kernel-fxtec-pro1x/drivers/net/ixgb/ixgb_hw.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1202 lines
36 KiB
C

/*******************************************************************************
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* ixgb_hw.c
* Shared functions for accessing and configuring the adapter
*/
#include "ixgb_hw.h"
#include "ixgb_ids.h"
/* Local function prototypes */
static uint32_t ixgb_hash_mc_addr(struct ixgb_hw *hw, uint8_t * mc_addr);
static void ixgb_mta_set(struct ixgb_hw *hw, uint32_t hash_value);
static void ixgb_get_bus_info(struct ixgb_hw *hw);
static boolean_t ixgb_link_reset(struct ixgb_hw *hw);
static void ixgb_optics_reset(struct ixgb_hw *hw);
static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
uint32_t ixgb_mac_reset(struct ixgb_hw *hw);
uint32_t ixgb_mac_reset(struct ixgb_hw *hw)
{
uint32_t ctrl_reg;
ctrl_reg = IXGB_CTRL0_RST |
IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */
IXGB_CTRL0_SDP2_DIR |
IXGB_CTRL0_SDP1_DIR |
IXGB_CTRL0_SDP0_DIR |
IXGB_CTRL0_SDP3 | /* Initial value 1101 */
IXGB_CTRL0_SDP2 |
IXGB_CTRL0_SDP0;
#ifdef HP_ZX1
/* Workaround for 82597EX reset errata */
IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
#else
IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
#endif
/* Delay a few ms just to allow the reset to complete */
msec_delay(IXGB_DELAY_AFTER_RESET);
ctrl_reg = IXGB_READ_REG(hw, CTRL0);
#ifdef DBG
/* Make sure the self-clearing global reset bit did self clear */
ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
#endif
if (hw->phy_type == ixgb_phy_type_txn17401) {
ixgb_optics_reset(hw);
}
return ctrl_reg;
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
boolean_t
ixgb_adapter_stop(struct ixgb_hw *hw)
{
uint32_t ctrl_reg;
uint32_t icr_reg;
DEBUGFUNC("ixgb_adapter_stop");
/* If we are stopped or resetting exit gracefully and wait to be
* started again before accessing the hardware.
*/
if(hw->adapter_stopped) {
DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
return FALSE;
}
/* Set the Adapter Stopped flag so other driver functions stop
* touching the Hardware.
*/
hw->adapter_stopped = TRUE;
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
msec_delay(IXGB_DELAY_BEFORE_RESET);
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
ctrl_reg = ixgb_mac_reset(hw);
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
IXGB_WRITE_REG(hw, IMC, 0xffffffff);
/* Clear any pending interrupt events. */
icr_reg = IXGB_READ_REG(hw, ICR);
return (ctrl_reg & IXGB_CTRL0_RST);
}
/******************************************************************************
* Identifies the vendor of the optics module on the adapter. The SR adapters
* support two different types of XPAK optics, so it is necessary to determine
* which optics are present before applying any optics-specific workarounds.
*
* hw - Struct containing variables accessed by shared code.
*
* Returns: the vendor of the XPAK optics module.
*****************************************************************************/
static ixgb_xpak_vendor
ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
{
uint32_t i;
uint16_t vendor_name[5];
ixgb_xpak_vendor xpak_vendor;
DEBUGFUNC("ixgb_identify_xpak_vendor");
/* Read the first few bytes of the vendor string from the XPAK NVR
* registers. These are standard XENPAK/XPAK registers, so all XPAK
* devices should implement them. */
for (i = 0; i < 5; i++) {
vendor_name[i] = ixgb_read_phy_reg(hw,
MDIO_PMA_PMD_XPAK_VENDOR_NAME
+ i, IXGB_PHY_ADDRESS,
MDIO_PMA_PMD_DID);
}
/* Determine the actual vendor */
if (vendor_name[0] == 'I' &&
vendor_name[1] == 'N' &&
vendor_name[2] == 'T' &&
vendor_name[3] == 'E' && vendor_name[4] == 'L') {
xpak_vendor = ixgb_xpak_vendor_intel;
} else {
xpak_vendor = ixgb_xpak_vendor_infineon;
}
return (xpak_vendor);
}
/******************************************************************************
* Determine the physical layer module on the adapter.
*
* hw - Struct containing variables accessed by shared code. The device_id
* field must be (correctly) populated before calling this routine.
*
* Returns: the phy type of the adapter.
*****************************************************************************/
static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw *hw)
{
ixgb_phy_type phy_type;
ixgb_xpak_vendor xpak_vendor;
DEBUGFUNC("ixgb_identify_phy");
/* Infer the transceiver/phy type from the device id */
switch (hw->device_id) {
case IXGB_DEVICE_ID_82597EX:
DEBUGOUT("Identified TXN17401 optics\n");
phy_type = ixgb_phy_type_txn17401;
break;
case IXGB_DEVICE_ID_82597EX_SR:
/* The SR adapters carry two different types of XPAK optics
* modules; read the vendor identifier to determine the exact
* type of optics. */
xpak_vendor = ixgb_identify_xpak_vendor(hw);
if (xpak_vendor == ixgb_xpak_vendor_intel) {
DEBUGOUT("Identified TXN17201 optics\n");
phy_type = ixgb_phy_type_txn17201;
} else {
DEBUGOUT("Identified G6005 optics\n");
phy_type = ixgb_phy_type_g6005;
}
break;
case IXGB_DEVICE_ID_82597EX_LR:
DEBUGOUT("Identified G6104 optics\n");
phy_type = ixgb_phy_type_g6104;
break;
default:
DEBUGOUT("Unknown physical layer module\n");
phy_type = ixgb_phy_type_unknown;
break;
}
return (phy_type);
}
/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
*
* Resets the controller.
* Reads and validates the EEPROM.
* Initializes the receive address registers.
* Initializes the multicast table.
* Clears all on-chip counters.
* Calls routine to setup flow control settings.
* Leaves the transmit and receive units disabled and uninitialized.
*
* Returns:
* TRUE if successful,
* FALSE if unrecoverable problems were encountered.
*****************************************************************************/
boolean_t
ixgb_init_hw(struct ixgb_hw *hw)
{
uint32_t i;
uint32_t ctrl_reg;
boolean_t status;
DEBUGFUNC("ixgb_init_hw");
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
ctrl_reg = ixgb_mac_reset(hw);
DEBUGOUT("Issuing an EE reset to MAC\n");
#ifdef HP_ZX1
/* Workaround for 82597EX reset errata */
IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
#else
IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
#endif
/* Delay a few ms just to allow the reset to complete */
msec_delay(IXGB_DELAY_AFTER_EE_RESET);
if (ixgb_get_eeprom_data(hw) == FALSE) {
return(FALSE);
}
/* Use the device id to determine the type of phy/transceiver. */
hw->device_id = ixgb_get_ee_device_id(hw);
hw->phy_type = ixgb_identify_phy(hw);
/* Setup the receive addresses.
* Receive Address Registers (RARs 0 - 15).
*/
ixgb_init_rx_addrs(hw);
/*
* Check that a valid MAC address has been set.
* If it is not valid, we fail hardware init.
*/
if (!mac_addr_valid(hw->curr_mac_addr)) {
DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
return(FALSE);
}
/* tell the routines in this file they can access hardware again */
hw->adapter_stopped = FALSE;
/* Fill in the bus_info structure */
ixgb_get_bus_info(hw);
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
for(i = 0; i < IXGB_MC_TBL_SIZE; i++)
IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* Zero out the VLAN Filter Table Array */
ixgb_clear_vfta(hw);
/* Zero all of the hardware counters */
ixgb_clear_hw_cntrs(hw);
/* Call a subroutine to setup flow control. */
status = ixgb_setup_fc(hw);
/* 82597EX errata: Call check-for-link in case lane deskew is locked */
ixgb_check_for_link(hw);
return (status);
}
/******************************************************************************
* Initializes receive address filters.
*
* hw - Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive addresss registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*****************************************************************************/
void
ixgb_init_rx_addrs(struct ixgb_hw *hw)
{
uint32_t i;
DEBUGFUNC("ixgb_init_rx_addrs");
/*
* If the current mac address is valid, assume it is a software override
* to the permanent address.
* Otherwise, use the permanent address from the eeprom.
*/
if (!mac_addr_valid(hw->curr_mac_addr)) {
/* Get the MAC address from the eeprom for later reference */
ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
hw->curr_mac_addr[0],
hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
DEBUGOUT3("%.2X %.2X %.2X\n",
hw->curr_mac_addr[3],
hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
} else {
/* Setup the receive address. */
DEBUGOUT("Overriding MAC Address in RAR[0]\n");
DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
hw->curr_mac_addr[0],
hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
DEBUGOUT3("%.2X %.2X %.2X\n",
hw->curr_mac_addr[3],
hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
ixgb_rar_set(hw, hw->curr_mac_addr, 0);
}
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for(i = 1; i < IXGB_RAR_ENTRIES; i++) {
IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
return;
}
/******************************************************************************
* Updates the MAC's list of multicast addresses.
*
* hw - Struct containing variables accessed by shared code
* mc_addr_list - the list of new multicast addresses
* mc_addr_count - number of addresses
* pad - number of bytes between addresses in the list
*
* The given list replaces any existing list. Clears the last 15 receive
* address registers and the multicast table. Uses receive address registers
* for the first 15 multicast addresses, and hashes the rest into the
* multicast table.
*****************************************************************************/
void
ixgb_mc_addr_list_update(struct ixgb_hw *hw,
uint8_t *mc_addr_list,
uint32_t mc_addr_count,
uint32_t pad)
{
uint32_t hash_value;
uint32_t i;
uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
DEBUGFUNC("ixgb_mc_addr_list_update");
/* Set the new number of MC addresses that we are being requested to use. */
hw->num_mc_addrs = mc_addr_count;
/* Clear RAR[1-15] */
DEBUGOUT(" Clearing RAR[1-15]\n");
for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
/* Clear the MTA */
DEBUGOUT(" Clearing MTA\n");
for(i = 0; i < IXGB_MC_TBL_SIZE; i++) {
IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
}
/* Add the new addresses */
for(i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:\n");
DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)],
mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
1],
mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
2],
mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
3],
mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
4],
mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
5]);
/* Place this multicast address in the RAR if there is room, *
* else put it in the MTA
*/
if(rar_used_count < IXGB_RAR_ENTRIES) {
ixgb_rar_set(hw,
mc_addr_list +
(i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)),
rar_used_count);
DEBUGOUT1("Added a multicast address to RAR[%d]\n", i);
rar_used_count++;
} else {
hash_value = ixgb_hash_mc_addr(hw,
mc_addr_list +
(i *
(IXGB_ETH_LENGTH_OF_ADDRESS
+ pad)));
DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
ixgb_mta_set(hw, hash_value);
}
}
DEBUGOUT("MC Update Complete\n");
return;
}
/******************************************************************************
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* Returns:
* The hash value
*****************************************************************************/
static uint32_t
ixgb_hash_mc_addr(struct ixgb_hw *hw,
uint8_t *mc_addr)
{
uint32_t hash_value = 0;
DEBUGFUNC("ixgb_hash_mc_addr");
/* The portion of the address that is used for the hash table is
* determined by the mc_filter_type setting.
*/
switch (hw->mc_filter_type) {
/* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB - According to H/W docs */
case 0:
/* [47:36] i.e. 0x563 for above example address */
hash_value =
((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
break;
case 1: /* [46:35] i.e. 0xAC6 for above example address */
hash_value =
((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
break;
case 2: /* [45:34] i.e. 0x5D8 for above example address */
hash_value =
((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
break;
case 3: /* [43:32] i.e. 0x634 for above example address */
hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
break;
default:
/* Invalid mc_filter_type, what should we do? */
DEBUGOUT("MC filter type param set incorrectly\n");
ASSERT(0);
break;
}
hash_value &= 0xFFF;
return (hash_value);
}
/******************************************************************************
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*****************************************************************************/
static void
ixgb_mta_set(struct ixgb_hw *hw,
uint32_t hash_value)
{
uint32_t hash_bit, hash_reg;
uint32_t mta_reg;
/* The MTA is a register array of 128 32-bit registers.
* It is treated like an array of 4096 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 5) & 0x7F;
hash_bit = hash_value & 0x1F;
mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
mta_reg |= (1 << hash_bit);
IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
return;
}
/******************************************************************************
* Puts an ethernet address into a receive address register.
*
* hw - Struct containing variables accessed by shared code
* addr - Address to put into receive address register
* index - Receive address register to write
*****************************************************************************/
void
ixgb_rar_set(struct ixgb_hw *hw,
uint8_t *addr,
uint32_t index)
{
uint32_t rar_low, rar_high;
DEBUGFUNC("ixgb_rar_set");
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((uint32_t) addr[0] |
((uint32_t)addr[1] << 8) |
((uint32_t)addr[2] << 16) |
((uint32_t)addr[3] << 24));
rar_high = ((uint32_t) addr[4] |
((uint32_t)addr[5] << 8) |
IXGB_RAH_AV);
IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
return;
}
/******************************************************************************
* Writes a value to the specified offset in the VLAN filter table.
*
* hw - Struct containing variables accessed by shared code
* offset - Offset in VLAN filer table to write
* value - Value to write into VLAN filter table
*****************************************************************************/
void
ixgb_write_vfta(struct ixgb_hw *hw,
uint32_t offset,
uint32_t value)
{
IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
return;
}
/******************************************************************************
* Clears the VLAN filer table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
ixgb_clear_vfta(struct ixgb_hw *hw)
{
uint32_t offset;
for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
return;
}
/******************************************************************************
* Configures the flow control settings based on SW configuration.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
boolean_t
ixgb_setup_fc(struct ixgb_hw *hw)
{
uint32_t ctrl_reg;
uint32_t pap_reg = 0; /* by default, assume no pause time */
boolean_t status = TRUE;
DEBUGFUNC("ixgb_setup_fc");
/* Get the current control reg 0 settings */
ctrl_reg = IXGB_READ_REG(hw, CTRL0);
/* Clear the Receive Pause Enable and Transmit Pause Enable bits */
ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
/* The possible values of the "flow_control" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.type) {
case ixgb_fc_none: /* 0 */
/* Set CMDC bit to disable Rx Flow control */
ctrl_reg |= (IXGB_CTRL0_CMDC);
break;
case ixgb_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled.
*/
ctrl_reg |= (IXGB_CTRL0_RPE);
break;
case ixgb_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
ctrl_reg |= (IXGB_CTRL0_TPE);
pap_reg = hw->fc.pause_time;
break;
case ixgb_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
pap_reg = hw->fc.pause_time;
break;
default:
/* We should never get here. The value should be 0-3. */
DEBUGOUT("Flow control param set incorrectly\n");
ASSERT(0);
break;
}
/* Write the new settings */
IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
if (pap_reg != 0) {
IXGB_WRITE_REG(hw, PAP, pap_reg);
}
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if(!(hw->fc.type & ixgb_fc_tx_pause)) {
IXGB_WRITE_REG(hw, FCRTL, 0);
IXGB_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of XON
* frames. */
if(hw->fc.send_xon) {
IXGB_WRITE_REG(hw, FCRTL,
(hw->fc.low_water | IXGB_FCRTL_XONE));
} else {
IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
}
IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
}
return (status);
}
/******************************************************************************
* Reads a word from a device over the Management Data Interface (MDI) bus.
* This interface is used to manage Physical layer devices.
*
* hw - Struct containing variables accessed by hw code
* reg_address - Offset of device register being read.
* phy_address - Address of device on MDI.
*
* Returns: Data word (16 bits) from MDI device.
*
* The 82597EX has support for several MDI access methods. This routine
* uses the new protocol MDI Single Command and Address Operation.
* This requires that first an address cycle command is sent, followed by a
* read command.
*****************************************************************************/
uint16_t
ixgb_read_phy_reg(struct ixgb_hw *hw,
uint32_t reg_address,
uint32_t phy_address,
uint32_t device_type)
{
uint32_t i;
uint32_t data;
uint32_t command = 0;
ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
/* Setup and write the address cycle command */
command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
(phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
(IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
IXGB_WRITE_REG(hw, MSCA, command);
/**************************************************************
** Check every 10 usec to see if the address cycle completed
** The COMMAND bit will clear when the operation is complete.
** This may take as long as 64 usecs (we'll wait 100 usecs max)
** from the CPU Write to the Ready bit assertion.
**************************************************************/
for(i = 0; i < 10; i++)
{
udelay(10);
command = IXGB_READ_REG(hw, MSCA);
if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
break;
}
ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
/* Address cycle complete, setup and write the read command */
command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
(phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
(IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
IXGB_WRITE_REG(hw, MSCA, command);
/**************************************************************
** Check every 10 usec to see if the read command completed
** The COMMAND bit will clear when the operation is complete.
** The read may take as long as 64 usecs (we'll wait 100 usecs max)
** from the CPU Write to the Ready bit assertion.
**************************************************************/
for(i = 0; i < 10; i++)
{
udelay(10);
command = IXGB_READ_REG(hw, MSCA);
if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
break;
}
ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
/* Operation is complete, get the data from the MDIO Read/Write Data
* register and return.
*/
data = IXGB_READ_REG(hw, MSRWD);
data >>= IXGB_MSRWD_READ_DATA_SHIFT;
return((uint16_t) data);
}
/******************************************************************************
* Writes a word to a device over the Management Data Interface (MDI) bus.
* This interface is used to manage Physical layer devices.
*
* hw - Struct containing variables accessed by hw code
* reg_address - Offset of device register being read.
* phy_address - Address of device on MDI.
* device_type - Also known as the Device ID or DID.
* data - 16-bit value to be written
*
* Returns: void.
*
* The 82597EX has support for several MDI access methods. This routine
* uses the new protocol MDI Single Command and Address Operation.
* This requires that first an address cycle command is sent, followed by a
* write command.
*****************************************************************************/
void
ixgb_write_phy_reg(struct ixgb_hw *hw,
uint32_t reg_address,
uint32_t phy_address,
uint32_t device_type,
uint16_t data)
{
uint32_t i;
uint32_t command = 0;
ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
/* Put the data in the MDIO Read/Write Data register */
IXGB_WRITE_REG(hw, MSRWD, (uint32_t)data);
/* Setup and write the address cycle command */
command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
(phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
(IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
IXGB_WRITE_REG(hw, MSCA, command);
/**************************************************************
** Check every 10 usec to see if the address cycle completed
** The COMMAND bit will clear when the operation is complete.
** This may take as long as 64 usecs (we'll wait 100 usecs max)
** from the CPU Write to the Ready bit assertion.
**************************************************************/
for(i = 0; i < 10; i++)
{
udelay(10);
command = IXGB_READ_REG(hw, MSCA);
if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
break;
}
ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
/* Address cycle complete, setup and write the write command */
command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
(device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
(phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
(IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
IXGB_WRITE_REG(hw, MSCA, command);
/**************************************************************
** Check every 10 usec to see if the read command completed
** The COMMAND bit will clear when the operation is complete.
** The write may take as long as 64 usecs (we'll wait 100 usecs max)
** from the CPU Write to the Ready bit assertion.
**************************************************************/
for(i = 0; i < 10; i++)
{
udelay(10);
command = IXGB_READ_REG(hw, MSCA);
if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
break;
}
ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
/* Operation is complete, return. */
}
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
* hw - Struct containing variables accessed by hw code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
void
ixgb_check_for_link(struct ixgb_hw *hw)
{
uint32_t status_reg;
uint32_t xpcss_reg;
DEBUGFUNC("ixgb_check_for_link");
xpcss_reg = IXGB_READ_REG(hw, XPCSS);
status_reg = IXGB_READ_REG(hw, STATUS);
if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
(status_reg & IXGB_STATUS_LU)) {
hw->link_up = TRUE;
} else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
(status_reg & IXGB_STATUS_LU)) {
DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
hw->link_up = ixgb_link_reset(hw);
} else {
/*
* 82597EX errata. Since the lane deskew problem may prevent
* link, reset the link before reporting link down.
*/
hw->link_up = ixgb_link_reset(hw);
}
/* Anything else for 10 Gig?? */
}
/******************************************************************************
* Check for a bad link condition that may have occured.
* The indication is that the RFC / LFC registers may be incrementing
* continually. A full adapter reset is required to recover.
*
* hw - Struct containing variables accessed by hw code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
boolean_t ixgb_check_for_bad_link(struct ixgb_hw *hw)
{
uint32_t newLFC, newRFC;
boolean_t bad_link_returncode = FALSE;
if (hw->phy_type == ixgb_phy_type_txn17401) {
newLFC = IXGB_READ_REG(hw, LFC);
newRFC = IXGB_READ_REG(hw, RFC);
if ((hw->lastLFC + 250 < newLFC)
|| (hw->lastRFC + 250 < newRFC)) {
DEBUGOUT
("BAD LINK! too many LFC/RFC since last check\n");
bad_link_returncode = TRUE;
}
hw->lastLFC = newLFC;
hw->lastRFC = newRFC;
}
return bad_link_returncode;
}
/******************************************************************************
* Clears all hardware statistics counters.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
{
volatile uint32_t temp_reg;
DEBUGFUNC("ixgb_clear_hw_cntrs");
/* if we are stopped or resetting exit gracefully */
if(hw->adapter_stopped) {
DEBUGOUT("Exiting because the adapter is stopped!!!\n");
return;
}
temp_reg = IXGB_READ_REG(hw, TPRL);
temp_reg = IXGB_READ_REG(hw, TPRH);
temp_reg = IXGB_READ_REG(hw, GPRCL);
temp_reg = IXGB_READ_REG(hw, GPRCH);
temp_reg = IXGB_READ_REG(hw, BPRCL);
temp_reg = IXGB_READ_REG(hw, BPRCH);
temp_reg = IXGB_READ_REG(hw, MPRCL);
temp_reg = IXGB_READ_REG(hw, MPRCH);
temp_reg = IXGB_READ_REG(hw, UPRCL);
temp_reg = IXGB_READ_REG(hw, UPRCH);
temp_reg = IXGB_READ_REG(hw, VPRCL);
temp_reg = IXGB_READ_REG(hw, VPRCH);
temp_reg = IXGB_READ_REG(hw, JPRCL);
temp_reg = IXGB_READ_REG(hw, JPRCH);
temp_reg = IXGB_READ_REG(hw, GORCL);
temp_reg = IXGB_READ_REG(hw, GORCH);
temp_reg = IXGB_READ_REG(hw, TORL);
temp_reg = IXGB_READ_REG(hw, TORH);
temp_reg = IXGB_READ_REG(hw, RNBC);
temp_reg = IXGB_READ_REG(hw, RUC);
temp_reg = IXGB_READ_REG(hw, ROC);
temp_reg = IXGB_READ_REG(hw, RLEC);
temp_reg = IXGB_READ_REG(hw, CRCERRS);
temp_reg = IXGB_READ_REG(hw, ICBC);
temp_reg = IXGB_READ_REG(hw, ECBC);
temp_reg = IXGB_READ_REG(hw, MPC);
temp_reg = IXGB_READ_REG(hw, TPTL);
temp_reg = IXGB_READ_REG(hw, TPTH);
temp_reg = IXGB_READ_REG(hw, GPTCL);
temp_reg = IXGB_READ_REG(hw, GPTCH);
temp_reg = IXGB_READ_REG(hw, BPTCL);
temp_reg = IXGB_READ_REG(hw, BPTCH);
temp_reg = IXGB_READ_REG(hw, MPTCL);
temp_reg = IXGB_READ_REG(hw, MPTCH);
temp_reg = IXGB_READ_REG(hw, UPTCL);
temp_reg = IXGB_READ_REG(hw, UPTCH);
temp_reg = IXGB_READ_REG(hw, VPTCL);
temp_reg = IXGB_READ_REG(hw, VPTCH);
temp_reg = IXGB_READ_REG(hw, JPTCL);
temp_reg = IXGB_READ_REG(hw, JPTCH);
temp_reg = IXGB_READ_REG(hw, GOTCL);
temp_reg = IXGB_READ_REG(hw, GOTCH);
temp_reg = IXGB_READ_REG(hw, TOTL);
temp_reg = IXGB_READ_REG(hw, TOTH);
temp_reg = IXGB_READ_REG(hw, DC);
temp_reg = IXGB_READ_REG(hw, PLT64C);
temp_reg = IXGB_READ_REG(hw, TSCTC);
temp_reg = IXGB_READ_REG(hw, TSCTFC);
temp_reg = IXGB_READ_REG(hw, IBIC);
temp_reg = IXGB_READ_REG(hw, RFC);
temp_reg = IXGB_READ_REG(hw, LFC);
temp_reg = IXGB_READ_REG(hw, PFRC);
temp_reg = IXGB_READ_REG(hw, PFTC);
temp_reg = IXGB_READ_REG(hw, MCFRC);
temp_reg = IXGB_READ_REG(hw, MCFTC);
temp_reg = IXGB_READ_REG(hw, XONRXC);
temp_reg = IXGB_READ_REG(hw, XONTXC);
temp_reg = IXGB_READ_REG(hw, XOFFRXC);
temp_reg = IXGB_READ_REG(hw, XOFFTXC);
temp_reg = IXGB_READ_REG(hw, RJC);
return;
}
/******************************************************************************
* Turns on the software controllable LED
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
ixgb_led_on(struct ixgb_hw *hw)
{
uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
/* To turn on the LED, clear software-definable pin 0 (SDP0). */
ctrl0_reg &= ~IXGB_CTRL0_SDP0;
IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
return;
}
/******************************************************************************
* Turns off the software controllable LED
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
ixgb_led_off(struct ixgb_hw *hw)
{
uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
/* To turn off the LED, set software-definable pin 0 (SDP0). */
ctrl0_reg |= IXGB_CTRL0_SDP0;
IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
return;
}
/******************************************************************************
* Gets the current PCI bus type, speed, and width of the hardware
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
ixgb_get_bus_info(struct ixgb_hw *hw)
{
uint32_t status_reg;
status_reg = IXGB_READ_REG(hw, STATUS);
hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
ixgb_bus_type_pcix : ixgb_bus_type_pci;
if (hw->bus.type == ixgb_bus_type_pci) {
hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
ixgb_bus_speed_66 : ixgb_bus_speed_33;
} else {
switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
case IXGB_STATUS_PCIX_SPD_66:
hw->bus.speed = ixgb_bus_speed_66;
break;
case IXGB_STATUS_PCIX_SPD_100:
hw->bus.speed = ixgb_bus_speed_100;
break;
case IXGB_STATUS_PCIX_SPD_133:
hw->bus.speed = ixgb_bus_speed_133;
break;
default:
hw->bus.speed = ixgb_bus_speed_reserved;
break;
}
}
hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
ixgb_bus_width_64 : ixgb_bus_width_32;
return;
}
/******************************************************************************
* Tests a MAC address to ensure it is a valid Individual Address
*
* mac_addr - pointer to MAC address.
*
*****************************************************************************/
boolean_t
mac_addr_valid(uint8_t *mac_addr)
{
boolean_t is_valid = TRUE;
DEBUGFUNC("mac_addr_valid");
/* Make sure it is not a multicast address */
if (IS_MULTICAST(mac_addr)) {
DEBUGOUT("MAC address is multicast\n");
is_valid = FALSE;
}
/* Not a broadcast address */
else if (IS_BROADCAST(mac_addr)) {
DEBUGOUT("MAC address is broadcast\n");
is_valid = FALSE;
}
/* Reject the zero address */
else if (mac_addr[0] == 0 &&
mac_addr[1] == 0 &&
mac_addr[2] == 0 &&
mac_addr[3] == 0 &&
mac_addr[4] == 0 &&
mac_addr[5] == 0) {
DEBUGOUT("MAC address is all zeros\n");
is_valid = FALSE;
}
return (is_valid);
}
/******************************************************************************
* Resets the 10GbE link. Waits the settle time and returns the state of
* the link.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
boolean_t
ixgb_link_reset(struct ixgb_hw *hw)
{
boolean_t link_status = FALSE;
uint8_t wait_retries = MAX_RESET_ITERATIONS;
uint8_t lrst_retries = MAX_RESET_ITERATIONS;
do {
/* Reset the link */
IXGB_WRITE_REG(hw, CTRL0,
IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
/* Wait for link-up and lane re-alignment */
do {
udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
link_status =
((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
&& (IXGB_READ_REG(hw, XPCSS) &
IXGB_XPCSS_ALIGN_STATUS)) ? TRUE : FALSE;
} while (!link_status && --wait_retries);
} while (!link_status && --lrst_retries);
return link_status;
}
/******************************************************************************
* Resets the 10GbE optics module.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
ixgb_optics_reset(struct ixgb_hw *hw)
{
if (hw->phy_type == ixgb_phy_type_txn17401) {
uint16_t mdio_reg;
ixgb_write_phy_reg(hw,
MDIO_PMA_PMD_CR1,
IXGB_PHY_ADDRESS,
MDIO_PMA_PMD_DID,
MDIO_PMA_PMD_CR1_RESET);
mdio_reg = ixgb_read_phy_reg( hw,
MDIO_PMA_PMD_CR1,
IXGB_PHY_ADDRESS,
MDIO_PMA_PMD_DID);
}
return;
}