kernel-fxtec-pro1x/drivers/hwmon/w83l786ng.c
Jean Delvare dcd8f39230 hwmon: Add missing inclusions of <linux/jiffies.h>
Many hwmon drivers use jiffies but omit the inclusion of the header
file. Fix that, and also fix one driver which was including the header
file but didn't need it.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Luca Tettamanti <kronos.it@gmail.com>
Cc: Marc Hulsman <m.hulsman@tudelft.nl>
Cc: Rudolf Marek <r.marek@assembler.cz>
2012-10-10 15:25:56 +02:00

813 lines
22 KiB
C

/*
* w83l786ng.c - Linux kernel driver for hardware monitoring
* Copyright (c) 2007 Kevin Lo <kevlo@kevlo.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation - version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA.
*/
/*
* Supports following chips:
*
* Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
* w83l786ng 3 2 2 2 0x7b 0x5ca3 yes no
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2e, 0x2f, I2C_CLIENT_END };
/* Insmod parameters */
static bool reset;
module_param(reset, bool, 0);
MODULE_PARM_DESC(reset, "Set to 1 to reset chip, not recommended");
#define W83L786NG_REG_IN_MIN(nr) (0x2C + (nr) * 2)
#define W83L786NG_REG_IN_MAX(nr) (0x2B + (nr) * 2)
#define W83L786NG_REG_IN(nr) ((nr) + 0x20)
#define W83L786NG_REG_FAN(nr) ((nr) + 0x28)
#define W83L786NG_REG_FAN_MIN(nr) ((nr) + 0x3B)
#define W83L786NG_REG_CONFIG 0x40
#define W83L786NG_REG_ALARM1 0x41
#define W83L786NG_REG_ALARM2 0x42
#define W83L786NG_REG_GPIO_EN 0x47
#define W83L786NG_REG_MAN_ID2 0x4C
#define W83L786NG_REG_MAN_ID1 0x4D
#define W83L786NG_REG_CHIP_ID 0x4E
#define W83L786NG_REG_DIODE 0x53
#define W83L786NG_REG_FAN_DIV 0x54
#define W83L786NG_REG_FAN_CFG 0x80
#define W83L786NG_REG_TOLERANCE 0x8D
static const u8 W83L786NG_REG_TEMP[2][3] = {
{ 0x25, /* TEMP 0 in DataSheet */
0x35, /* TEMP 0 Over in DataSheet */
0x36 }, /* TEMP 0 Hyst in DataSheet */
{ 0x26, /* TEMP 1 in DataSheet */
0x37, /* TEMP 1 Over in DataSheet */
0x38 } /* TEMP 1 Hyst in DataSheet */
};
static const u8 W83L786NG_PWM_MODE_SHIFT[] = {6, 7};
static const u8 W83L786NG_PWM_ENABLE_SHIFT[] = {2, 4};
/* FAN Duty Cycle, be used to control */
static const u8 W83L786NG_REG_PWM[] = {0x81, 0x87};
static inline u8
FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 255;
rpm = SENSORS_LIMIT(rpm, 1, 1000000);
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
((val) == 255 ? 0 : \
1350000 / ((val) * (div))))
/* for temp */
#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val) < 0 ? \
(val) + 0x100 * 1000 \
: (val)) / 1000, 0, 0xff))
#define TEMP_FROM_REG(val) (((val) & 0x80 ? \
(val) - 0x100 : (val)) * 1000)
/*
* The analog voltage inputs have 8mV LSB. Since the sysfs output is
* in mV as would be measured on the chip input pin, need to just
* multiply/divide by 8 to translate from/to register values.
*/
#define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 4) / 8), 0, 255))
#define IN_FROM_REG(val) ((val) * 8)
#define DIV_FROM_REG(val) (1 << (val))
static inline u8
DIV_TO_REG(long val)
{
int i;
val = SENSORS_LIMIT(val, 1, 128) >> 1;
for (i = 0; i < 7; i++) {
if (val == 0)
break;
val >>= 1;
}
return (u8)i;
}
struct w83l786ng_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
unsigned long last_nonvolatile; /* In jiffies, last time we update the
* nonvolatile registers */
u8 in[3];
u8 in_max[3];
u8 in_min[3];
u8 fan[2];
u8 fan_div[2];
u8 fan_min[2];
u8 temp_type[2];
u8 temp[2][3];
u8 pwm[2];
u8 pwm_mode[2]; /* 0->DC variable voltage
* 1->PWM variable duty cycle */
u8 pwm_enable[2]; /* 1->manual
* 2->thermal cruise (also called SmartFan I) */
u8 tolerance[2];
};
static int w83l786ng_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int w83l786ng_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int w83l786ng_remove(struct i2c_client *client);
static void w83l786ng_init_client(struct i2c_client *client);
static struct w83l786ng_data *w83l786ng_update_device(struct device *dev);
static const struct i2c_device_id w83l786ng_id[] = {
{ "w83l786ng", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, w83l786ng_id);
static struct i2c_driver w83l786ng_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "w83l786ng",
},
.probe = w83l786ng_probe,
.remove = w83l786ng_remove,
.id_table = w83l786ng_id,
.detect = w83l786ng_detect,
.address_list = normal_i2c,
};
static u8
w83l786ng_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static int
w83l786ng_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* following are the sysfs callback functions */
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct w83l786ng_data *data = w83l786ng_update_device(dev); \
return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)
#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct i2c_client *client = to_i2c_client(dev); \
struct w83l786ng_data *data = i2c_get_clientdata(client); \
unsigned long val; \
int err = kstrtoul(buf, 10, &val); \
if (err) \
return err; \
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = IN_TO_REG(val); \
w83l786ng_write_value(client, W83L786NG_REG_IN_##REG(nr), \
data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
return count; \
}
store_in_reg(MIN, min)
store_in_reg(MAX, max)
static struct sensor_device_attribute sda_in_input[] = {
SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
};
static struct sensor_device_attribute sda_in_min[] = {
SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
};
static struct sensor_device_attribute sda_in_max[] = {
SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
};
#define show_fan_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct w83l786ng_data *data = w83l786ng_update_device(dev); \
return sprintf(buf, "%d\n", \
FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);
static ssize_t
store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
w83l786ng_write_value(client, W83L786NG_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct w83l786ng_data *data = w83l786ng_update_device(dev);
return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t
store_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
unsigned long min;
u8 tmp_fan_div;
u8 fan_div_reg;
u8 keep_mask = 0;
u8 new_shift = 0;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
/* Save fan_min */
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
data->fan_div[nr] = DIV_TO_REG(val);
switch (nr) {
case 0:
keep_mask = 0xf8;
new_shift = 0;
break;
case 1:
keep_mask = 0x8f;
new_shift = 4;
break;
}
fan_div_reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV)
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
w83l786ng_write_value(client, W83L786NG_REG_FAN_DIV,
fan_div_reg | tmp_fan_div);
/* Restore fan_min */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
w83l786ng_write_value(client, W83L786NG_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_fan_input[] = {
SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
};
static struct sensor_device_attribute sda_fan_min[] = {
SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 0),
SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 1),
};
static struct sensor_device_attribute sda_fan_div[] = {
SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div,
store_fan_div, 0),
SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div,
store_fan_div, 1),
};
/* read/write the temperature, includes measured value and limits */
static ssize_t
show_temp(struct device *dev, struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *sensor_attr =
to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct w83l786ng_data *data = w83l786ng_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr][index]));
}
static ssize_t
store_temp(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sensor_attr =
to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp[nr][index] = TEMP_TO_REG(val);
w83l786ng_write_value(client, W83L786NG_REG_TEMP[nr][index],
data->temp[nr][index]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute_2 sda_temp_input[] = {
SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 0),
SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 1, 0),
};
static struct sensor_device_attribute_2 sda_temp_max[] = {
SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
show_temp, store_temp, 0, 1),
SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
show_temp, store_temp, 1, 1),
};
static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp, store_temp, 0, 2),
SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
show_temp, store_temp, 1, 2),
};
#define show_pwm_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83l786ng_data *data = w83l786ng_update_device(dev); \
int nr = to_sensor_dev_attr(attr)->index; \
return sprintf(buf, "%d\n", data->reg[nr]); \
}
show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)
static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u8 reg;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val > 1)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_mode[nr] = val;
reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG);
reg &= ~(1 << W83L786NG_PWM_MODE_SHIFT[nr]);
if (!val)
reg |= 1 << W83L786NG_PWM_MODE_SHIFT[nr];
w83l786ng_write_value(client, W83L786NG_REG_FAN_CFG, reg);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
val = SENSORS_LIMIT(val, 0, 255);
mutex_lock(&data->update_lock);
data->pwm[nr] = val;
w83l786ng_write_value(client, W83L786NG_REG_PWM[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u8 reg;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (!val || val > 2) /* only modes 1 and 2 are supported */
return -EINVAL;
mutex_lock(&data->update_lock);
reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG);
data->pwm_enable[nr] = val;
reg &= ~(0x02 << W83L786NG_PWM_ENABLE_SHIFT[nr]);
reg |= (val - 1) << W83L786NG_PWM_ENABLE_SHIFT[nr];
w83l786ng_write_value(client, W83L786NG_REG_FAN_CFG, reg);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwm[] = {
SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
};
static struct sensor_device_attribute sda_pwm_mode[] = {
SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 0),
SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 1),
};
static struct sensor_device_attribute sda_pwm_enable[] = {
SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 0),
SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 1),
};
/* For Smart Fan I/Thermal Cruise and Smart Fan II */
static ssize_t
show_tolerance(struct device *dev, struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct w83l786ng_data *data = w83l786ng_update_device(dev);
return sprintf(buf, "%ld\n", (long)data->tolerance[nr]);
}
static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u8 tol_tmp, tol_mask;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
tol_mask = w83l786ng_read_value(client,
W83L786NG_REG_TOLERANCE) & ((nr == 1) ? 0x0f : 0xf0);
tol_tmp = SENSORS_LIMIT(val, 0, 15);
tol_tmp &= 0x0f;
data->tolerance[nr] = tol_tmp;
if (nr == 1)
tol_tmp <<= 4;
w83l786ng_write_value(client, W83L786NG_REG_TOLERANCE,
tol_mask | tol_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_tolerance[] = {
SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 0),
SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 1),
};
#define IN_UNIT_ATTRS(X) \
&sda_in_input[X].dev_attr.attr, \
&sda_in_min[X].dev_attr.attr, \
&sda_in_max[X].dev_attr.attr
#define FAN_UNIT_ATTRS(X) \
&sda_fan_input[X].dev_attr.attr, \
&sda_fan_min[X].dev_attr.attr, \
&sda_fan_div[X].dev_attr.attr
#define TEMP_UNIT_ATTRS(X) \
&sda_temp_input[X].dev_attr.attr, \
&sda_temp_max[X].dev_attr.attr, \
&sda_temp_max_hyst[X].dev_attr.attr
#define PWM_UNIT_ATTRS(X) \
&sda_pwm[X].dev_attr.attr, \
&sda_pwm_mode[X].dev_attr.attr, \
&sda_pwm_enable[X].dev_attr.attr
#define TOLERANCE_UNIT_ATTRS(X) \
&sda_tolerance[X].dev_attr.attr
static struct attribute *w83l786ng_attributes[] = {
IN_UNIT_ATTRS(0),
IN_UNIT_ATTRS(1),
IN_UNIT_ATTRS(2),
FAN_UNIT_ATTRS(0),
FAN_UNIT_ATTRS(1),
TEMP_UNIT_ATTRS(0),
TEMP_UNIT_ATTRS(1),
PWM_UNIT_ATTRS(0),
PWM_UNIT_ATTRS(1),
TOLERANCE_UNIT_ATTRS(0),
TOLERANCE_UNIT_ATTRS(1),
NULL
};
static const struct attribute_group w83l786ng_group = {
.attrs = w83l786ng_attributes,
};
static int
w83l786ng_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
u16 man_id;
u8 chip_id;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* Detection */
if ((w83l786ng_read_value(client, W83L786NG_REG_CONFIG) & 0x80)) {
dev_dbg(&adapter->dev, "W83L786NG detection failed at 0x%02x\n",
client->addr);
return -ENODEV;
}
/* Identification */
man_id = (w83l786ng_read_value(client, W83L786NG_REG_MAN_ID1) << 8) +
w83l786ng_read_value(client, W83L786NG_REG_MAN_ID2);
chip_id = w83l786ng_read_value(client, W83L786NG_REG_CHIP_ID);
if (man_id != 0x5CA3 || /* Winbond */
chip_id != 0x80) { /* W83L786NG */
dev_dbg(&adapter->dev,
"Unsupported chip (man_id=0x%04X, chip_id=0x%02X)\n",
man_id, chip_id);
return -ENODEV;
}
strlcpy(info->type, "w83l786ng", I2C_NAME_SIZE);
return 0;
}
static int
w83l786ng_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct w83l786ng_data *data;
int i, err = 0;
u8 reg_tmp;
data = devm_kzalloc(&client->dev, sizeof(struct w83l786ng_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
/* Initialize the chip */
w83l786ng_init_client(client);
/* A few vars need to be filled upon startup */
for (i = 0; i < 2; i++) {
data->fan_min[i] = w83l786ng_read_value(client,
W83L786NG_REG_FAN_MIN(i));
}
/* Update the fan divisor */
reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV);
data->fan_div[0] = reg_tmp & 0x07;
data->fan_div[1] = (reg_tmp >> 4) & 0x07;
/* Register sysfs hooks */
err = sysfs_create_group(&client->dev.kobj, &w83l786ng_group);
if (err)
goto exit_remove;
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
/* Unregister sysfs hooks */
exit_remove:
sysfs_remove_group(&client->dev.kobj, &w83l786ng_group);
return err;
}
static int
w83l786ng_remove(struct i2c_client *client)
{
struct w83l786ng_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &w83l786ng_group);
return 0;
}
static void
w83l786ng_init_client(struct i2c_client *client)
{
u8 tmp;
if (reset)
w83l786ng_write_value(client, W83L786NG_REG_CONFIG, 0x80);
/* Start monitoring */
tmp = w83l786ng_read_value(client, W83L786NG_REG_CONFIG);
if (!(tmp & 0x01))
w83l786ng_write_value(client, W83L786NG_REG_CONFIG, tmp | 0x01);
}
static struct w83l786ng_data *w83l786ng_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
int i, j;
u8 reg_tmp, pwmcfg;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
dev_dbg(&client->dev, "Updating w83l786ng data.\n");
/* Update the voltages measured value and limits */
for (i = 0; i < 3; i++) {
data->in[i] = w83l786ng_read_value(client,
W83L786NG_REG_IN(i));
data->in_min[i] = w83l786ng_read_value(client,
W83L786NG_REG_IN_MIN(i));
data->in_max[i] = w83l786ng_read_value(client,
W83L786NG_REG_IN_MAX(i));
}
/* Update the fan counts and limits */
for (i = 0; i < 2; i++) {
data->fan[i] = w83l786ng_read_value(client,
W83L786NG_REG_FAN(i));
data->fan_min[i] = w83l786ng_read_value(client,
W83L786NG_REG_FAN_MIN(i));
}
/* Update the fan divisor */
reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV);
data->fan_div[0] = reg_tmp & 0x07;
data->fan_div[1] = (reg_tmp >> 4) & 0x07;
pwmcfg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG);
for (i = 0; i < 2; i++) {
data->pwm_mode[i] =
((pwmcfg >> W83L786NG_PWM_MODE_SHIFT[i]) & 1)
? 0 : 1;
data->pwm_enable[i] =
((pwmcfg >> W83L786NG_PWM_ENABLE_SHIFT[i]) & 2) + 1;
data->pwm[i] = w83l786ng_read_value(client,
W83L786NG_REG_PWM[i]);
}
/* Update the temperature sensors */
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
data->temp[i][j] = w83l786ng_read_value(client,
W83L786NG_REG_TEMP[i][j]);
}
}
/* Update Smart Fan I/II tolerance */
reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_TOLERANCE);
data->tolerance[0] = reg_tmp & 0x0f;
data->tolerance[1] = (reg_tmp >> 4) & 0x0f;
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
module_i2c_driver(w83l786ng_driver);
MODULE_AUTHOR("Kevin Lo");
MODULE_DESCRIPTION("w83l786ng driver");
MODULE_LICENSE("GPL");