kernel-fxtec-pro1x/drivers/mtd/nand/denali.c
Josh Wu fdbad98dff mtd: nand: teach write_page and write_page_raw return an error code
There is an implemention of hardware ECC write page function which may return an
error indication.
For instance, using Atmel HW PMECC to write one page into a nand flash, the hardware
engine will compute the BCH ecc code for this page. so we need read a the
status register to theck whether the ecc code is generated.
But we cannot assume the status register always can be ready, for example,
incorrect hardware configuration or hardware issue, in such case we need
write_page() to return a error code.

Since the definition of 'write_page' function in struct nand_ecc_ctrl is 'void'.
So this patch will:
  1. add return 'int' value for 'write_page' function.
  2. to be consitent, add return 'int' value for 'write_page_raw' fuctions too.
  3. add code to test the return value, and if negative, indicate an
  error happend when write page with ECC.
  4. fix the compile warning in all impacted nand flash driver.

Note: I couldn't compile-test all of these easily, as some had ARCH dependencies.

Signed-off-by: Josh Wu <josh.wu@atmel.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-07-06 18:17:07 +01:00

1710 lines
49 KiB
C

/*
* NAND Flash Controller Device Driver
* Copyright © 2009-2010, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
#include "denali.h"
MODULE_LICENSE("GPL");
/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
" -1 indicates use default timings");
#define DENALI_NAND_NAME "denali-nand"
/* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience. */
#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
INTR_STATUS__ECC_TRANSACTION_DONE | \
INTR_STATUS__ECC_ERR | \
INTR_STATUS__PROGRAM_FAIL | \
INTR_STATUS__LOAD_COMP | \
INTR_STATUS__PROGRAM_COMP | \
INTR_STATUS__TIME_OUT | \
INTR_STATUS__ERASE_FAIL | \
INTR_STATUS__RST_COMP | \
INTR_STATUS__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is
* valid or not */
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
/* this macro allows us to convert from an MTD structure to our own
* device context (denali) structure.
*/
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
/* These constants are defined by the driver to enable common driver
* configuration options. */
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
#define DENALI_READ 0
#define DENALI_WRITE 0x100
/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE 0
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
{ /* end: all zeroes */ }
};
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali,
uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
/* Certain operations for the denali NAND controller use
* an indexed mode to read/write data. The operation is
* performed by writing the address value of the command
* to the device memory followed by the data. This function
* abstracts this common operation.
*/
static void index_addr(struct denali_nand_info *denali,
uint32_t address, uint32_t data)
{
iowrite32(address, denali->flash_mem);
iowrite32(data, denali->flash_mem + 0x10);
}
/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata)
{
iowrite32(address, denali->flash_mem);
*pdata = ioread32(denali->flash_mem + 0x10);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
denali->buf.head = denali->buf.tail = 0;
}
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
denali->buf.buf[denali->buf.tail++] = byte;
}
/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
uint32_t cmd = 0x0;
/* initialize the data buffer to store status */
reset_buf(denali);
cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
if (cmd)
write_byte_to_buf(denali, NAND_STATUS_WP);
else
write_byte_to_buf(denali, 0);
}
/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__RST_COMP |
INTR_STATUS__TIME_OUT;
clear_interrupts(denali);
iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & INTR_STATUS__TIME_OUT)
dev_err(denali->dev, "reset bank failed.\n");
}
/* Reset the flash controller */
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0 ; i < denali->max_banks; i++)
iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
for (i = 0 ; i < denali->max_banks; i++) {
iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
while (!(ioread32(denali->flash_reg +
INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
cpu_relax();
if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
dev_dbg(denali->dev,
"NAND Reset operation timed out on bank %d\n", i);
}
for (i = 0; i < denali->max_banks; i++)
iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
return PASS;
}
/* this routine calculates the ONFI timing values for a given mode and
* programs the clocking register accordingly. The mode is determined by
* the get_onfi_nand_para routine.
*/
static void nand_onfi_timing_set(struct denali_nand_info *denali,
uint16_t mode)
{
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
uint16_t TclsRising = 1;
uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
uint16_t dv_window = 0;
uint16_t en_lo, en_hi;
uint16_t acc_clks;
uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
en_lo = CEIL_DIV(Trp[mode], CLK_X);
en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
if ((en_hi * CLK_X) < (Treh[mode] + 2))
en_hi++;
#endif
if ((en_lo + en_hi) * CLK_X < Trc[mode])
en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
if ((en_lo + en_hi) < CLK_MULTI)
en_lo += CLK_MULTI - en_lo - en_hi;
while (dv_window < 8) {
data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
data_invalid =
data_invalid_rhoh <
data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
dv_window = data_invalid - Trea[mode];
if (dv_window < 8)
en_lo++;
}
acc_clks = CEIL_DIV(Trea[mode], CLK_X);
while (((acc_clks * CLK_X) - Trea[mode]) < 3)
acc_clks++;
if ((data_invalid - acc_clks * CLK_X) < 2)
dev_warn(denali->dev, "%s, Line %d: Warning!\n",
__FILE__, __LINE__);
addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
if (!TclsRising)
cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
if (cs_cnt == 0)
cs_cnt = 1;
if (Tcea[mode]) {
while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
cs_cnt++;
}
#if MODE5_WORKAROUND
if (mode == 5)
acc_clks = 5;
#endif
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6;
iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
/* we needn't to do a reset here because driver has already
* reset all the banks before
* */
if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return FAIL;
for (i = 5; i > 0; i--) {
if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
(0x01 << i))
break;
}
nand_onfi_timing_set(denali, i);
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
return PASS;
}
static void get_samsung_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
iowrite32(5, denali->flash_reg + ACC_CLKS);
iowrite32(20, denali->flash_reg + RE_2_WE);
iowrite32(12, denali->flash_reg + WE_2_RE);
iowrite32(14, denali->flash_reg + ADDR_2_DATA);
iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
}
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
/* spare area size for some kind of Toshiba NAND device */
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(tmp,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
}
}
static void get_hynix_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t main_size, spare_size;
switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 *
ioread32(denali->flash_reg + DEVICES_CONNECTED);
spare_size = 224 *
ioread32(denali->flash_reg + DEVICES_CONNECTED);
iowrite32(main_size,
denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
/* determines how many NAND chips are connected to the controller. Note for
* Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
uint32_t id[denali->max_banks];
int i;
denali->total_used_banks = 1;
for (i = 0; i < denali->max_banks; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data(denali,
(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
dev_dbg(denali->dev,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break; /* WTF? */
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali->total_used_banks++;
else
break;
}
}
if (denali->platform == INTEL_CE4100) {
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
* Multichip support is not enabled.
*/
if (denali->total_used_banks != 1) {
dev_err(denali->dev,
"Sorry, Intel CE4100 only supports "
"a single NAND device.\n");
BUG();
}
}
dev_dbg(denali->dev,
"denali->total_used_banks: %d\n", denali->total_used_banks);
}
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
static void detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = ioread32(denali->flash_reg + FEATURES);
denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}
static void detect_partition_feature(struct denali_nand_info *denali)
{
/* For MRST platform, denali->fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
* */
if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
denali->fwblks =
((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
denali->blksperchip)
+
(ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else
denali->fwblks = SPECTRA_START_BLOCK;
} else
denali->fwblks = SPECTRA_START_BLOCK;
}
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
{
uint16_t status = PASS;
uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id;
dev_dbg(denali->dev,
"%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
/* Use read id method to get device ID and other
* params. For some NAND chips, controller can't
* report the correct device ID by reading from
* DEVICE_ID register
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
maf_id = id_bytes[0];
device_id = id_bytes[1];
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
if (FAIL == get_onfi_nand_para(denali))
return FAIL;
} else if (maf_id == 0xEC) { /* Samsung NAND */
get_samsung_nand_para(denali, device_id);
} else if (maf_id == 0x98) { /* Toshiba NAND */
get_toshiba_nand_para(denali);
} else if (maf_id == 0xAD) { /* Hynix NAND */
get_hynix_nand_para(denali, device_id);
}
dev_info(denali->dev,
"Dump timing register values:"
"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + RE_2_RE),
ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
find_valid_banks(denali);
detect_partition_feature(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
nand_onfi_timing_set(denali, onfi_timing_mode);
return status;
}
static void denali_set_intr_modes(struct denali_nand_info *denali,
uint16_t INT_ENABLE)
{
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (INT_ENABLE)
iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
else
iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}
/* validation function to verify that the controlling software is making
* a valid request
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
int i;
/* Disable global interrupts */
denali_set_intr_modes(denali, false);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
for (i = 0; i < denali->max_banks; ++i)
iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
denali_irq_enable(denali, int_mask);
}
static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
denali_set_intr_modes(denali, false);
free_irq(irqnum, denali);
}
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask)
{
int i;
for (i = 0; i < denali->max_banks; ++i)
iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
}
/* This function only returns when an interrupt that this driver cares about
* occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
return read_interrupt_status(denali) & DENALI_IRQ_ALL;
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali,
uint32_t irq_mask)
{
uint32_t intr_status_reg = 0;
intr_status_reg = INTR_STATUS(denali->flash_bank);
iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
}
static void clear_interrupts(struct denali_nand_info *denali)
{
uint32_t status = 0x0;
spin_lock_irq(&denali->irq_lock);
status = read_interrupt_status(denali);
clear_interrupt(denali, status);
denali->irq_status = 0x0;
spin_unlock_irq(&denali->irq_lock);
}
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
uint32_t intr_status_reg = 0;
intr_status_reg = INTR_STATUS(denali->flash_bank);
return ioread32(denali->flash_reg + intr_status_reg);
}
/* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared
* interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
struct denali_nand_info *denali = dev_id;
uint32_t irq_status = 0x0;
irqreturn_t result = IRQ_NONE;
spin_lock(&denali->irq_lock);
/* check to see if a valid NAND chip has
* been selected.
*/
if (is_flash_bank_valid(denali->flash_bank)) {
/* check to see if controller generated
* the interrupt, since this is a shared interrupt */
irq_status = denali_irq_detected(denali);
if (irq_status != 0) {
/* handle interrupt */
/* first acknowledge it */
clear_interrupt(denali, irq_status);
/* store the status in the device context for someone
to read */
denali->irq_status |= irq_status;
/* notify anyone who cares that it happened */
complete(&denali->complete);
/* tell the OS that we've handled this */
result = IRQ_HANDLED;
}
}
spin_unlock(&denali->irq_lock);
return result;
}
#define BANK(x) ((x) << 24)
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
unsigned long comp_res = 0;
uint32_t intr_status = 0;
bool retry = false;
unsigned long timeout = msecs_to_jiffies(1000);
do {
comp_res =
wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status;
if (intr_status & irq_mask) {
denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
/* our interrupt was detected */
break;
} else {
/* these are not the interrupts you are looking for -
* need to wait again */
spin_unlock_irq(&denali->irq_lock);
retry = true;
}
} while (comp_res != 0);
if (comp_res == 0) {
/* timeout */
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
intr_status, irq_mask);
intr_status = 0;
}
return intr_status;
}
/* This helper function setups the registers for ECC and whether or not
* the spare area will be transferred. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
iowrite32(transfer_spare_flag,
denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
* controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
bool ecc_en,
bool transfer_spare,
int access_type,
int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
irq_mask = 0;
if (op == DENALI_READ)
irq_mask = INTR_STATUS__LOAD_COMP;
else if (op == DENALI_WRITE)
irq_mask = 0;
else
BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
/* clear interrupts */
clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
/* read spare area */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_READ) {
/* setup page read request for access type */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
use the pipeline commands in Spare area only mode. So we
don't.
*/
if (access_type == SPARE_ACCESS) {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else {
index_addr(denali, (uint32_t)cmd,
0x2000 | op | page_count);
/* wait for command to be accepted
* can always use status0 bit as the
* mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"cmd, page, addr on timeout "
"(0x%x, 0x%x, 0x%x)\n",
cmd, denali->page, addr);
status = FAIL;
} else {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
}
}
}
return status;
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
const uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
iowrite32(*buf32++, denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
BUG_ON((len % 4) != 0);
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
*buf32++ = ioread32(denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
int status = 0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
DENALI_WRITE) == PASS) {
write_data_to_flash_mem(denali, buf, mtd->oobsize);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev, "OOB write failed\n");
status = -EIO;
}
} else {
dev_err(denali->dev, "unable to send pipeline command\n");
status = -EIO;
}
return status;
}
/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
irq_status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS) {
read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
dev_err(denali->dev, "page on OOB timeout %d\n",
denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
}
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return false;
return true;
}
#define ECC_SECTOR_SIZE 512
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint32_t irq_status, unsigned int *max_bitflips)
{
bool check_erased_page = false;
unsigned int bitflips = 0;
if (irq_status & INTR_STATUS__ECC_ERR) {
/* read the ECC errors. we'll ignore them for now */
uint32_t err_address = 0, err_correction_info = 0;
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0;
denali_set_intr_modes(denali, false);
do {
err_address = ioread32(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address);
err_correction_info = ioread32(denali->flash_reg +
ERR_CORRECTION_INFO);
err_correction_value =
ECC_CORRECTION_VALUE(err_correction_info);
err_device = ECC_ERR_DEVICE(err_correction_info);
if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
/* If err_byte is larger than ECC_SECTOR_SIZE,
* means error happened in OOB, so we ignore
* it. It's no need for us to correct it
* err_device is represented the NAND error
* bits are happened in if there are more
* than one NAND connected.
* */
if (err_byte < ECC_SECTOR_SIZE) {
int offset;
offset = (err_sector *
ECC_SECTOR_SIZE +
err_byte) *
denali->devnum +
err_device;
/* correct the ECC error */
buf[offset] ^= err_correction_value;
denali->mtd.ecc_stats.corrected++;
bitflips++;
}
} else {
/* if the error is not correctable, need to
* look at the page to see if it is an erased
* page. if so, then it's not a real ECC error
* */
check_erased_page = true;
}
} while (!ECC_LAST_ERR(err_correction_info));
/* Once handle all ecc errors, controller will triger
* a ECC_TRANSACTION_DONE interrupt, so here just wait
* for a while for this interrupt
* */
while (!(read_interrupt_status(denali) &
INTR_STATUS__ECC_TRANSACTION_DONE))
cpu_relax();
clear_interrupts(denali);
denali_set_intr_modes(denali, true);
}
*max_bitflips = bitflips;
return check_erased_page;
}
/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
if (en)
reg_val = DMA_ENABLE__FLAG;
iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
uint32_t mode = 0x0;
const int page_count = 1;
dma_addr_t addr = denali->buf.dma_buf;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
index_addr(denali, mode | 0x14000, 0x2400);
}
/* writes a page. user specifies type, and this function handles the
* configuration details. */
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
INTR_STATUS__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
/* copy buffer into DMA buffer */
memcpy(denali->buf.buf, buf, mtd->writesize);
if (raw_xfer) {
/* transfer the data to the spare area */
memcpy(denali->buf.buf + mtd->writesize,
chip->oob_poi,
mtd->oobsize);
}
dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
clear_interrupts(denali);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"timeout on write_page (type = %d)\n",
raw_xfer);
denali->status =
(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
return 0;
}
/* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since
* writing a page with ECC or without is similar, all the work is done
* by write_page above.
* */
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
/* for regular page writes, we let HW handle all the ECC
* data written to the device. */
return write_page(mtd, chip, buf, false);
}
/* This is the callback that the NAND core calls to write a page without ECC.
* raw access is similar to ECC page writes, so all the work is done in the
* write_page() function above.
*/
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
/* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
return write_page(mtd, chip, buf, true);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return write_oob_data(mtd, chip->oob_poi, page);
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
read_oob_data(mtd, chip->oob_poi, page);
return 0;
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
unsigned int max_bitflips;
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
INTR_STATUS__ECC_ERR;
bool check_erased_page = false;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, true, false);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
memcpy(buf, denali->buf.buf, mtd->writesize);
check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
denali_enable_dma(denali, false);
if (check_erased_page) {
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
if (check_erased_page) {
if (!is_erased(buf, denali->mtd.writesize))
denali->mtd.ecc_stats.failed++;
if (!is_erased(buf, denali->mtd.oobsize))
denali->mtd.ecc_stats.failed++;
}
}
return max_bitflips;
}
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
denali_enable_dma(denali, false);
memcpy(buf, denali->buf.buf, mtd->writesize);
memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
return 0;
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint8_t result = 0xff;
if (denali->buf.head < denali->buf.tail)
result = denali->buf.buf[denali->buf.head++];
return result;
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
spin_lock_irq(&denali->irq_lock);
denali->flash_bank = chip;
spin_unlock_irq(&denali->irq_lock);
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int status = denali->status;
denali->status = 0;
return status;
}
static void denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t cmd = 0x0, irq_status = 0;
/* clear interrupts */
clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t addr, id;
int i;
switch (cmd) {
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
read_status(denali);
break;
case NAND_CMD_READID:
case NAND_CMD_PARAM:
reset_buf(denali);
/*sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++) {
index_addr_read_data(denali,
(uint32_t)addr | 2,
&id);
write_byte_to_buf(denali, id);
}
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
denali->page = page;
break;
case NAND_CMD_RESET:
reset_bank(denali);
break;
case NAND_CMD_READOOB:
/* TODO: Read OOB data */
break;
default:
printk(KERN_ERR ": unsupported command"
" received 0x%x\n", cmd);
break;
}
}
/* stubs for ECC functions not used by the NAND core */
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_calculate called unexpectedly\n");
BUG();
return -EIO;
}
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_correct called unexpectedly\n");
BUG();
return -EIO;
}
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_hwctl called unexpectedly\n");
BUG();
}
/* end NAND core entry points */
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
/* tell driver how many bit controller will skip before
* writing ECC code in OOB, this register may be already
* set by firmware. So we read this value out.
* if this value is 0, just let it be.
* */
denali->bbtskipbytes = ioread32(denali->flash_reg +
SPARE_AREA_SKIP_BYTES);
detect_max_banks(denali);
denali_nand_reset(denali);
iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
iowrite32(CHIP_EN_DONT_CARE__FLAG,
denali->flash_reg + CHIP_ENABLE_DONT_CARE);
iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */
iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
iowrite32(1, denali->flash_reg + ECC_ENABLE);
denali_nand_timing_set(denali);
denali_irq_init(denali);
}
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
* but denali controller in MRST only support 15bit and 8bit ECC
* correction
* */
#define ECC_8BITS 14
static struct nand_ecclayout nand_8bit_oob = {
.eccbytes = 14,
};
#define ECC_15BITS 26
static struct nand_ecclayout nand_15bit_oob = {
.eccbytes = 26,
};
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* initialize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
denali->idx = 0;
/* setup interrupt handler */
/* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
* with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
/* indicate that MTD has not selected a valid bank yet */
denali->flash_bank = CHIP_SELECT_INVALID;
/* initialize our irq_status variable to indicate no interrupts */
denali->irq_status = 0;
}
/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret = -ENODEV;
resource_size_t csr_base, mem_base;
unsigned long csr_len, mem_len;
struct denali_nand_info *denali;
denali = kzalloc(sizeof(*denali), GFP_KERNEL);
if (!denali)
return -ENOMEM;
ret = pci_enable_device(dev);
if (ret) {
printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
goto failed_alloc_memery;
}
if (id->driver_data == INTEL_CE4100) {
/* Due to a silicon limitation, we can only support
* ONFI timing mode 1 and below.
*/
if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
printk(KERN_ERR "Intel CE4100 only supports"
" ONFI timing mode 1 or below\n");
ret = -EINVAL;
goto failed_enable_dev;
}
denali->platform = INTEL_CE4100;
mem_base = pci_resource_start(dev, 0);
mem_len = pci_resource_len(dev, 1);
csr_base = pci_resource_start(dev, 1);
csr_len = pci_resource_len(dev, 1);
} else {
denali->platform = INTEL_MRST;
csr_base = pci_resource_start(dev, 0);
csr_len = pci_resource_len(dev, 0);
mem_base = pci_resource_start(dev, 1);
mem_len = pci_resource_len(dev, 1);
if (!mem_len) {
mem_base = csr_base + csr_len;
mem_len = csr_len;
}
}
/* Is 32-bit DMA supported? */
ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
if (ret) {
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable_dev;
}
denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
goto failed_enable_dev;
}
pci_set_master(dev);
denali->dev = &dev->dev;
denali->mtd.dev.parent = &dev->dev;
ret = pci_request_regions(dev, DENALI_NAND_NAME);
if (ret) {
printk(KERN_ERR "Spectra: Unable to request memory regions\n");
goto failed_dma_map;
}
denali->flash_reg = ioremap_nocache(csr_base, csr_len);
if (!denali->flash_reg) {
printk(KERN_ERR "Spectra: Unable to remap memory region\n");
ret = -ENOMEM;
goto failed_req_regions;
}
denali->flash_mem = ioremap_nocache(mem_base, mem_len);
if (!denali->flash_mem) {
printk(KERN_ERR "Spectra: ioremap_nocache failed!");
ret = -ENOMEM;
goto failed_remap_reg;
}
denali_hw_init(denali);
denali_drv_init(denali);
/* denali_isr register is done after all the hardware
* initilization is finished*/
if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
DENALI_NAND_NAME, denali)) {
printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
ret = -ENODEV;
goto failed_remap_mem;
}
/* now that our ISR is registered, we can enable interrupts */
denali_set_intr_modes(denali, true);
pci_set_drvdata(dev, denali);
denali->mtd.name = "denali-nand";
denali->mtd.owner = THIS_MODULE;
denali->mtd.priv = &denali->nand;
/* register the driver with the NAND core subsystem */
denali->nand.select_chip = denali_select_chip;
denali->nand.cmdfunc = denali_cmdfunc;
denali->nand.read_byte = denali_read_byte;
denali->nand.waitfunc = denali_waitfunc;
/* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
* with the nand subsystem */
if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
ret = -ENXIO;
goto failed_req_irq;
}
/* MTD supported page sizes vary by kernel. We validate our
* kernel supports the device here.
*/
if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
ret = -ENODEV;
printk(KERN_ERR "Spectra: device size not supported by this "
"version of MTD.");
goto failed_req_irq;
}
/* support for multi nand
* MTD known nothing about multi nand,
* so we should tell it the real pagesize
* and anything necessery
*/
denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali->nand.chipsize <<= (denali->devnum - 1);
denali->nand.page_shift += (denali->devnum - 1);
denali->nand.pagemask = (denali->nand.chipsize >>
denali->nand.page_shift) - 1;
denali->nand.bbt_erase_shift += (denali->devnum - 1);
denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
denali->nand.chip_shift += (denali->devnum - 1);
denali->mtd.writesize <<= (denali->devnum - 1);
denali->mtd.oobsize <<= (denali->devnum - 1);
denali->mtd.erasesize <<= (denali->devnum - 1);
denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
denali->bbtskipbytes *= denali->devnum;
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* Bad block management */
denali->nand.bbt_td = &bbt_main_descr;
denali->nand.bbt_md = &bbt_mirror_descr;
/* skip the scan for now until we have OOB read and write support */
denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
denali->nand.options |= NAND_SKIP_BBTSCAN;
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
/* Denali Controller only support 15bit and 8bit ECC in MRST,
* so just let controller do 15bit ECC for MLC and 8bit ECC for
* SLC if possible.
* */
if (denali->nand.cellinfo & 0xc &&
(denali->mtd.oobsize > (denali->bbtskipbytes +
ECC_15BITS * (denali->mtd.writesize /
ECC_SECTOR_SIZE)))) {
/* if MLC OOB size is large enough, use 15bit ECC*/
denali->nand.ecc.strength = 15;
denali->nand.ecc.layout = &nand_15bit_oob;
denali->nand.ecc.bytes = ECC_15BITS;
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
ECC_8BITS * (denali->mtd.writesize /
ECC_SECTOR_SIZE))) {
printk(KERN_ERR "Your NAND chip OOB is not large enough to"
" contain 8bit ECC correction codes");
goto failed_req_irq;
} else {
denali->nand.ecc.strength = 8;
denali->nand.ecc.layout = &nand_8bit_oob;
denali->nand.ecc.bytes = ECC_8BITS;
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
}
denali->nand.ecc.bytes *= denali->devnum;
denali->nand.ecc.strength *= denali->devnum;
denali->nand.ecc.layout->eccbytes *=
denali->mtd.writesize / ECC_SECTOR_SIZE;
denali->nand.ecc.layout->oobfree[0].offset =
denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
denali->nand.ecc.layout->oobfree[0].length =
denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
denali->bbtskipbytes;
/* Let driver know the total blocks number and
* how many blocks contained by each nand chip.
* blksperchip will help driver to know how many
* blocks is taken by FW.
* */
denali->totalblks = denali->mtd.size >>
denali->nand.phys_erase_shift;
denali->blksperchip = denali->totalblks / denali->nand.numchips;
/* These functions are required by the NAND core framework, otherwise,
* the NAND core will assert. However, we don't need them, so we'll stub
* them out. */
denali->nand.ecc.calculate = denali_ecc_calculate;
denali->nand.ecc.correct = denali_ecc_correct;
denali->nand.ecc.hwctl = denali_ecc_hwctl;
/* override the default read operations */
denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
denali->nand.ecc.read_page = denali_read_page;
denali->nand.ecc.read_page_raw = denali_read_page_raw;
denali->nand.ecc.write_page = denali_write_page;
denali->nand.ecc.write_page_raw = denali_write_page_raw;
denali->nand.ecc.read_oob = denali_read_oob;
denali->nand.ecc.write_oob = denali_write_oob;
denali->nand.erase_cmd = denali_erase;
if (nand_scan_tail(&denali->mtd)) {
ret = -ENXIO;
goto failed_req_irq;
}
ret = mtd_device_register(&denali->mtd, NULL, 0);
if (ret) {
dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
ret);
goto failed_req_irq;
}
return 0;
failed_req_irq:
denali_irq_cleanup(dev->irq, denali);
failed_remap_mem:
iounmap(denali->flash_mem);
failed_remap_reg:
iounmap(denali->flash_reg);
failed_req_regions:
pci_release_regions(dev);
failed_dma_map:
dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL);
failed_enable_dev:
pci_disable_device(dev);
failed_alloc_memery:
kfree(denali);
return ret;
}
/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
struct denali_nand_info *denali = pci_get_drvdata(dev);
nand_release(&denali->mtd);
denali_irq_cleanup(dev->irq, denali);
iounmap(denali->flash_reg);
iounmap(denali->flash_mem);
pci_release_regions(dev);
pci_disable_device(dev);
dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL);
pci_set_drvdata(dev, NULL);
kfree(denali);
}
MODULE_DEVICE_TABLE(pci, denali_pci_ids);
static struct pci_driver denali_pci_driver = {
.name = DENALI_NAND_NAME,
.id_table = denali_pci_ids,
.probe = denali_pci_probe,
.remove = denali_pci_remove,
};
module_pci_driver(denali_pci_driver);