kernel-fxtec-pro1x/fs/jffs2/fs.c
Randy Dunlap 16f7e0fe2e [PATCH] capable/capability.h (fs/)
fs: Use <linux/capability.h> where capable() is used.

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-11 18:42:13 -08:00

686 lines
18 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001-2003 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: fs.c,v 1.66 2005/09/27 13:17:29 dedekind Exp $
*
*/
#include <linux/capability.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/mtd/mtd.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/vfs.h>
#include <linux/crc32.h>
#include "nodelist.h"
static int jffs2_flash_setup(struct jffs2_sb_info *c);
static int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
{
struct jffs2_full_dnode *old_metadata, *new_metadata;
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_raw_inode *ri;
unsigned short dev;
unsigned char *mdata = NULL;
int mdatalen = 0;
unsigned int ivalid;
uint32_t phys_ofs, alloclen;
int ret;
D1(printk(KERN_DEBUG "jffs2_setattr(): ino #%lu\n", inode->i_ino));
ret = inode_change_ok(inode, iattr);
if (ret)
return ret;
/* Special cases - we don't want more than one data node
for these types on the medium at any time. So setattr
must read the original data associated with the node
(i.e. the device numbers or the target name) and write
it out again with the appropriate data attached */
if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
/* For these, we don't actually need to read the old node */
dev = old_encode_dev(inode->i_rdev);
mdata = (char *)&dev;
mdatalen = sizeof(dev);
D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen));
} else if (S_ISLNK(inode->i_mode)) {
mdatalen = f->metadata->size;
mdata = kmalloc(f->metadata->size, GFP_USER);
if (!mdata)
return -ENOMEM;
ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
if (ret) {
kfree(mdata);
return ret;
}
D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen));
}
ri = jffs2_alloc_raw_inode();
if (!ri) {
if (S_ISLNK(inode->i_mode))
kfree(mdata);
return -ENOMEM;
}
ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &phys_ofs, &alloclen,
ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
if (ret) {
jffs2_free_raw_inode(ri);
if (S_ISLNK(inode->i_mode & S_IFMT))
kfree(mdata);
return ret;
}
down(&f->sem);
ivalid = iattr->ia_valid;
ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
ri->ino = cpu_to_je32(inode->i_ino);
ri->version = cpu_to_je32(++f->highest_version);
ri->uid = cpu_to_je16((ivalid & ATTR_UID)?iattr->ia_uid:inode->i_uid);
ri->gid = cpu_to_je16((ivalid & ATTR_GID)?iattr->ia_gid:inode->i_gid);
if (ivalid & ATTR_MODE)
if (iattr->ia_mode & S_ISGID &&
!in_group_p(je16_to_cpu(ri->gid)) && !capable(CAP_FSETID))
ri->mode = cpu_to_jemode(iattr->ia_mode & ~S_ISGID);
else
ri->mode = cpu_to_jemode(iattr->ia_mode);
else
ri->mode = cpu_to_jemode(inode->i_mode);
ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
ri->offset = cpu_to_je32(0);
ri->csize = ri->dsize = cpu_to_je32(mdatalen);
ri->compr = JFFS2_COMPR_NONE;
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
/* It's an extension. Make it a hole node */
ri->compr = JFFS2_COMPR_ZERO;
ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
ri->offset = cpu_to_je32(inode->i_size);
}
ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
if (mdatalen)
ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
else
ri->data_crc = cpu_to_je32(0);
new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, phys_ofs, ALLOC_NORMAL);
if (S_ISLNK(inode->i_mode))
kfree(mdata);
if (IS_ERR(new_metadata)) {
jffs2_complete_reservation(c);
jffs2_free_raw_inode(ri);
up(&f->sem);
return PTR_ERR(new_metadata);
}
/* It worked. Update the inode */
inode->i_atime = ITIME(je32_to_cpu(ri->atime));
inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
inode->i_mode = jemode_to_cpu(ri->mode);
inode->i_uid = je16_to_cpu(ri->uid);
inode->i_gid = je16_to_cpu(ri->gid);
old_metadata = f->metadata;
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
jffs2_truncate_fragtree (c, &f->fragtree, iattr->ia_size);
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
jffs2_add_full_dnode_to_inode(c, f, new_metadata);
inode->i_size = iattr->ia_size;
f->metadata = NULL;
} else {
f->metadata = new_metadata;
}
if (old_metadata) {
jffs2_mark_node_obsolete(c, old_metadata->raw);
jffs2_free_full_dnode(old_metadata);
}
jffs2_free_raw_inode(ri);
up(&f->sem);
jffs2_complete_reservation(c);
/* We have to do the vmtruncate() without f->sem held, since
some pages may be locked and waiting for it in readpage().
We are protected from a simultaneous write() extending i_size
back past iattr->ia_size, because do_truncate() holds the
generic inode semaphore. */
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
vmtruncate(inode, iattr->ia_size);
return 0;
}
int jffs2_setattr(struct dentry *dentry, struct iattr *iattr)
{
return jffs2_do_setattr(dentry->d_inode, iattr);
}
int jffs2_statfs(struct super_block *sb, struct kstatfs *buf)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
unsigned long avail;
buf->f_type = JFFS2_SUPER_MAGIC;
buf->f_bsize = 1 << PAGE_SHIFT;
buf->f_blocks = c->flash_size >> PAGE_SHIFT;
buf->f_files = 0;
buf->f_ffree = 0;
buf->f_namelen = JFFS2_MAX_NAME_LEN;
spin_lock(&c->erase_completion_lock);
avail = c->dirty_size + c->free_size;
if (avail > c->sector_size * c->resv_blocks_write)
avail -= c->sector_size * c->resv_blocks_write;
else
avail = 0;
spin_unlock(&c->erase_completion_lock);
buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
return 0;
}
void jffs2_clear_inode (struct inode *inode)
{
/* We can forget about this inode for now - drop all
* the nodelists associated with it, etc.
*/
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
D1(printk(KERN_DEBUG "jffs2_clear_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode));
jffs2_do_clear_inode(c, f);
}
void jffs2_read_inode (struct inode *inode)
{
struct jffs2_inode_info *f;
struct jffs2_sb_info *c;
struct jffs2_raw_inode latest_node;
int ret;
D1(printk(KERN_DEBUG "jffs2_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
f = JFFS2_INODE_INFO(inode);
c = JFFS2_SB_INFO(inode->i_sb);
jffs2_init_inode_info(f);
down(&f->sem);
ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
if (ret) {
make_bad_inode(inode);
up(&f->sem);
return;
}
inode->i_mode = jemode_to_cpu(latest_node.mode);
inode->i_uid = je16_to_cpu(latest_node.uid);
inode->i_gid = je16_to_cpu(latest_node.gid);
inode->i_size = je32_to_cpu(latest_node.isize);
inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
inode->i_nlink = f->inocache->nlink;
inode->i_blksize = PAGE_SIZE;
inode->i_blocks = (inode->i_size + 511) >> 9;
switch (inode->i_mode & S_IFMT) {
jint16_t rdev;
case S_IFLNK:
inode->i_op = &jffs2_symlink_inode_operations;
break;
case S_IFDIR:
{
struct jffs2_full_dirent *fd;
for (fd=f->dents; fd; fd = fd->next) {
if (fd->type == DT_DIR && fd->ino)
inode->i_nlink++;
}
/* and '..' */
inode->i_nlink++;
/* Root dir gets i_nlink 3 for some reason */
if (inode->i_ino == 1)
inode->i_nlink++;
inode->i_op = &jffs2_dir_inode_operations;
inode->i_fop = &jffs2_dir_operations;
break;
}
case S_IFREG:
inode->i_op = &jffs2_file_inode_operations;
inode->i_fop = &jffs2_file_operations;
inode->i_mapping->a_ops = &jffs2_file_address_operations;
inode->i_mapping->nrpages = 0;
break;
case S_IFBLK:
case S_IFCHR:
/* Read the device numbers from the media */
D1(printk(KERN_DEBUG "Reading device numbers from flash\n"));
if (jffs2_read_dnode(c, f, f->metadata, (char *)&rdev, 0, sizeof(rdev)) < 0) {
/* Eep */
printk(KERN_NOTICE "Read device numbers for inode %lu failed\n", (unsigned long)inode->i_ino);
up(&f->sem);
jffs2_do_clear_inode(c, f);
make_bad_inode(inode);
return;
}
case S_IFSOCK:
case S_IFIFO:
inode->i_op = &jffs2_file_inode_operations;
init_special_inode(inode, inode->i_mode,
old_decode_dev((je16_to_cpu(rdev))));
break;
default:
printk(KERN_WARNING "jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode->i_mode, (unsigned long)inode->i_ino);
}
up(&f->sem);
D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n"));
}
void jffs2_dirty_inode(struct inode *inode)
{
struct iattr iattr;
if (!(inode->i_state & I_DIRTY_DATASYNC)) {
D2(printk(KERN_DEBUG "jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode->i_ino));
return;
}
D1(printk(KERN_DEBUG "jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode->i_ino));
iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
iattr.ia_mode = inode->i_mode;
iattr.ia_uid = inode->i_uid;
iattr.ia_gid = inode->i_gid;
iattr.ia_atime = inode->i_atime;
iattr.ia_mtime = inode->i_mtime;
iattr.ia_ctime = inode->i_ctime;
jffs2_do_setattr(inode, &iattr);
}
int jffs2_remount_fs (struct super_block *sb, int *flags, char *data)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
if (c->flags & JFFS2_SB_FLAG_RO && !(sb->s_flags & MS_RDONLY))
return -EROFS;
/* We stop if it was running, then restart if it needs to.
This also catches the case where it was stopped and this
is just a remount to restart it.
Flush the writebuffer, if neccecary, else we loose it */
if (!(sb->s_flags & MS_RDONLY)) {
jffs2_stop_garbage_collect_thread(c);
down(&c->alloc_sem);
jffs2_flush_wbuf_pad(c);
up(&c->alloc_sem);
}
if (!(*flags & MS_RDONLY))
jffs2_start_garbage_collect_thread(c);
*flags |= MS_NOATIME;
return 0;
}
void jffs2_write_super (struct super_block *sb)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
sb->s_dirt = 0;
if (sb->s_flags & MS_RDONLY)
return;
D1(printk(KERN_DEBUG "jffs2_write_super()\n"));
jffs2_garbage_collect_trigger(c);
jffs2_erase_pending_blocks(c, 0);
jffs2_flush_wbuf_gc(c, 0);
}
/* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
fill in the raw_inode while you're at it. */
struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri)
{
struct inode *inode;
struct super_block *sb = dir_i->i_sb;
struct jffs2_sb_info *c;
struct jffs2_inode_info *f;
int ret;
D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode));
c = JFFS2_SB_INFO(sb);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
f = JFFS2_INODE_INFO(inode);
jffs2_init_inode_info(f);
down(&f->sem);
memset(ri, 0, sizeof(*ri));
/* Set OS-specific defaults for new inodes */
ri->uid = cpu_to_je16(current->fsuid);
if (dir_i->i_mode & S_ISGID) {
ri->gid = cpu_to_je16(dir_i->i_gid);
if (S_ISDIR(mode))
mode |= S_ISGID;
} else {
ri->gid = cpu_to_je16(current->fsgid);
}
ri->mode = cpu_to_jemode(mode);
ret = jffs2_do_new_inode (c, f, mode, ri);
if (ret) {
make_bad_inode(inode);
iput(inode);
return ERR_PTR(ret);
}
inode->i_nlink = 1;
inode->i_ino = je32_to_cpu(ri->ino);
inode->i_mode = jemode_to_cpu(ri->mode);
inode->i_gid = je16_to_cpu(ri->gid);
inode->i_uid = je16_to_cpu(ri->uid);
inode->i_atime = inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
inode->i_blksize = PAGE_SIZE;
inode->i_blocks = 0;
inode->i_size = 0;
insert_inode_hash(inode);
return inode;
}
int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
{
struct jffs2_sb_info *c;
struct inode *root_i;
int ret;
size_t blocks;
c = JFFS2_SB_INFO(sb);
#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
if (c->mtd->type == MTD_NANDFLASH) {
printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
return -EINVAL;
}
if (c->mtd->type == MTD_DATAFLASH) {
printk(KERN_ERR "jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
return -EINVAL;
}
#endif
c->flash_size = c->mtd->size;
c->sector_size = c->mtd->erasesize;
blocks = c->flash_size / c->sector_size;
/*
* Size alignment check
*/
if ((c->sector_size * blocks) != c->flash_size) {
c->flash_size = c->sector_size * blocks;
printk(KERN_INFO "jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
c->flash_size / 1024);
}
if (c->flash_size < 5*c->sector_size) {
printk(KERN_ERR "jffs2: Too few erase blocks (%d)\n", c->flash_size / c->sector_size);
return -EINVAL;
}
c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
/* NAND (or other bizarre) flash... do setup accordingly */
ret = jffs2_flash_setup(c);
if (ret)
return ret;
c->inocache_list = kmalloc(INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
if (!c->inocache_list) {
ret = -ENOMEM;
goto out_wbuf;
}
memset(c->inocache_list, 0, INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *));
if ((ret = jffs2_do_mount_fs(c)))
goto out_inohash;
ret = -EINVAL;
D1(printk(KERN_DEBUG "jffs2_do_fill_super(): Getting root inode\n"));
root_i = iget(sb, 1);
if (is_bad_inode(root_i)) {
D1(printk(KERN_WARNING "get root inode failed\n"));
goto out_root_i;
}
D1(printk(KERN_DEBUG "jffs2_do_fill_super(): d_alloc_root()\n"));
sb->s_root = d_alloc_root(root_i);
if (!sb->s_root)
goto out_root_i;
sb->s_maxbytes = 0xFFFFFFFF;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = JFFS2_SUPER_MAGIC;
if (!(sb->s_flags & MS_RDONLY))
jffs2_start_garbage_collect_thread(c);
return 0;
out_root_i:
iput(root_i);
jffs2_free_ino_caches(c);
jffs2_free_raw_node_refs(c);
if (jffs2_blocks_use_vmalloc(c))
vfree(c->blocks);
else
kfree(c->blocks);
out_inohash:
kfree(c->inocache_list);
out_wbuf:
jffs2_flash_cleanup(c);
return ret;
}
void jffs2_gc_release_inode(struct jffs2_sb_info *c,
struct jffs2_inode_info *f)
{
iput(OFNI_EDONI_2SFFJ(f));
}
struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
int inum, int nlink)
{
struct inode *inode;
struct jffs2_inode_cache *ic;
if (!nlink) {
/* The inode has zero nlink but its nodes weren't yet marked
obsolete. This has to be because we're still waiting for
the final (close() and) iput() to happen.
There's a possibility that the final iput() could have
happened while we were contemplating. In order to ensure
that we don't cause a new read_inode() (which would fail)
for the inode in question, we use ilookup() in this case
instead of iget().
The nlink can't _become_ zero at this point because we're
holding the alloc_sem, and jffs2_do_unlink() would also
need that while decrementing nlink on any inode.
*/
inode = ilookup(OFNI_BS_2SFFJ(c), inum);
if (!inode) {
D1(printk(KERN_DEBUG "ilookup() failed for ino #%u; inode is probably deleted.\n",
inum));
spin_lock(&c->inocache_lock);
ic = jffs2_get_ino_cache(c, inum);
if (!ic) {
D1(printk(KERN_DEBUG "Inode cache for ino #%u is gone.\n", inum));
spin_unlock(&c->inocache_lock);
return NULL;
}
if (ic->state != INO_STATE_CHECKEDABSENT) {
/* Wait for progress. Don't just loop */
D1(printk(KERN_DEBUG "Waiting for ino #%u in state %d\n",
ic->ino, ic->state));
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
} else {
spin_unlock(&c->inocache_lock);
}
return NULL;
}
} else {
/* Inode has links to it still; they're not going away because
jffs2_do_unlink() would need the alloc_sem and we have it.
Just iget() it, and if read_inode() is necessary that's OK.
*/
inode = iget(OFNI_BS_2SFFJ(c), inum);
if (!inode)
return ERR_PTR(-ENOMEM);
}
if (is_bad_inode(inode)) {
printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u. nlink %d\n",
inum, nlink);
/* NB. This will happen again. We need to do something appropriate here. */
iput(inode);
return ERR_PTR(-EIO);
}
return JFFS2_INODE_INFO(inode);
}
unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info *c,
struct jffs2_inode_info *f,
unsigned long offset,
unsigned long *priv)
{
struct inode *inode = OFNI_EDONI_2SFFJ(f);
struct page *pg;
pg = read_cache_page(inode->i_mapping, offset >> PAGE_CACHE_SHIFT,
(void *)jffs2_do_readpage_unlock, inode);
if (IS_ERR(pg))
return (void *)pg;
*priv = (unsigned long)pg;
return kmap(pg);
}
void jffs2_gc_release_page(struct jffs2_sb_info *c,
unsigned char *ptr,
unsigned long *priv)
{
struct page *pg = (void *)*priv;
kunmap(pg);
page_cache_release(pg);
}
static int jffs2_flash_setup(struct jffs2_sb_info *c) {
int ret = 0;
if (jffs2_cleanmarker_oob(c)) {
/* NAND flash... do setup accordingly */
ret = jffs2_nand_flash_setup(c);
if (ret)
return ret;
}
/* add setups for other bizarre flashes here... */
if (jffs2_nor_ecc(c)) {
ret = jffs2_nor_ecc_flash_setup(c);
if (ret)
return ret;
}
/* and Dataflash */
if (jffs2_dataflash(c)) {
ret = jffs2_dataflash_setup(c);
if (ret)
return ret;
}
/* and Intel "Sibley" flash */
if (jffs2_nor_wbuf_flash(c)) {
ret = jffs2_nor_wbuf_flash_setup(c);
if (ret)
return ret;
}
return ret;
}
void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
if (jffs2_cleanmarker_oob(c)) {
jffs2_nand_flash_cleanup(c);
}
/* add cleanups for other bizarre flashes here... */
if (jffs2_nor_ecc(c)) {
jffs2_nor_ecc_flash_cleanup(c);
}
/* and DataFlash */
if (jffs2_dataflash(c)) {
jffs2_dataflash_cleanup(c);
}
/* and Intel "Sibley" flash */
if (jffs2_nor_wbuf_flash(c)) {
jffs2_nor_wbuf_flash_cleanup(c);
}
}