kernel-fxtec-pro1x/drivers/mtd/nand/omap2.c
vimal singh c276aca46d mtd: nand: fix build failure and incorrect return from omap_wait()
We need to include jiffies.h manually in some cases, and the status
returned from omap_wait() was broken in two separate ways.

Also add cond_resched() to the loop.

Signed-off-by: Vimal Singh <vimalsingh@ti.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-06-28 10:24:13 +01:00

779 lines
21 KiB
C

/*
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
* Copyright © 2004 Micron Technology Inc.
* Copyright © 2004 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <asm/dma.h>
#include <mach/gpmc.h>
#include <mach/nand.h>
#define GPMC_IRQ_STATUS 0x18
#define GPMC_ECC_CONFIG 0x1F4
#define GPMC_ECC_CONTROL 0x1F8
#define GPMC_ECC_SIZE_CONFIG 0x1FC
#define GPMC_ECC1_RESULT 0x200
#define DRIVER_NAME "omap2-nand"
/* size (4 KiB) for IO mapping */
#define NAND_IO_SIZE SZ_4K
#define NAND_WP_OFF 0
#define NAND_WP_BIT 0x00000010
#define WR_RD_PIN_MONITORING 0x00600000
#define GPMC_BUF_FULL 0x00000001
#define GPMC_BUF_EMPTY 0x00000000
#define NAND_Ecc_P1e (1 << 0)
#define NAND_Ecc_P2e (1 << 1)
#define NAND_Ecc_P4e (1 << 2)
#define NAND_Ecc_P8e (1 << 3)
#define NAND_Ecc_P16e (1 << 4)
#define NAND_Ecc_P32e (1 << 5)
#define NAND_Ecc_P64e (1 << 6)
#define NAND_Ecc_P128e (1 << 7)
#define NAND_Ecc_P256e (1 << 8)
#define NAND_Ecc_P512e (1 << 9)
#define NAND_Ecc_P1024e (1 << 10)
#define NAND_Ecc_P2048e (1 << 11)
#define NAND_Ecc_P1o (1 << 16)
#define NAND_Ecc_P2o (1 << 17)
#define NAND_Ecc_P4o (1 << 18)
#define NAND_Ecc_P8o (1 << 19)
#define NAND_Ecc_P16o (1 << 20)
#define NAND_Ecc_P32o (1 << 21)
#define NAND_Ecc_P64o (1 << 22)
#define NAND_Ecc_P128o (1 << 23)
#define NAND_Ecc_P256o (1 << 24)
#define NAND_Ecc_P512o (1 << 25)
#define NAND_Ecc_P1024o (1 << 26)
#define NAND_Ecc_P2048o (1 << 27)
#define TF(value) (value ? 1 : 0)
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
struct omap_nand_info {
struct nand_hw_control controller;
struct omap_nand_platform_data *pdata;
struct mtd_info mtd;
struct mtd_partition *parts;
struct nand_chip nand;
struct platform_device *pdev;
int gpmc_cs;
unsigned long phys_base;
void __iomem *gpmc_cs_baseaddr;
void __iomem *gpmc_baseaddr;
};
/**
* omap_nand_wp - This function enable or disable the Write Protect feature
* @mtd: MTD device structure
* @mode: WP ON/OFF
*/
static void omap_nand_wp(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
if (mode)
config &= ~(NAND_WP_BIT); /* WP is ON */
else
config |= (NAND_WP_BIT); /* WP is OFF */
__raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
}
/**
* omap_hwcontrol - hardware specific access to control-lines
* @mtd: MTD device structure
* @cmd: command to device
* @ctrl:
* NAND_NCE: bit 0 -> don't care
* NAND_CLE: bit 1 -> Command Latch
* NAND_ALE: bit 2 -> Address Latch
*
* NOTE: boards may use different bits for these!!
*/
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
switch (ctrl) {
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
GPMC_CS_NAND_COMMAND;
info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
GPMC_CS_NAND_DATA;
break;
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
GPMC_CS_NAND_ADDRESS;
info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
GPMC_CS_NAND_DATA;
break;
case NAND_CTRL_CHANGE | NAND_NCE:
info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
GPMC_CS_NAND_DATA;
info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
GPMC_CS_NAND_DATA;
break;
}
if (cmd != NAND_CMD_NONE)
__raw_writeb(cmd, info->nand.IO_ADDR_W);
}
/**
* omap_read_buf16 - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand = mtd->priv;
__raw_readsw(nand->IO_ADDR_R, buf, len / 2);
}
/**
* omap_write_buf16 - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
struct omap_nand_info, mtd);
u16 *p = (u16 *) buf;
/* FIXME try bursts of writesw() or DMA ... */
len >>= 1;
while (len--) {
writew(*p++, info->nand.IO_ADDR_W);
while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
GPMC_STATUS) & GPMC_BUF_FULL))
;
}
}
/**
* omap_verify_buf - Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
*/
static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
u16 *p = (u16 *) buf;
len >>= 1;
while (len--) {
if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
return -EFAULT;
}
return 0;
}
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
/**
* omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
* @mtd: MTD device structure
*/
static void omap_hwecc_init(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_chip *chip = mtd->priv;
unsigned long val = 0x0;
/* Read from ECC Control Register */
val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* Clear all ECC | Enable Reg1 */
val = ((0x00000001<<8) | 0x00000001);
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* Read from ECC Size Config Register */
val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
/* ECCSIZE1=512 | Select eccResultsize[0-3] */
val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
}
/**
* gen_true_ecc - This function will generate true ECC value
* @ecc_buf: buffer to store ecc code
*
* This generated true ECC value can be used when correcting
* data read from NAND flash memory core
*/
static void gen_true_ecc(u8 *ecc_buf)
{
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}
/**
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
* @ecc_data1: ecc code from nand spare area
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
* @page_data: page data
*
* This function compares two ECC's and indicates if there is an error.
* If the error can be corrected it will be corrected to the buffer.
*/
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
u8 *ecc_data2, /* read from register */
u8 *page_data)
{
uint i;
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
u8 ecc_bit[24];
u8 ecc_sum = 0;
u8 find_bit = 0;
uint find_byte = 0;
int isEccFF;
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
gen_true_ecc(ecc_data1);
gen_true_ecc(ecc_data2);
for (i = 0; i <= 2; i++) {
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
}
for (i = 0; i < 8; i++) {
tmp0_bit[i] = *ecc_data1 % 2;
*ecc_data1 = *ecc_data1 / 2;
}
for (i = 0; i < 8; i++) {
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
}
for (i = 0; i < 8; i++) {
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
}
for (i = 0; i < 8; i++) {
comp0_bit[i] = *ecc_data2 % 2;
*ecc_data2 = *ecc_data2 / 2;
}
for (i = 0; i < 8; i++) {
comp1_bit[i] = *(ecc_data2 + 1) % 2;
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
}
for (i = 0; i < 8; i++) {
comp2_bit[i] = *(ecc_data2 + 2) % 2;
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
}
for (i = 0; i < 6; i++)
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
for (i = 0; i < 8; i++)
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
for (i = 0; i < 8; i++)
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
for (i = 0; i < 24; i++)
ecc_sum += ecc_bit[i];
switch (ecc_sum) {
case 0:
/* Not reached because this function is not called if
* ECC values are equal
*/
return 0;
case 1:
/* Uncorrectable error */
DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
return -1;
case 11:
/* UN-Correctable error */
DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
return -1;
case 12:
/* Correctable error */
find_byte = (ecc_bit[23] << 8) +
(ecc_bit[21] << 7) +
(ecc_bit[19] << 6) +
(ecc_bit[17] << 5) +
(ecc_bit[15] << 4) +
(ecc_bit[13] << 3) +
(ecc_bit[11] << 2) +
(ecc_bit[9] << 1) +
ecc_bit[7];
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
"offset: %d, bit: %d\n", find_byte, find_bit);
page_data[find_byte] ^= (1 << find_bit);
return 0;
default:
if (isEccFF) {
if (ecc_data2[0] == 0 &&
ecc_data2[1] == 0 &&
ecc_data2[2] == 0)
return 0;
}
DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
return -1;
}
}
/**
* omap_correct_data - Compares the ECC read with HW generated ECC
* @mtd: MTD device structure
* @dat: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*
* Compares the ecc read from nand spare area with ECC registers values
* and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
* and correction.
*/
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
int blockCnt = 0, i = 0, ret = 0;
/* Ex NAND_ECC_HW12_2048 */
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
(info->nand.ecc.size == 2048))
blockCnt = 4;
else
blockCnt = 1;
for (i = 0; i < blockCnt; i++) {
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
if (ret < 0)
return ret;
}
read_ecc += 3;
calc_ecc += 3;
dat += 512;
}
return 0;
}
/**
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Using noninverted ECC can be considered ugly since writing a blank
* page ie. padding will clear the ECC bytes. This is no problem as long
* nobody is trying to write data on the seemingly unused page. Reading
* an erased page will produce an ECC mismatch between generated and read
* ECC bytes that has to be dealt with separately.
*/
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long val = 0x0;
unsigned long reg;
/* Start Reading from HW ECC1_Result = 0x200 */
reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
val = __raw_readl(reg);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
reg += 4;
return 0;
}
/**
* omap_enable_hwecc - This function enables the hardware ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_chip *chip = mtd->priv;
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
switch (mode) {
case NAND_ECC_READ:
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
case NAND_ECC_READSYN:
__raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
case NAND_ECC_WRITE:
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
default:
DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
mode);
break;
}
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
}
#endif
/**
* omap_wait - wait until the command is done
* @mtd: MTD device structure
* @chip: NAND Chip structure
*
* Wait function is called during Program and erase operations and
* the way it is called from MTD layer, we should wait till the NAND
* chip is ready after the programming/erase operation has completed.
*
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*/
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct nand_chip *this = mtd->priv;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long timeo = jiffies;
int status = NAND_STATUS_FAIL, state = this->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
GPMC_CS_NAND_COMMAND;
this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
__raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
while (time_before(jiffies, timeo)) {
status = __raw_readb(this->IO_ADDR_R);
if (status & NAND_STATUS_READY)
break;
cond_resched();
}
return status;
}
/**
* omap_dev_ready - calls the platform specific dev_ready function
* @mtd: MTD device structure
*/
static int omap_dev_ready(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
if ((val & 0x100) == 0x100) {
/* Clear IRQ Interrupt */
val |= 0x100;
val &= ~(0x0);
__raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
} else {
unsigned int cnt = 0;
while (cnt++ < 0x1FF) {
if ((val & 0x100) == 0x100)
return 0;
val = __raw_readl(info->gpmc_baseaddr +
GPMC_IRQ_STATUS);
}
}
return 1;
}
static int __devinit omap_nand_probe(struct platform_device *pdev)
{
struct omap_nand_info *info;
struct omap_nand_platform_data *pdata;
int err;
unsigned long val;
pdata = pdev->dev.platform_data;
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENODEV;
}
info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
platform_set_drvdata(pdev, info);
spin_lock_init(&info->controller.lock);
init_waitqueue_head(&info->controller.wq);
info->pdev = pdev;
info->gpmc_cs = pdata->cs;
info->gpmc_baseaddr = pdata->gpmc_baseaddr;
info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr;
info->mtd.priv = &info->nand;
info->mtd.name = dev_name(&pdev->dev);
info->mtd.owner = THIS_MODULE;
err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
if (err < 0) {
dev_err(&pdev->dev, "Cannot request GPMC CS\n");
goto out_free_info;
}
/* Enable RD PIN Monitoring Reg */
if (pdata->dev_ready) {
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
val |= WR_RD_PIN_MONITORING;
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
}
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
val &= ~(0xf << 8);
val |= (0xc & 0xf) << 8;
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
/* NAND write protect off */
omap_nand_wp(&info->mtd, NAND_WP_OFF);
if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
pdev->dev.driver->name)) {
err = -EBUSY;
goto out_free_cs;
}
info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
if (!info->nand.IO_ADDR_R) {
err = -ENOMEM;
goto out_release_mem_region;
}
info->nand.controller = &info->controller;
info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
info->nand.cmd_ctrl = omap_hwcontrol;
/* REVISIT: only supports 16-bit NAND flash */
info->nand.read_buf = omap_read_buf16;
info->nand.write_buf = omap_write_buf16;
info->nand.verify_buf = omap_verify_buf;
/*
* If RDY/BSY line is connected to OMAP then use the omap ready
* funcrtion and the generic nand_wait function which reads the status
* register after monitoring the RDY/BSY line.Otherwise use a standard
* chip delay which is slightly more than tR (AC Timing) of the NAND
* device and read status register until you get a failure or success
*/
if (pdata->dev_ready) {
info->nand.dev_ready = omap_dev_ready;
info->nand.chip_delay = 0;
} else {
info->nand.waitfunc = omap_wait;
info->nand.chip_delay = 50;
}
info->nand.options |= NAND_SKIP_BBTSCAN;
if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
== 0x1000)
info->nand.options |= NAND_BUSWIDTH_16;
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
info->nand.ecc.bytes = 3;
info->nand.ecc.size = 512;
info->nand.ecc.calculate = omap_calculate_ecc;
info->nand.ecc.hwctl = omap_enable_hwecc;
info->nand.ecc.correct = omap_correct_data;
info->nand.ecc.mode = NAND_ECC_HW;
/* init HW ECC */
omap_hwecc_init(&info->mtd);
#else
info->nand.ecc.mode = NAND_ECC_SOFT;
#endif
/* DIP switches on some boards change between 8 and 16 bit
* bus widths for flash. Try the other width if the first try fails.
*/
if (nand_scan(&info->mtd, 1)) {
info->nand.options ^= NAND_BUSWIDTH_16;
if (nand_scan(&info->mtd, 1)) {
err = -ENXIO;
goto out_release_mem_region;
}
}
#ifdef CONFIG_MTD_PARTITIONS
err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
if (err > 0)
add_mtd_partitions(&info->mtd, info->parts, err);
else if (pdata->parts)
add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
else
#endif
add_mtd_device(&info->mtd);
platform_set_drvdata(pdev, &info->mtd);
return 0;
out_release_mem_region:
release_mem_region(info->phys_base, NAND_IO_SIZE);
out_free_cs:
gpmc_cs_free(info->gpmc_cs);
out_free_info:
kfree(info);
return err;
}
static int omap_nand_remove(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct omap_nand_info *info = mtd->priv;
platform_set_drvdata(pdev, NULL);
/* Release NAND device, its internal structures and partitions */
nand_release(&info->mtd);
iounmap(info->nand.IO_ADDR_R);
kfree(&info->mtd);
return 0;
}
static struct platform_driver omap_nand_driver = {
.probe = omap_nand_probe,
.remove = omap_nand_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init omap_nand_init(void)
{
printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
return platform_driver_register(&omap_nand_driver);
}
static void __exit omap_nand_exit(void)
{
platform_driver_unregister(&omap_nand_driver);
}
module_init(omap_nand_init);
module_exit(omap_nand_exit);
MODULE_ALIAS(DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");