry for the given ea and mm
*/
static int __ste_allocate(unsigned long ea, struct mm_struct *mm)
{
unsigned long vsid;
unsigned char stab_entry;
unsigned long offset;
/* Kernel or user address? */
if (ea >= KERNELBASE) {
vsid = get_kernel_vsid(ea);
} else {
if ((ea >= TASK_SIZE_USER64) || (! mm))
return 1;
vsid = get_vsid(mm->context.id, ea);
}
stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid);
if (ea < KERNELBASE) {
offset = __get_cpu_var(stab_cache_ptr);
if (offset < NR_STAB_CACHE_ENTRIES)
__get_cpu_var(stab_cache[offset++]) = stab_entry;
else
offset = NR_STAB_CACHE_ENTRIES+1;
__get_cpu_var(stab_cache_ptr) = offset;
/* Order update */
asm volatile("sync":::"memory");
}
return 0;
}
int ste_allocate(unsigned long ea)
{
return __ste_allocate(ea, current->mm);
}
/*
* Do the segment table work for a context switch: flush all user
* entries from the table, then preload some probably useful entries
* for the new task
*/
void switch_stab(struct task_struct *tsk, struct mm_struct *mm)
{
struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr;
struct stab_entry *ste;
unsigned long offset = __get_cpu_var(stab_cache_ptr);
unsigned long pc = KSTK_EIP(tsk);
unsigned long stack = KSTK_ESP(tsk);
unsigned long unmapped_base;
/* Force previous translations to complete. DRENG */
asm volatile("isync" : : : "memory");
if (offset <= NR_STAB_CACHE_ENTRIES) {
int i;
for (i = 0; i < offset; i++) {
ste = stab + __get_cpu_var(stab_cache[i]);
ste->esid_data = 0; /* invalidate entry */
}
} else {
unsigned long entry;
/* Invalidate all entries. */
ste = stab;
/* Never flush the first entry. */
ste += 1;
for (entry = 1;
entry < (HW_PAGE_SIZE / sizeof(struct stab_entry));
entry++, ste++) {
unsigned long ea;
ea = ste->esid_data & ESID_MASK;
if (ea < KERNELBASE) {
ste->esid_data = 0;
}
}
}
asm volatile("sync; slbia; sync":::"memory");
__get_cpu_var(stab_cache_ptr) = 0;
#ifdef CONFIG_PPC_64K_PAGES
get_paca()->pgdir = mm->pgd;
#endif /* CONFIG_PPC_64K_PAGES */
/* Now preload some entries for the new task */
if (test_tsk_thread_flag(tsk, TIF_32BIT))
unmapped_base = TASK_UNMAPPED_BASE_USER32;
else
unmapped_base = TASK_UNMAPPED_BASE_USER64;
__ste_allocate(pc, mm);
if (GET_ESID(pc) == GET_ESID(stack))
return;
__ste_allocate(stack, mm);
if ((GET_ESID(pc) == GET_ESID(unmapped_base))
|| (GET_ESID(stack) == GET_ESID(unmapped_base)))
return;
__ste_allocate(unmapped_base, mm);
/* Order update */
asm volatile("sync" : : : "memory");
}
/*
* Allocate segment tables for secondary CPUs. These must all go in
* the first (bolted) segment, so that do_stab_bolted won't get a
* recursive segment miss on the segment table itself.
*/
void stabs_alloc(void)
{
int cpu;
if (cpu_has_feature(CPU_FTR_SLB))
return;
for_each_cpu(cpu) {
unsigned long newstab;
if (cpu == 0)
continue; /* stab for CPU 0 is statically allocated */
newstab = lmb_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE,
1<<SID_SHIFT);
if (! newstab)
panic("Unable to allocate segment table for CPU %d.\n",
cpu);
newstab += KERNELBASE;
memset((void *)newstab, 0, HW_PAGE_SIZE);
paca[cpu].stab_addr = newstab;
paca[cpu].stab_real = virt_to_abs(newstab);
printk(KERN_DEBUG "Segment table for CPU %d at 0x%lx "
"virtual, 0x%lx absolute\n",
cpu, paca[cpu].stab_addr, paca[cpu].stab_real);
}
}
/*
* Build an entry for the base kernel segment and put it into
* the segment table or SLB. All other segment table or SLB
* entries are faulted in.
*/
void stab_initialize(unsigned long stab)
{
unsigned long vsid = get_kernel_vsid(KERNELBASE);
asm volatile("isync; slbia; isync":::"memory");
make_ste(stab, GET_ESID(KERNELBASE), vsid);
/* Order update */
asm volatile("sync":::"memory");
}