kernel-fxtec-pro1x/sound/soc/at91/at91-ssc.c
Patrik Sevallius e3a2efa67a [ALSA] soc at91 minor bug fixes
Found these two bugs while browsing through the code.  The first one is
a cut-n-paste bug, instead of disabling the clock when request_irq()
fails, it enabled it once more.  The second one fixes a debug printout,
AT91_SSC_IER is write only, AT91_SSC_IMR is readable (the printed string
actually says imr).

Frank Mandarino was busy so he asked me to send these to this list.

/Patrik

Signed-off-by: Patrik Sevallius <patrik.sevallius@enea.com>
Acked-by: Frank Mandarino <fmandarino@endrelia.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2008-05-08 13:08:58 +02:00

791 lines
22 KiB
C

/*
* at91-ssc.c -- ALSA SoC AT91 SSC Audio Layer Platform driver
*
* Author: Frank Mandarino <fmandarino@endrelia.com>
* Endrelia Technologies Inc.
*
* Based on pxa2xx Platform drivers by
* Liam Girdwood <liam.girdwood@wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/atmel_pdc.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <asm/arch/hardware.h>
#include <asm/arch/at91_pmc.h>
#include <asm/arch/at91_ssc.h>
#include "at91-pcm.h"
#include "at91-ssc.h"
#if 0
#define DBG(x...) printk(KERN_DEBUG "at91-ssc:" x)
#else
#define DBG(x...)
#endif
#if defined(CONFIG_ARCH_AT91SAM9260)
#define NUM_SSC_DEVICES 1
#else
#define NUM_SSC_DEVICES 3
#endif
/*
* SSC PDC registers required by the PCM DMA engine.
*/
static struct at91_pdc_regs pdc_tx_reg = {
.xpr = ATMEL_PDC_TPR,
.xcr = ATMEL_PDC_TCR,
.xnpr = ATMEL_PDC_TNPR,
.xncr = ATMEL_PDC_TNCR,
};
static struct at91_pdc_regs pdc_rx_reg = {
.xpr = ATMEL_PDC_RPR,
.xcr = ATMEL_PDC_RCR,
.xnpr = ATMEL_PDC_RNPR,
.xncr = ATMEL_PDC_RNCR,
};
/*
* SSC & PDC status bits for transmit and receive.
*/
static struct at91_ssc_mask ssc_tx_mask = {
.ssc_enable = AT91_SSC_TXEN,
.ssc_disable = AT91_SSC_TXDIS,
.ssc_endx = AT91_SSC_ENDTX,
.ssc_endbuf = AT91_SSC_TXBUFE,
.pdc_enable = ATMEL_PDC_TXTEN,
.pdc_disable = ATMEL_PDC_TXTDIS,
};
static struct at91_ssc_mask ssc_rx_mask = {
.ssc_enable = AT91_SSC_RXEN,
.ssc_disable = AT91_SSC_RXDIS,
.ssc_endx = AT91_SSC_ENDRX,
.ssc_endbuf = AT91_SSC_RXBUFF,
.pdc_enable = ATMEL_PDC_RXTEN,
.pdc_disable = ATMEL_PDC_RXTDIS,
};
/*
* DMA parameters.
*/
static struct at91_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
{{
.name = "SSC0 PCM out",
.pdc = &pdc_tx_reg,
.mask = &ssc_tx_mask,
},
{
.name = "SSC0 PCM in",
.pdc = &pdc_rx_reg,
.mask = &ssc_rx_mask,
}},
#if NUM_SSC_DEVICES == 3
{{
.name = "SSC1 PCM out",
.pdc = &pdc_tx_reg,
.mask = &ssc_tx_mask,
},
{
.name = "SSC1 PCM in",
.pdc = &pdc_rx_reg,
.mask = &ssc_rx_mask,
}},
{{
.name = "SSC2 PCM out",
.pdc = &pdc_tx_reg,
.mask = &ssc_tx_mask,
},
{
.name = "SSC2 PCM in",
.pdc = &pdc_rx_reg,
.mask = &ssc_rx_mask,
}},
#endif
};
struct at91_ssc_state {
u32 ssc_cmr;
u32 ssc_rcmr;
u32 ssc_rfmr;
u32 ssc_tcmr;
u32 ssc_tfmr;
u32 ssc_sr;
u32 ssc_imr;
};
static struct at91_ssc_info {
char *name;
struct at91_ssc_periph ssc;
spinlock_t lock; /* lock for dir_mask */
unsigned short dir_mask; /* 0=unused, 1=playback, 2=capture */
unsigned short initialized; /* 1=SSC has been initialized */
unsigned short daifmt;
unsigned short cmr_div;
unsigned short tcmr_period;
unsigned short rcmr_period;
struct at91_pcm_dma_params *dma_params[2];
struct at91_ssc_state ssc_state;
} ssc_info[NUM_SSC_DEVICES] = {
{
.name = "ssc0",
.lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
.dir_mask = 0,
.initialized = 0,
},
#if NUM_SSC_DEVICES == 3
{
.name = "ssc1",
.lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
.dir_mask = 0,
.initialized = 0,
},
{
.name = "ssc2",
.lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
.dir_mask = 0,
.initialized = 0,
},
#endif
};
static unsigned int at91_ssc_sysclk;
/*
* SSC interrupt handler. Passes PDC interrupts to the DMA
* interrupt handler in the PCM driver.
*/
static irqreturn_t at91_ssc_interrupt(int irq, void *dev_id)
{
struct at91_ssc_info *ssc_p = dev_id;
struct at91_pcm_dma_params *dma_params;
u32 ssc_sr;
int i;
ssc_sr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR)
& at91_ssc_read(ssc_p->ssc.base + AT91_SSC_IMR);
/*
* Loop through the substreams attached to this SSC. If
* a DMA-related interrupt occurred on that substream, call
* the DMA interrupt handler function, if one has been
* registered in the dma_params structure by the PCM driver.
*/
for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
dma_params = ssc_p->dma_params[i];
if (dma_params != NULL && dma_params->dma_intr_handler != NULL &&
(ssc_sr &
(dma_params->mask->ssc_endx | dma_params->mask->ssc_endbuf)))
dma_params->dma_intr_handler(ssc_sr, dma_params->substream);
}
return IRQ_HANDLED;
}
/*
* Startup. Only that one substream allowed in each direction.
*/
static int at91_ssc_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct at91_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id];
int dir_mask;
DBG("ssc_startup: SSC_SR=0x%08lx\n",
at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR));
dir_mask = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0x1 : 0x2;
spin_lock_irq(&ssc_p->lock);
if (ssc_p->dir_mask & dir_mask) {
spin_unlock_irq(&ssc_p->lock);
return -EBUSY;
}
ssc_p->dir_mask |= dir_mask;
spin_unlock_irq(&ssc_p->lock);
return 0;
}
/*
* Shutdown. Clear DMA parameters and shutdown the SSC if there
* are no other substreams open.
*/
static void at91_ssc_shutdown(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct at91_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id];
struct at91_pcm_dma_params *dma_params;
int dir, dir_mask;
dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
dma_params = ssc_p->dma_params[dir];
if (dma_params != NULL) {
at91_ssc_write(dma_params->ssc_base + AT91_SSC_CR,
dma_params->mask->ssc_disable);
DBG("%s disabled SSC_SR=0x%08lx\n", (dir ? "receive" : "transmit"),
at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR));
dma_params->ssc_base = NULL;
dma_params->substream = NULL;
ssc_p->dma_params[dir] = NULL;
}
dir_mask = 1 << dir;
spin_lock_irq(&ssc_p->lock);
ssc_p->dir_mask &= ~dir_mask;
if (!ssc_p->dir_mask) {
/* Shutdown the SSC clock. */
DBG("Stopping pid %d clock\n", ssc_p->ssc.pid);
at91_sys_write(AT91_PMC_PCDR, 1<<ssc_p->ssc.pid);
if (ssc_p->initialized) {
free_irq(ssc_p->ssc.pid, ssc_p);
ssc_p->initialized = 0;
}
/* Reset the SSC */
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR, AT91_SSC_SWRST);
/* Clear the SSC dividers */
ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
}
spin_unlock_irq(&ssc_p->lock);
}
/*
* Record the SSC system clock rate.
*/
static int at91_ssc_set_dai_sysclk(struct snd_soc_cpu_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
/*
* The only clock supplied to the SSC is the AT91 master clock,
* which is only used if the SSC is generating BCLK and/or
* LRC clocks.
*/
switch (clk_id) {
case AT91_SYSCLK_MCK:
at91_ssc_sysclk = freq;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Record the DAI format for use in hw_params().
*/
static int at91_ssc_set_dai_fmt(struct snd_soc_cpu_dai *cpu_dai,
unsigned int fmt)
{
struct at91_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
ssc_p->daifmt = fmt;
return 0;
}
/*
* Record SSC clock dividers for use in hw_params().
*/
static int at91_ssc_set_dai_clkdiv(struct snd_soc_cpu_dai *cpu_dai,
int div_id, int div)
{
struct at91_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
switch (div_id) {
case AT91SSC_CMR_DIV:
/*
* The same master clock divider is used for both
* transmit and receive, so if a value has already
* been set, it must match this value.
*/
if (ssc_p->cmr_div == 0)
ssc_p->cmr_div = div;
else
if (div != ssc_p->cmr_div)
return -EBUSY;
break;
case AT91SSC_TCMR_PERIOD:
ssc_p->tcmr_period = div;
break;
case AT91SSC_RCMR_PERIOD:
ssc_p->rcmr_period = div;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Configure the SSC.
*/
static int at91_ssc_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
int id = rtd->dai->cpu_dai->id;
struct at91_ssc_info *ssc_p = &ssc_info[id];
struct at91_pcm_dma_params *dma_params;
int dir, channels, bits;
u32 tfmr, rfmr, tcmr, rcmr;
int start_event;
int ret;
/*
* Currently, there is only one set of dma params for
* each direction. If more are added, this code will
* have to be changed to select the proper set.
*/
dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
dma_params = &ssc_dma_params[id][dir];
dma_params->ssc_base = ssc_p->ssc.base;
dma_params->substream = substream;
ssc_p->dma_params[dir] = dma_params;
/*
* The cpu_dai->dma_data field is only used to communicate the
* appropriate DMA parameters to the pcm driver hw_params()
* function. It should not be used for other purposes
* as it is common to all substreams.
*/
rtd->dai->cpu_dai->dma_data = dma_params;
channels = params_channels(params);
/*
* Determine sample size in bits and the PDC increment.
*/
switch(params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
bits = 8;
dma_params->pdc_xfer_size = 1;
break;
case SNDRV_PCM_FORMAT_S16_LE:
bits = 16;
dma_params->pdc_xfer_size = 2;
break;
case SNDRV_PCM_FORMAT_S24_LE:
bits = 24;
dma_params->pdc_xfer_size = 4;
break;
case SNDRV_PCM_FORMAT_S32_LE:
bits = 32;
dma_params->pdc_xfer_size = 4;
break;
default:
printk(KERN_WARNING "at91-ssc: unsupported PCM format");
return -EINVAL;
}
/*
* The SSC only supports up to 16-bit samples in I2S format, due
* to the size of the Frame Mode Register FSLEN field.
*/
if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S
&& bits > 16) {
printk(KERN_WARNING
"at91-ssc: sample size %d is too large for I2S\n", bits);
return -EINVAL;
}
/*
* Compute SSC register settings.
*/
switch (ssc_p->daifmt
& (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
/*
* I2S format, SSC provides BCLK and LRC clocks.
*
* The SSC transmit and receive clocks are generated from the
* MCK divider, and the BCLK signal is output on the SSC TK line.
*/
rcmr = (( ssc_p->rcmr_period << 24) & AT91_SSC_PERIOD)
| (( 1 << 16) & AT91_SSC_STTDLY)
| (( AT91_SSC_START_FALLING_RF ) & AT91_SSC_START)
| (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI)
| (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO)
| (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS);
rfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE)
| (( AT91_SSC_FSOS_NEGATIVE ) & AT91_SSC_FSOS)
| (((bits - 1) << 16) & AT91_SSC_FSLEN)
| (((channels - 1) << 8) & AT91_SSC_DATNB)
| (( 1 << 7) & AT91_SSC_MSBF)
| (( 0 << 5) & AT91_SSC_LOOP)
| (((bits - 1) << 0) & AT91_SSC_DATALEN);
tcmr = (( ssc_p->tcmr_period << 24) & AT91_SSC_PERIOD)
| (( 1 << 16) & AT91_SSC_STTDLY)
| (( AT91_SSC_START_FALLING_RF ) & AT91_SSC_START)
| (( AT91_SSC_CKI_FALLING ) & AT91_SSC_CKI)
| (( AT91_SSC_CKO_CONTINUOUS ) & AT91_SSC_CKO)
| (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS);
tfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE)
| (( 0 << 23) & AT91_SSC_FSDEN)
| (( AT91_SSC_FSOS_NEGATIVE ) & AT91_SSC_FSOS)
| (((bits - 1) << 16) & AT91_SSC_FSLEN)
| (((channels - 1) << 8) & AT91_SSC_DATNB)
| (( 1 << 7) & AT91_SSC_MSBF)
| (( 0 << 5) & AT91_SSC_DATDEF)
| (((bits - 1) << 0) & AT91_SSC_DATALEN);
break;
case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
/*
* I2S format, CODEC supplies BCLK and LRC clocks.
*
* The SSC transmit clock is obtained from the BCLK signal on
* on the TK line, and the SSC receive clock is generated from the
* transmit clock.
*
* For single channel data, one sample is transferred on the falling
* edge of the LRC clock. For two channel data, one sample is
* transferred on both edges of the LRC clock.
*/
start_event = channels == 1
? AT91_SSC_START_FALLING_RF
: AT91_SSC_START_EDGE_RF;
rcmr = (( 0 << 24) & AT91_SSC_PERIOD)
| (( 1 << 16) & AT91_SSC_STTDLY)
| (( start_event ) & AT91_SSC_START)
| (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI)
| (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO)
| (( AT91_SSC_CKS_CLOCK ) & AT91_SSC_CKS);
rfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE)
| (( AT91_SSC_FSOS_NONE ) & AT91_SSC_FSOS)
| (( 0 << 16) & AT91_SSC_FSLEN)
| (( 0 << 8) & AT91_SSC_DATNB)
| (( 1 << 7) & AT91_SSC_MSBF)
| (( 0 << 5) & AT91_SSC_LOOP)
| (((bits - 1) << 0) & AT91_SSC_DATALEN);
tcmr = (( 0 << 24) & AT91_SSC_PERIOD)
| (( 1 << 16) & AT91_SSC_STTDLY)
| (( start_event ) & AT91_SSC_START)
| (( AT91_SSC_CKI_FALLING ) & AT91_SSC_CKI)
| (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO)
| (( AT91_SSC_CKS_PIN ) & AT91_SSC_CKS);
tfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE)
| (( 0 << 23) & AT91_SSC_FSDEN)
| (( AT91_SSC_FSOS_NONE ) & AT91_SSC_FSOS)
| (( 0 << 16) & AT91_SSC_FSLEN)
| (( 0 << 8) & AT91_SSC_DATNB)
| (( 1 << 7) & AT91_SSC_MSBF)
| (( 0 << 5) & AT91_SSC_DATDEF)
| (((bits - 1) << 0) & AT91_SSC_DATALEN);
break;
case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
/*
* DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
*
* The SSC transmit and receive clocks are generated from the
* MCK divider, and the BCLK signal is output on the SSC TK line.
*/
rcmr = (( ssc_p->rcmr_period << 24) & AT91_SSC_PERIOD)
| (( 1 << 16) & AT91_SSC_STTDLY)
| (( AT91_SSC_START_RISING_RF ) & AT91_SSC_START)
| (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI)
| (( AT91_SSC_CKO_NONE ) & AT91_SSC_CKO)
| (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS);
rfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE)
| (( AT91_SSC_FSOS_POSITIVE ) & AT91_SSC_FSOS)
| (( 0 << 16) & AT91_SSC_FSLEN)
| (((channels - 1) << 8) & AT91_SSC_DATNB)
| (( 1 << 7) & AT91_SSC_MSBF)
| (( 0 << 5) & AT91_SSC_LOOP)
| (((bits - 1) << 0) & AT91_SSC_DATALEN);
tcmr = (( ssc_p->tcmr_period << 24) & AT91_SSC_PERIOD)
| (( 1 << 16) & AT91_SSC_STTDLY)
| (( AT91_SSC_START_RISING_RF ) & AT91_SSC_START)
| (( AT91_SSC_CK_RISING ) & AT91_SSC_CKI)
| (( AT91_SSC_CKO_CONTINUOUS ) & AT91_SSC_CKO)
| (( AT91_SSC_CKS_DIV ) & AT91_SSC_CKS);
tfmr = (( AT91_SSC_FSEDGE_POSITIVE ) & AT91_SSC_FSEDGE)
| (( 0 << 23) & AT91_SSC_FSDEN)
| (( AT91_SSC_FSOS_POSITIVE ) & AT91_SSC_FSOS)
| (( 0 << 16) & AT91_SSC_FSLEN)
| (((channels - 1) << 8) & AT91_SSC_DATNB)
| (( 1 << 7) & AT91_SSC_MSBF)
| (( 0 << 5) & AT91_SSC_DATDEF)
| (((bits - 1) << 0) & AT91_SSC_DATALEN);
break;
case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
default:
printk(KERN_WARNING "at91-ssc: unsupported DAI format 0x%x.\n",
ssc_p->daifmt);
return -EINVAL;
break;
}
DBG("RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", rcmr, rfmr, tcmr, tfmr);
if (!ssc_p->initialized) {
/* Enable PMC peripheral clock for this SSC */
DBG("Starting pid %d clock\n", ssc_p->ssc.pid);
at91_sys_write(AT91_PMC_PCER, 1<<ssc_p->ssc.pid);
/* Reset the SSC and its PDC registers */
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR, AT91_SSC_SWRST);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RPR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RCR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RNPR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_RNCR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TPR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TCR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TNPR, 0);
at91_ssc_write(ssc_p->ssc.base + ATMEL_PDC_TNCR, 0);
if ((ret = request_irq(ssc_p->ssc.pid, at91_ssc_interrupt,
0, ssc_p->name, ssc_p)) < 0) {
printk(KERN_WARNING "at91-ssc: request_irq failure\n");
DBG("Stopping pid %d clock\n", ssc_p->ssc.pid);
at91_sys_write(AT91_PMC_PCDR, 1<<ssc_p->ssc.pid);
return ret;
}
ssc_p->initialized = 1;
}
/* set SSC clock mode register */
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CMR, ssc_p->cmr_div);
/* set receive clock mode and format */
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RCMR, rcmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RFMR, rfmr);
/* set transmit clock mode and format */
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TCMR, tcmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TFMR, tfmr);
DBG("hw_params: SSC initialized\n");
return 0;
}
static int at91_ssc_prepare(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct at91_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id];
struct at91_pcm_dma_params *dma_params;
int dir;
dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
dma_params = ssc_p->dma_params[dir];
at91_ssc_write(dma_params->ssc_base + AT91_SSC_CR,
dma_params->mask->ssc_enable);
DBG("%s enabled SSC_SR=0x%08lx\n", dir ? "receive" : "transmit",
at91_ssc_read(dma_params->ssc_base + AT91_SSC_SR));
return 0;
}
#ifdef CONFIG_PM
static int at91_ssc_suspend(struct platform_device *pdev,
struct snd_soc_cpu_dai *cpu_dai)
{
struct at91_ssc_info *ssc_p;
if(!cpu_dai->active)
return 0;
ssc_p = &ssc_info[cpu_dai->id];
/* Save the status register before disabling transmit and receive. */
ssc_p->ssc_state.ssc_sr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_SR);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR,
AT91_SSC_TXDIS | AT91_SSC_RXDIS);
/* Save the current interrupt mask, then disable unmasked interrupts. */
ssc_p->ssc_state.ssc_imr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_IMR);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_IDR, ssc_p->ssc_state.ssc_imr);
ssc_p->ssc_state.ssc_cmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_CMR);
ssc_p->ssc_state.ssc_rcmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_RCMR);
ssc_p->ssc_state.ssc_rfmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_RFMR);
ssc_p->ssc_state.ssc_tcmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_TCMR);
ssc_p->ssc_state.ssc_tfmr = at91_ssc_read(ssc_p->ssc.base + AT91_SSC_TFMR);
return 0;
}
static int at91_ssc_resume(struct platform_device *pdev,
struct snd_soc_cpu_dai *cpu_dai)
{
struct at91_ssc_info *ssc_p;
if(!cpu_dai->active)
return 0;
ssc_p = &ssc_info[cpu_dai->id];
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TFMR, ssc_p->ssc_state.ssc_tfmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_TCMR, ssc_p->ssc_state.ssc_tcmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RFMR, ssc_p->ssc_state.ssc_rfmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_RCMR, ssc_p->ssc_state.ssc_rcmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CMR, ssc_p->ssc_state.ssc_cmr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_IER, ssc_p->ssc_state.ssc_imr);
at91_ssc_write(ssc_p->ssc.base + AT91_SSC_CR,
((ssc_p->ssc_state.ssc_sr & AT91_SSC_RXENA) ? AT91_SSC_RXEN : 0) |
((ssc_p->ssc_state.ssc_sr & AT91_SSC_TXENA) ? AT91_SSC_TXEN : 0));
return 0;
}
#else
#define at91_ssc_suspend NULL
#define at91_ssc_resume NULL
#endif
#define AT91_SSC_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 |\
SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |\
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |\
SNDRV_PCM_RATE_96000)
#define AT91_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
struct snd_soc_cpu_dai at91_ssc_dai[NUM_SSC_DEVICES] = {
{ .name = "at91-ssc0",
.id = 0,
.type = SND_SOC_DAI_PCM,
.suspend = at91_ssc_suspend,
.resume = at91_ssc_resume,
.playback = {
.channels_min = 1,
.channels_max = 2,
.rates = AT91_SSC_RATES,
.formats = AT91_SSC_FORMATS,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.rates = AT91_SSC_RATES,
.formats = AT91_SSC_FORMATS,},
.ops = {
.startup = at91_ssc_startup,
.shutdown = at91_ssc_shutdown,
.prepare = at91_ssc_prepare,
.hw_params = at91_ssc_hw_params,},
.dai_ops = {
.set_sysclk = at91_ssc_set_dai_sysclk,
.set_fmt = at91_ssc_set_dai_fmt,
.set_clkdiv = at91_ssc_set_dai_clkdiv,},
.private_data = &ssc_info[0].ssc,
},
#if NUM_SSC_DEVICES == 3
{ .name = "at91-ssc1",
.id = 1,
.type = SND_SOC_DAI_PCM,
.suspend = at91_ssc_suspend,
.resume = at91_ssc_resume,
.playback = {
.channels_min = 1,
.channels_max = 2,
.rates = AT91_SSC_RATES,
.formats = AT91_SSC_FORMATS,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.rates = AT91_SSC_RATES,
.formats = AT91_SSC_FORMATS,},
.ops = {
.startup = at91_ssc_startup,
.shutdown = at91_ssc_shutdown,
.prepare = at91_ssc_prepare,
.hw_params = at91_ssc_hw_params,},
.dai_ops = {
.set_sysclk = at91_ssc_set_dai_sysclk,
.set_fmt = at91_ssc_set_dai_fmt,
.set_clkdiv = at91_ssc_set_dai_clkdiv,},
.private_data = &ssc_info[1].ssc,
},
{ .name = "at91-ssc2",
.id = 2,
.type = SND_SOC_DAI_PCM,
.suspend = at91_ssc_suspend,
.resume = at91_ssc_resume,
.playback = {
.channels_min = 1,
.channels_max = 2,
.rates = AT91_SSC_RATES,
.formats = AT91_SSC_FORMATS,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.rates = AT91_SSC_RATES,
.formats = AT91_SSC_FORMATS,},
.ops = {
.startup = at91_ssc_startup,
.shutdown = at91_ssc_shutdown,
.prepare = at91_ssc_prepare,
.hw_params = at91_ssc_hw_params,},
.dai_ops = {
.set_sysclk = at91_ssc_set_dai_sysclk,
.set_fmt = at91_ssc_set_dai_fmt,
.set_clkdiv = at91_ssc_set_dai_clkdiv,},
.private_data = &ssc_info[2].ssc,
},
#endif
};
EXPORT_SYMBOL_GPL(at91_ssc_dai);
/* Module information */
MODULE_AUTHOR("Frank Mandarino, fmandarino@endrelia.com, www.endrelia.com");
MODULE_DESCRIPTION("AT91 SSC ASoC Interface");
MODULE_LICENSE("GPL");