kernel-fxtec-pro1x/drivers/i2c/busses/i2c-au1550.c
Jean Delvare 8f9082c5ce i2c: Constify i2c_algorithm declarations, part 2
i2c: Constify i2c_algorithm declarations, part 2

Make struct i2c_algorithm declarations const in all i2c bus drivers
where it is possible.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-09-26 15:38:52 -07:00

437 lines
9.3 KiB
C

/*
* i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
* Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
*
* 2.6 port by Matt Porter <mporter@kernel.crashing.org>
*
* The documentation describes this as an SMBus controller, but it doesn't
* understand any of the SMBus protocol in hardware. It's really an I2C
* controller that could emulate most of the SMBus in software.
*
* This is just a skeleton adapter to use with the Au1550 PSC
* algorithm. It was developed for the Pb1550, but will work with
* any Au1550 board that has a similar PSC configuration.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <asm/mach-au1x00/au1xxx.h>
#include <asm/mach-au1x00/au1xxx_psc.h>
#include "i2c-au1550.h"
static int
wait_xfer_done(struct i2c_au1550_data *adap)
{
u32 stat;
int i;
volatile psc_smb_t *sp;
sp = (volatile psc_smb_t *)(adap->psc_base);
/* Wait for Tx FIFO Underflow.
*/
for (i = 0; i < adap->xfer_timeout; i++) {
stat = sp->psc_smbevnt;
au_sync();
if ((stat & PSC_SMBEVNT_TU) != 0) {
/* Clear it. */
sp->psc_smbevnt = PSC_SMBEVNT_TU;
au_sync();
return 0;
}
udelay(1);
}
return -ETIMEDOUT;
}
static int
wait_ack(struct i2c_au1550_data *adap)
{
u32 stat;
volatile psc_smb_t *sp;
if (wait_xfer_done(adap))
return -ETIMEDOUT;
sp = (volatile psc_smb_t *)(adap->psc_base);
stat = sp->psc_smbevnt;
au_sync();
if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0)
return -ETIMEDOUT;
return 0;
}
static int
wait_master_done(struct i2c_au1550_data *adap)
{
u32 stat;
int i;
volatile psc_smb_t *sp;
sp = (volatile psc_smb_t *)(adap->psc_base);
/* Wait for Master Done.
*/
for (i = 0; i < adap->xfer_timeout; i++) {
stat = sp->psc_smbevnt;
au_sync();
if ((stat & PSC_SMBEVNT_MD) != 0)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int
do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd)
{
volatile psc_smb_t *sp;
u32 stat;
sp = (volatile psc_smb_t *)(adap->psc_base);
/* Reset the FIFOs, clear events.
*/
stat = sp->psc_smbstat;
sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR;
au_sync();
if (!(stat & PSC_SMBSTAT_TE) || !(stat & PSC_SMBSTAT_RE)) {
sp->psc_smbpcr = PSC_SMBPCR_DC;
au_sync();
do {
stat = sp->psc_smbpcr;
au_sync();
} while ((stat & PSC_SMBPCR_DC) != 0);
udelay(50);
}
/* Write out the i2c chip address and specify operation
*/
addr <<= 1;
if (rd)
addr |= 1;
/* Put byte into fifo, start up master.
*/
sp->psc_smbtxrx = addr;
au_sync();
sp->psc_smbpcr = PSC_SMBPCR_MS;
au_sync();
if (wait_ack(adap))
return -EIO;
return 0;
}
static u32
wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data)
{
int j;
u32 data, stat;
volatile psc_smb_t *sp;
if (wait_xfer_done(adap))
return -EIO;
sp = (volatile psc_smb_t *)(adap->psc_base);
j = adap->xfer_timeout * 100;
do {
j--;
if (j <= 0)
return -EIO;
stat = sp->psc_smbstat;
au_sync();
if ((stat & PSC_SMBSTAT_RE) == 0)
j = 0;
else
udelay(1);
} while (j > 0);
data = sp->psc_smbtxrx;
au_sync();
*ret_data = data;
return 0;
}
static int
i2c_read(struct i2c_au1550_data *adap, unsigned char *buf,
unsigned int len)
{
int i;
u32 data;
volatile psc_smb_t *sp;
if (len == 0)
return 0;
/* A read is performed by stuffing the transmit fifo with
* zero bytes for timing, waiting for bytes to appear in the
* receive fifo, then reading the bytes.
*/
sp = (volatile psc_smb_t *)(adap->psc_base);
i = 0;
while (i < (len-1)) {
sp->psc_smbtxrx = 0;
au_sync();
if (wait_for_rx_byte(adap, &data))
return -EIO;
buf[i] = data;
i++;
}
/* The last byte has to indicate transfer done.
*/
sp->psc_smbtxrx = PSC_SMBTXRX_STP;
au_sync();
if (wait_master_done(adap))
return -EIO;
data = sp->psc_smbtxrx;
au_sync();
buf[i] = data;
return 0;
}
static int
i2c_write(struct i2c_au1550_data *adap, unsigned char *buf,
unsigned int len)
{
int i;
u32 data;
volatile psc_smb_t *sp;
if (len == 0)
return 0;
sp = (volatile psc_smb_t *)(adap->psc_base);
i = 0;
while (i < (len-1)) {
data = buf[i];
sp->psc_smbtxrx = data;
au_sync();
if (wait_ack(adap))
return -EIO;
i++;
}
/* The last byte has to indicate transfer done.
*/
data = buf[i];
data |= PSC_SMBTXRX_STP;
sp->psc_smbtxrx = data;
au_sync();
if (wait_master_done(adap))
return -EIO;
return 0;
}
static int
au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
{
struct i2c_au1550_data *adap = i2c_adap->algo_data;
struct i2c_msg *p;
int i, err = 0;
for (i = 0; !err && i < num; i++) {
p = &msgs[i];
err = do_address(adap, p->addr, p->flags & I2C_M_RD);
if (err || !p->len)
continue;
if (p->flags & I2C_M_RD)
err = i2c_read(adap, p->buf, p->len);
else
err = i2c_write(adap, p->buf, p->len);
}
/* Return the number of messages processed, or the error code.
*/
if (err == 0)
err = num;
return err;
}
static u32
au1550_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm au1550_algo = {
.master_xfer = au1550_xfer,
.functionality = au1550_func,
};
/*
* registering functions to load algorithms at runtime
* Prior to calling us, the 50MHz clock frequency and routing
* must have been set up for the PSC indicated by the adapter.
*/
int
i2c_au1550_add_bus(struct i2c_adapter *i2c_adap)
{
struct i2c_au1550_data *adap = i2c_adap->algo_data;
volatile psc_smb_t *sp;
u32 stat;
i2c_adap->algo = &au1550_algo;
/* Now, set up the PSC for SMBus PIO mode.
*/
sp = (volatile psc_smb_t *)(adap->psc_base);
sp->psc_ctrl = PSC_CTRL_DISABLE;
au_sync();
sp->psc_sel = PSC_SEL_PS_SMBUSMODE;
sp->psc_smbcfg = 0;
au_sync();
sp->psc_ctrl = PSC_CTRL_ENABLE;
au_sync();
do {
stat = sp->psc_smbstat;
au_sync();
} while ((stat & PSC_SMBSTAT_SR) == 0);
sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 |
PSC_SMBCFG_DD_DISABLE);
/* Divide by 8 to get a 6.25 MHz clock. The later protocol
* timings are based on this clock.
*/
sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8);
sp->psc_smbmsk = PSC_SMBMSK_ALLMASK;
au_sync();
/* Set the protocol timer values. See Table 71 in the
* Au1550 Data Book for standard timing values.
*/
sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
PSC_SMBTMR_SET_CH(15);
au_sync();
sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE;
do {
stat = sp->psc_smbstat;
au_sync();
} while ((stat & PSC_SMBSTAT_DR) == 0);
return i2c_add_adapter(i2c_adap);
}
int
i2c_au1550_del_bus(struct i2c_adapter *adap)
{
return i2c_del_adapter(adap);
}
static int
pb1550_reg(struct i2c_client *client)
{
return 0;
}
static int
pb1550_unreg(struct i2c_client *client)
{
return 0;
}
static struct i2c_au1550_data pb1550_i2c_info = {
SMBUS_PSC_BASE, 200, 200
};
static struct i2c_adapter pb1550_board_adapter = {
name: "pb1550 adapter",
id: I2C_HW_AU1550_PSC,
algo: NULL,
algo_data: &pb1550_i2c_info,
client_register: pb1550_reg,
client_unregister: pb1550_unreg,
};
/* BIG hack to support the control interface on the Wolfson WM8731
* audio codec on the Pb1550 board. We get an address and two data
* bytes to write, create an i2c message, and send it across the
* i2c transfer function. We do this here because we have access to
* the i2c adapter structure.
*/
static struct i2c_msg wm_i2c_msg; /* We don't want this stuff on the stack */
static u8 i2cbuf[2];
int
pb1550_wm_codec_write(u8 addr, u8 reg, u8 val)
{
wm_i2c_msg.addr = addr;
wm_i2c_msg.flags = 0;
wm_i2c_msg.buf = i2cbuf;
wm_i2c_msg.len = 2;
i2cbuf[0] = reg;
i2cbuf[1] = val;
return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1);
}
static int __init
i2c_au1550_init(void)
{
printk(KERN_INFO "Au1550 I2C: ");
/* This is where we would set up a 50MHz clock source
* and routing. On the Pb1550, the SMBus is PSC2, which
* uses a shared clock with USB. This has been already
* configured by Yamon as a 48MHz clock, close enough
* for our work.
*/
if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) {
printk("failed to initialize.\n");
return -ENODEV;
}
printk("initialized.\n");
return 0;
}
static void __exit
i2c_au1550_exit(void)
{
i2c_au1550_del_bus(&pb1550_board_adapter);
}
MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
MODULE_LICENSE("GPL");
module_init (i2c_au1550_init);
module_exit (i2c_au1550_exit);