kernel-fxtec-pro1x/arch/powerpc/platforms/cell/spu_base.c
Jeremy Kerr c61c27d58a [POWERPC] cell: Constify & voidify get_property()
Now that get_property() returns a void *, there's no need to cast its
return value. Also, treat the return value as const, so we can
constify get_property later.

cell platform changes.

Built for cell_defconfig

Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-07-31 15:55:04 +10:00

795 lines
18 KiB
C

/*
* Low-level SPU handling
*
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
*
* Author: Arnd Bergmann <arndb@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#undef DEBUG
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <linux/mutex.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/mmu_context.h>
#include "interrupt.h"
const struct spu_priv1_ops *spu_priv1_ops;
EXPORT_SYMBOL_GPL(spu_priv1_ops);
static int __spu_trap_invalid_dma(struct spu *spu)
{
pr_debug("%s\n", __FUNCTION__);
force_sig(SIGBUS, /* info, */ current);
return 0;
}
static int __spu_trap_dma_align(struct spu *spu)
{
pr_debug("%s\n", __FUNCTION__);
force_sig(SIGBUS, /* info, */ current);
return 0;
}
static int __spu_trap_error(struct spu *spu)
{
pr_debug("%s\n", __FUNCTION__);
force_sig(SIGILL, /* info, */ current);
return 0;
}
static void spu_restart_dma(struct spu *spu)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
}
static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
{
struct spu_priv2 __iomem *priv2 = spu->priv2;
struct mm_struct *mm = spu->mm;
u64 esid, vsid, llp;
pr_debug("%s\n", __FUNCTION__);
if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
/* SLBs are pre-loaded for context switch, so
* we should never get here!
*/
printk("%s: invalid access during switch!\n", __func__);
return 1;
}
if (!mm || (REGION_ID(ea) != USER_REGION_ID)) {
/* Future: support kernel segments so that drivers
* can use SPUs.
*/
pr_debug("invalid region access at %016lx\n", ea);
return 1;
}
esid = (ea & ESID_MASK) | SLB_ESID_V;
#ifdef CONFIG_HUGETLB_PAGE
if (in_hugepage_area(mm->context, ea))
llp = mmu_psize_defs[mmu_huge_psize].sllp;
else
#endif
llp = mmu_psize_defs[mmu_virtual_psize].sllp;
vsid = (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) |
SLB_VSID_USER | llp;
out_be64(&priv2->slb_index_W, spu->slb_replace);
out_be64(&priv2->slb_vsid_RW, vsid);
out_be64(&priv2->slb_esid_RW, esid);
spu->slb_replace++;
if (spu->slb_replace >= 8)
spu->slb_replace = 0;
spu_restart_dma(spu);
return 0;
}
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
{
pr_debug("%s, %lx, %lx\n", __FUNCTION__, dsisr, ea);
/* Handle kernel space hash faults immediately.
User hash faults need to be deferred to process context. */
if ((dsisr & MFC_DSISR_PTE_NOT_FOUND)
&& REGION_ID(ea) != USER_REGION_ID
&& hash_page(ea, _PAGE_PRESENT, 0x300) == 0) {
spu_restart_dma(spu);
return 0;
}
if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
printk("%s: invalid access during switch!\n", __func__);
return 1;
}
spu->dar = ea;
spu->dsisr = dsisr;
mb();
spu->stop_callback(spu);
return 0;
}
static irqreturn_t
spu_irq_class_0(int irq, void *data, struct pt_regs *regs)
{
struct spu *spu;
spu = data;
spu->class_0_pending = 1;
spu->stop_callback(spu);
return IRQ_HANDLED;
}
int
spu_irq_class_0_bottom(struct spu *spu)
{
unsigned long stat, mask;
spu->class_0_pending = 0;
mask = spu_int_mask_get(spu, 0);
stat = spu_int_stat_get(spu, 0);
stat &= mask;
if (stat & 1) /* invalid DMA alignment */
__spu_trap_dma_align(spu);
if (stat & 2) /* invalid MFC DMA */
__spu_trap_invalid_dma(spu);
if (stat & 4) /* error on SPU */
__spu_trap_error(spu);
spu_int_stat_clear(spu, 0, stat);
return (stat & 0x7) ? -EIO : 0;
}
EXPORT_SYMBOL_GPL(spu_irq_class_0_bottom);
static irqreturn_t
spu_irq_class_1(int irq, void *data, struct pt_regs *regs)
{
struct spu *spu;
unsigned long stat, mask, dar, dsisr;
spu = data;
/* atomically read & clear class1 status. */
spin_lock(&spu->register_lock);
mask = spu_int_mask_get(spu, 1);
stat = spu_int_stat_get(spu, 1) & mask;
dar = spu_mfc_dar_get(spu);
dsisr = spu_mfc_dsisr_get(spu);
if (stat & 2) /* mapping fault */
spu_mfc_dsisr_set(spu, 0ul);
spu_int_stat_clear(spu, 1, stat);
spin_unlock(&spu->register_lock);
pr_debug("%s: %lx %lx %lx %lx\n", __FUNCTION__, mask, stat,
dar, dsisr);
if (stat & 1) /* segment fault */
__spu_trap_data_seg(spu, dar);
if (stat & 2) { /* mapping fault */
__spu_trap_data_map(spu, dar, dsisr);
}
if (stat & 4) /* ls compare & suspend on get */
;
if (stat & 8) /* ls compare & suspend on put */
;
return stat ? IRQ_HANDLED : IRQ_NONE;
}
EXPORT_SYMBOL_GPL(spu_irq_class_1_bottom);
static irqreturn_t
spu_irq_class_2(int irq, void *data, struct pt_regs *regs)
{
struct spu *spu;
unsigned long stat;
unsigned long mask;
spu = data;
spin_lock(&spu->register_lock);
stat = spu_int_stat_get(spu, 2);
mask = spu_int_mask_get(spu, 2);
/* ignore interrupts we're not waiting for */
stat &= mask;
/*
* mailbox interrupts (0x1 and 0x10) are level triggered.
* mask them now before acknowledging.
*/
if (stat & 0x11)
spu_int_mask_and(spu, 2, ~(stat & 0x11));
/* acknowledge all interrupts before the callbacks */
spu_int_stat_clear(spu, 2, stat);
spin_unlock(&spu->register_lock);
pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
if (stat & 1) /* PPC core mailbox */
spu->ibox_callback(spu);
if (stat & 2) /* SPU stop-and-signal */
spu->stop_callback(spu);
if (stat & 4) /* SPU halted */
spu->stop_callback(spu);
if (stat & 8) /* DMA tag group complete */
spu->mfc_callback(spu);
if (stat & 0x10) /* SPU mailbox threshold */
spu->wbox_callback(spu);
return stat ? IRQ_HANDLED : IRQ_NONE;
}
static int spu_request_irqs(struct spu *spu)
{
int ret = 0;
if (spu->irqs[0] != NO_IRQ) {
snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
spu->number);
ret = request_irq(spu->irqs[0], spu_irq_class_0,
IRQF_DISABLED,
spu->irq_c0, spu);
if (ret)
goto bail0;
}
if (spu->irqs[1] != NO_IRQ) {
snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
spu->number);
ret = request_irq(spu->irqs[1], spu_irq_class_1,
IRQF_DISABLED,
spu->irq_c1, spu);
if (ret)
goto bail1;
}
if (spu->irqs[2] != NO_IRQ) {
snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
spu->number);
ret = request_irq(spu->irqs[2], spu_irq_class_2,
IRQF_DISABLED,
spu->irq_c2, spu);
if (ret)
goto bail2;
}
return 0;
bail2:
if (spu->irqs[1] != NO_IRQ)
free_irq(spu->irqs[1], spu);
bail1:
if (spu->irqs[0] != NO_IRQ)
free_irq(spu->irqs[0], spu);
bail0:
return ret;
}
static void spu_free_irqs(struct spu *spu)
{
if (spu->irqs[0] != NO_IRQ)
free_irq(spu->irqs[0], spu);
if (spu->irqs[1] != NO_IRQ)
free_irq(spu->irqs[1], spu);
if (spu->irqs[2] != NO_IRQ)
free_irq(spu->irqs[2], spu);
}
static LIST_HEAD(spu_list);
static DEFINE_MUTEX(spu_mutex);
static void spu_init_channels(struct spu *spu)
{
static const struct {
unsigned channel;
unsigned count;
} zero_list[] = {
{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
}, count_list[] = {
{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
};
struct spu_priv2 __iomem *priv2;
int i;
priv2 = spu->priv2;
/* initialize all channel data to zero */
for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
int count;
out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
for (count = 0; count < zero_list[i].count; count++)
out_be64(&priv2->spu_chnldata_RW, 0);
}
/* initialize channel counts to meaningful values */
for (i = 0; i < ARRAY_SIZE(count_list); i++) {
out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
}
}
struct spu *spu_alloc(void)
{
struct spu *spu;
mutex_lock(&spu_mutex);
if (!list_empty(&spu_list)) {
spu = list_entry(spu_list.next, struct spu, list);
list_del_init(&spu->list);
pr_debug("Got SPU %x %d\n", spu->isrc, spu->number);
} else {
pr_debug("No SPU left\n");
spu = NULL;
}
mutex_unlock(&spu_mutex);
if (spu)
spu_init_channels(spu);
return spu;
}
EXPORT_SYMBOL_GPL(spu_alloc);
void spu_free(struct spu *spu)
{
mutex_lock(&spu_mutex);
list_add_tail(&spu->list, &spu_list);
mutex_unlock(&spu_mutex);
}
EXPORT_SYMBOL_GPL(spu_free);
static int spu_handle_mm_fault(struct spu *spu)
{
struct mm_struct *mm = spu->mm;
struct vm_area_struct *vma;
u64 ea, dsisr, is_write;
int ret;
ea = spu->dar;
dsisr = spu->dsisr;
#if 0
if (!IS_VALID_EA(ea)) {
return -EFAULT;
}
#endif /* XXX */
if (mm == NULL) {
return -EFAULT;
}
if (mm->pgd == NULL) {
return -EFAULT;
}
down_read(&mm->mmap_sem);
vma = find_vma(mm, ea);
if (!vma)
goto bad_area;
if (vma->vm_start <= ea)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
#if 0
if (expand_stack(vma, ea))
goto bad_area;
#endif /* XXX */
good_area:
is_write = dsisr & MFC_DSISR_ACCESS_PUT;
if (is_write) {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
} else {
if (dsisr & MFC_DSISR_ACCESS_DENIED)
goto bad_area;
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
ret = 0;
switch (handle_mm_fault(mm, vma, ea, is_write)) {
case VM_FAULT_MINOR:
current->min_flt++;
break;
case VM_FAULT_MAJOR:
current->maj_flt++;
break;
case VM_FAULT_SIGBUS:
ret = -EFAULT;
goto bad_area;
case VM_FAULT_OOM:
ret = -ENOMEM;
goto bad_area;
default:
BUG();
}
up_read(&mm->mmap_sem);
return ret;
bad_area:
up_read(&mm->mmap_sem);
return -EFAULT;
}
int spu_irq_class_1_bottom(struct spu *spu)
{
u64 ea, dsisr, access, error = 0UL;
int ret = 0;
ea = spu->dar;
dsisr = spu->dsisr;
if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) {
u64 flags;
access = (_PAGE_PRESENT | _PAGE_USER);
access |= (dsisr & MFC_DSISR_ACCESS_PUT) ? _PAGE_RW : 0UL;
local_irq_save(flags);
if (hash_page(ea, access, 0x300) != 0)
error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
local_irq_restore(flags);
}
if (error & CLASS1_ENABLE_STORAGE_FAULT_INTR) {
if ((ret = spu_handle_mm_fault(spu)) != 0)
error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
else
error &= ~CLASS1_ENABLE_STORAGE_FAULT_INTR;
}
spu->dar = 0UL;
spu->dsisr = 0UL;
if (!error) {
spu_restart_dma(spu);
} else {
__spu_trap_invalid_dma(spu);
}
return ret;
}
static int __init find_spu_node_id(struct device_node *spe)
{
const unsigned int *id;
struct device_node *cpu;
cpu = spe->parent->parent;
id = get_property(cpu, "node-id", NULL);
return id ? *id : 0;
}
static int __init cell_spuprop_present(struct spu *spu, struct device_node *spe,
const char *prop)
{
static DEFINE_MUTEX(add_spumem_mutex);
const struct address_prop {
unsigned long address;
unsigned int len;
} __attribute__((packed)) *p;
int proplen;
unsigned long start_pfn, nr_pages;
struct pglist_data *pgdata;
struct zone *zone;
int ret;
p = get_property(spe, prop, &proplen);
WARN_ON(proplen != sizeof (*p));
start_pfn = p->address >> PAGE_SHIFT;
nr_pages = ((unsigned long)p->len + PAGE_SIZE - 1) >> PAGE_SHIFT;
pgdata = NODE_DATA(spu->nid);
zone = pgdata->node_zones;
/* XXX rethink locking here */
mutex_lock(&add_spumem_mutex);
ret = __add_pages(zone, start_pfn, nr_pages);
mutex_unlock(&add_spumem_mutex);
return ret;
}
static void __iomem * __init map_spe_prop(struct spu *spu,
struct device_node *n, const char *name)
{
const struct address_prop {
unsigned long address;
unsigned int len;
} __attribute__((packed)) *prop;
const void *p;
int proplen;
void* ret = NULL;
int err = 0;
p = get_property(n, name, &proplen);
if (proplen != sizeof (struct address_prop))
return NULL;
prop = p;
err = cell_spuprop_present(spu, n, name);
if (err && (err != -EEXIST))
goto out;
ret = ioremap(prop->address, prop->len);
out:
return ret;
}
static void spu_unmap(struct spu *spu)
{
iounmap(spu->priv2);
iounmap(spu->priv1);
iounmap(spu->problem);
iounmap((u8 __iomem *)spu->local_store);
}
/* This function shall be abstracted for HV platforms */
static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
{
struct irq_host *host;
unsigned int isrc;
const u32 *tmp;
host = iic_get_irq_host(spu->node);
if (host == NULL)
return -ENODEV;
/* Get the interrupt source from the device-tree */
tmp = get_property(np, "isrc", NULL);
if (!tmp)
return -ENODEV;
spu->isrc = isrc = tmp[0];
/* Now map interrupts of all 3 classes */
spu->irqs[0] = irq_create_mapping(host, 0x00 | isrc, 0);
spu->irqs[1] = irq_create_mapping(host, 0x10 | isrc, 0);
spu->irqs[2] = irq_create_mapping(host, 0x20 | isrc, 0);
/* Right now, we only fail if class 2 failed */
return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
}
static int __init spu_map_device(struct spu *spu, struct device_node *node)
{
const char *prop;
int ret;
ret = -ENODEV;
spu->name = get_property(node, "name", NULL);
if (!spu->name)
goto out;
prop = get_property(node, "local-store", NULL);
if (!prop)
goto out;
spu->local_store_phys = *(unsigned long *)prop;
/* we use local store as ram, not io memory */
spu->local_store = (void __force *)
map_spe_prop(spu, node, "local-store");
if (!spu->local_store)
goto out;
prop = get_property(node, "problem", NULL);
if (!prop)
goto out_unmap;
spu->problem_phys = *(unsigned long *)prop;
spu->problem= map_spe_prop(spu, node, "problem");
if (!spu->problem)
goto out_unmap;
spu->priv1= map_spe_prop(spu, node, "priv1");
/* priv1 is not available on a hypervisor */
spu->priv2= map_spe_prop(spu, node, "priv2");
if (!spu->priv2)
goto out_unmap;
ret = 0;
goto out;
out_unmap:
spu_unmap(spu);
out:
return ret;
}
struct sysdev_class spu_sysdev_class = {
set_kset_name("spu")
};
static ssize_t spu_show_isrc(struct sys_device *sysdev, char *buf)
{
struct spu *spu = container_of(sysdev, struct spu, sysdev);
return sprintf(buf, "%d\n", spu->isrc);
}
static SYSDEV_ATTR(isrc, 0400, spu_show_isrc, NULL);
extern int attach_sysdev_to_node(struct sys_device *dev, int nid);
static int spu_create_sysdev(struct spu *spu)
{
int ret;
spu->sysdev.id = spu->number;
spu->sysdev.cls = &spu_sysdev_class;
ret = sysdev_register(&spu->sysdev);
if (ret) {
printk(KERN_ERR "Can't register SPU %d with sysfs\n",
spu->number);
return ret;
}
if (spu->isrc != 0)
sysdev_create_file(&spu->sysdev, &attr_isrc);
sysfs_add_device_to_node(&spu->sysdev, spu->nid);
return 0;
}
static void spu_destroy_sysdev(struct spu *spu)
{
sysdev_remove_file(&spu->sysdev, &attr_isrc);
sysfs_remove_device_from_node(&spu->sysdev, spu->nid);
sysdev_unregister(&spu->sysdev);
}
static int __init create_spu(struct device_node *spe)
{
struct spu *spu;
int ret;
static int number;
ret = -ENOMEM;
spu = kzalloc(sizeof (*spu), GFP_KERNEL);
if (!spu)
goto out;
ret = spu_map_device(spu, spe);
if (ret)
goto out_free;
spu->node = find_spu_node_id(spe);
spu->nid = of_node_to_nid(spe);
if (spu->nid == -1)
spu->nid = 0;
ret = spu_map_interrupts(spu, spe);
if (ret)
goto out_unmap;
spin_lock_init(&spu->register_lock);
spu_mfc_sdr_set(spu, mfspr(SPRN_SDR1));
spu_mfc_sr1_set(spu, 0x33);
mutex_lock(&spu_mutex);
spu->number = number++;
ret = spu_request_irqs(spu);
if (ret)
goto out_unmap;
ret = spu_create_sysdev(spu);
if (ret)
goto out_free_irqs;
list_add(&spu->list, &spu_list);
mutex_unlock(&spu_mutex);
pr_debug(KERN_DEBUG "Using SPE %s %02x %p %p %p %p %d\n",
spu->name, spu->isrc, spu->local_store,
spu->problem, spu->priv1, spu->priv2, spu->number);
goto out;
out_free_irqs:
spu_free_irqs(spu);
out_unmap:
mutex_unlock(&spu_mutex);
spu_unmap(spu);
out_free:
kfree(spu);
out:
return ret;
}
static void destroy_spu(struct spu *spu)
{
list_del_init(&spu->list);
spu_destroy_sysdev(spu);
spu_free_irqs(spu);
spu_unmap(spu);
kfree(spu);
}
static void cleanup_spu_base(void)
{
struct spu *spu, *tmp;
mutex_lock(&spu_mutex);
list_for_each_entry_safe(spu, tmp, &spu_list, list)
destroy_spu(spu);
mutex_unlock(&spu_mutex);
sysdev_class_unregister(&spu_sysdev_class);
}
module_exit(cleanup_spu_base);
static int __init init_spu_base(void)
{
struct device_node *node;
int ret;
/* create sysdev class for spus */
ret = sysdev_class_register(&spu_sysdev_class);
if (ret)
return ret;
ret = -ENODEV;
for (node = of_find_node_by_type(NULL, "spe");
node; node = of_find_node_by_type(node, "spe")) {
ret = create_spu(node);
if (ret) {
printk(KERN_WARNING "%s: Error initializing %s\n",
__FUNCTION__, node->name);
cleanup_spu_base();
break;
}
}
/* in some old firmware versions, the spe is called 'spc', so we
look for that as well */
for (node = of_find_node_by_type(NULL, "spc");
node; node = of_find_node_by_type(node, "spc")) {
ret = create_spu(node);
if (ret) {
printk(KERN_WARNING "%s: Error initializing %s\n",
__FUNCTION__, node->name);
cleanup_spu_base();
break;
}
}
return ret;
}
module_init(init_spu_base);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");