e0d65113a7
* git://git.infradead.org/mtd-2.6: (226 commits) mtd: tests: annotate as DANGEROUS in Kconfig mtd: tests: don't use mtd0 as a default mtd: clean up usage of MTD_DOCPROBE_ADDRESS jffs2: add compr=lzo and compr=zlib options jffs2: implement mount option parsing and compression overriding mtd: nand: initialize ops.mode mtd: provide an alias for the redboot module name mtd: m25p80: don't probe device which has status of 'disabled' mtd: nand_h1900 never worked mtd: Add DiskOnChip G3 support mtd: m25p80: add EON flash EN25Q32B into spi flash id table mtd: mark block device queue as non-rotational mtd: r852: make r852_pm_ops static mtd: m25p80: add support for at25df321a spi data flash mtd: mxc_nand: preset_v1_v2: unlock all NAND flash blocks mtd: nand: switch `check_pattern()' to standard `memcmp()' mtd: nand: invalidate cache on unaligned reads mtd: nand: do not scan bad blocks with NAND_BBT_NO_OOB set mtd: nand: wait to set BBT version mtd: nand: scrub BBT on ECC errors ... Fix up trivial conflicts: - arch/arm/mach-at91/board-usb-a9260.c Merged into board-usb-a926x.c - drivers/mtd/maps/lantiq-flash.c add_mtd_partitions -> mtd_device_register vs changed to use mtd_device_parse_register.
364 lines
12 KiB
C
364 lines
12 KiB
C
/*
|
|
* Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#ifndef __MTD_MTD_H__
|
|
#define __MTD_MTD_H__
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/device.h>
|
|
|
|
#include <mtd/mtd-abi.h>
|
|
|
|
#include <asm/div64.h>
|
|
|
|
#define MTD_CHAR_MAJOR 90
|
|
#define MTD_BLOCK_MAJOR 31
|
|
|
|
#define MTD_ERASE_PENDING 0x01
|
|
#define MTD_ERASING 0x02
|
|
#define MTD_ERASE_SUSPEND 0x04
|
|
#define MTD_ERASE_DONE 0x08
|
|
#define MTD_ERASE_FAILED 0x10
|
|
|
|
#define MTD_FAIL_ADDR_UNKNOWN -1LL
|
|
|
|
/*
|
|
* If the erase fails, fail_addr might indicate exactly which block failed. If
|
|
* fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
|
|
* or was not specific to any particular block.
|
|
*/
|
|
struct erase_info {
|
|
struct mtd_info *mtd;
|
|
uint64_t addr;
|
|
uint64_t len;
|
|
uint64_t fail_addr;
|
|
u_long time;
|
|
u_long retries;
|
|
unsigned dev;
|
|
unsigned cell;
|
|
void (*callback) (struct erase_info *self);
|
|
u_long priv;
|
|
u_char state;
|
|
struct erase_info *next;
|
|
};
|
|
|
|
struct mtd_erase_region_info {
|
|
uint64_t offset; /* At which this region starts, from the beginning of the MTD */
|
|
uint32_t erasesize; /* For this region */
|
|
uint32_t numblocks; /* Number of blocks of erasesize in this region */
|
|
unsigned long *lockmap; /* If keeping bitmap of locks */
|
|
};
|
|
|
|
/**
|
|
* struct mtd_oob_ops - oob operation operands
|
|
* @mode: operation mode
|
|
*
|
|
* @len: number of data bytes to write/read
|
|
*
|
|
* @retlen: number of data bytes written/read
|
|
*
|
|
* @ooblen: number of oob bytes to write/read
|
|
* @oobretlen: number of oob bytes written/read
|
|
* @ooboffs: offset of oob data in the oob area (only relevant when
|
|
* mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
|
|
* @datbuf: data buffer - if NULL only oob data are read/written
|
|
* @oobbuf: oob data buffer
|
|
*
|
|
* Note, it is allowed to read more than one OOB area at one go, but not write.
|
|
* The interface assumes that the OOB write requests program only one page's
|
|
* OOB area.
|
|
*/
|
|
struct mtd_oob_ops {
|
|
unsigned int mode;
|
|
size_t len;
|
|
size_t retlen;
|
|
size_t ooblen;
|
|
size_t oobretlen;
|
|
uint32_t ooboffs;
|
|
uint8_t *datbuf;
|
|
uint8_t *oobbuf;
|
|
};
|
|
|
|
#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
|
|
#define MTD_MAX_ECCPOS_ENTRIES_LARGE 448
|
|
/*
|
|
* Internal ECC layout control structure. For historical reasons, there is a
|
|
* similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
|
|
* for export to user-space via the ECCGETLAYOUT ioctl.
|
|
* nand_ecclayout should be expandable in the future simply by the above macros.
|
|
*/
|
|
struct nand_ecclayout {
|
|
__u32 eccbytes;
|
|
__u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE];
|
|
__u32 oobavail;
|
|
struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE];
|
|
};
|
|
|
|
struct module; /* only needed for owner field in mtd_info */
|
|
|
|
struct mtd_info {
|
|
u_char type;
|
|
uint32_t flags;
|
|
uint64_t size; // Total size of the MTD
|
|
|
|
/* "Major" erase size for the device. Naïve users may take this
|
|
* to be the only erase size available, or may use the more detailed
|
|
* information below if they desire
|
|
*/
|
|
uint32_t erasesize;
|
|
/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
|
|
* though individual bits can be cleared), in case of NAND flash it is
|
|
* one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
|
|
* it is of ECC block size, etc. It is illegal to have writesize = 0.
|
|
* Any driver registering a struct mtd_info must ensure a writesize of
|
|
* 1 or larger.
|
|
*/
|
|
uint32_t writesize;
|
|
|
|
/*
|
|
* Size of the write buffer used by the MTD. MTD devices having a write
|
|
* buffer can write multiple writesize chunks at a time. E.g. while
|
|
* writing 4 * writesize bytes to a device with 2 * writesize bytes
|
|
* buffer the MTD driver can (but doesn't have to) do 2 writesize
|
|
* operations, but not 4. Currently, all NANDs have writebufsize
|
|
* equivalent to writesize (NAND page size). Some NOR flashes do have
|
|
* writebufsize greater than writesize.
|
|
*/
|
|
uint32_t writebufsize;
|
|
|
|
uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
|
|
uint32_t oobavail; // Available OOB bytes per block
|
|
|
|
/*
|
|
* If erasesize is a power of 2 then the shift is stored in
|
|
* erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
|
|
*/
|
|
unsigned int erasesize_shift;
|
|
unsigned int writesize_shift;
|
|
/* Masks based on erasesize_shift and writesize_shift */
|
|
unsigned int erasesize_mask;
|
|
unsigned int writesize_mask;
|
|
|
|
// Kernel-only stuff starts here.
|
|
const char *name;
|
|
int index;
|
|
|
|
/* ECC layout structure pointer - read only! */
|
|
struct nand_ecclayout *ecclayout;
|
|
|
|
/* Data for variable erase regions. If numeraseregions is zero,
|
|
* it means that the whole device has erasesize as given above.
|
|
*/
|
|
int numeraseregions;
|
|
struct mtd_erase_region_info *eraseregions;
|
|
|
|
/*
|
|
* Erase is an asynchronous operation. Device drivers are supposed
|
|
* to call instr->callback() whenever the operation completes, even
|
|
* if it completes with a failure.
|
|
* Callers are supposed to pass a callback function and wait for it
|
|
* to be called before writing to the block.
|
|
*/
|
|
int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
|
|
|
|
/* This stuff for eXecute-In-Place */
|
|
/* phys is optional and may be set to NULL */
|
|
int (*point) (struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, void **virt, resource_size_t *phys);
|
|
|
|
/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
|
|
void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
|
|
|
|
/* Allow NOMMU mmap() to directly map the device (if not NULL)
|
|
* - return the address to which the offset maps
|
|
* - return -ENOSYS to indicate refusal to do the mapping
|
|
*/
|
|
unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
|
|
unsigned long len,
|
|
unsigned long offset,
|
|
unsigned long flags);
|
|
|
|
/* Backing device capabilities for this device
|
|
* - provides mmap capabilities
|
|
*/
|
|
struct backing_dev_info *backing_dev_info;
|
|
|
|
|
|
int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
|
|
int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
|
|
|
|
/* In blackbox flight recorder like scenarios we want to make successful
|
|
writes in interrupt context. panic_write() is only intended to be
|
|
called when its known the kernel is about to panic and we need the
|
|
write to succeed. Since the kernel is not going to be running for much
|
|
longer, this function can break locks and delay to ensure the write
|
|
succeeds (but not sleep). */
|
|
|
|
int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
|
|
|
|
int (*read_oob) (struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops);
|
|
int (*write_oob) (struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops);
|
|
|
|
/*
|
|
* Methods to access the protection register area, present in some
|
|
* flash devices. The user data is one time programmable but the
|
|
* factory data is read only.
|
|
*/
|
|
int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
|
|
int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
|
|
int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
|
|
int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
|
|
int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
|
|
int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len);
|
|
|
|
/* kvec-based read/write methods.
|
|
NB: The 'count' parameter is the number of _vectors_, each of
|
|
which contains an (ofs, len) tuple.
|
|
*/
|
|
int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
|
|
|
|
/* Sync */
|
|
void (*sync) (struct mtd_info *mtd);
|
|
|
|
/* Chip-supported device locking */
|
|
int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
|
|
/* Power Management functions */
|
|
int (*suspend) (struct mtd_info *mtd);
|
|
void (*resume) (struct mtd_info *mtd);
|
|
|
|
/* Bad block management functions */
|
|
int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
|
|
int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
|
|
|
|
struct notifier_block reboot_notifier; /* default mode before reboot */
|
|
|
|
/* ECC status information */
|
|
struct mtd_ecc_stats ecc_stats;
|
|
/* Subpage shift (NAND) */
|
|
int subpage_sft;
|
|
|
|
void *priv;
|
|
|
|
struct module *owner;
|
|
struct device dev;
|
|
int usecount;
|
|
|
|
/* If the driver is something smart, like UBI, it may need to maintain
|
|
* its own reference counting. The below functions are only for driver.
|
|
* The driver may register its callbacks. These callbacks are not
|
|
* supposed to be called by MTD users */
|
|
int (*get_device) (struct mtd_info *mtd);
|
|
void (*put_device) (struct mtd_info *mtd);
|
|
};
|
|
|
|
static inline struct mtd_info *dev_to_mtd(struct device *dev)
|
|
{
|
|
return dev ? dev_get_drvdata(dev) : NULL;
|
|
}
|
|
|
|
static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
|
|
{
|
|
if (mtd->erasesize_shift)
|
|
return sz >> mtd->erasesize_shift;
|
|
do_div(sz, mtd->erasesize);
|
|
return sz;
|
|
}
|
|
|
|
static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
|
|
{
|
|
if (mtd->erasesize_shift)
|
|
return sz & mtd->erasesize_mask;
|
|
return do_div(sz, mtd->erasesize);
|
|
}
|
|
|
|
static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
|
|
{
|
|
if (mtd->writesize_shift)
|
|
return sz >> mtd->writesize_shift;
|
|
do_div(sz, mtd->writesize);
|
|
return sz;
|
|
}
|
|
|
|
static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
|
|
{
|
|
if (mtd->writesize_shift)
|
|
return sz & mtd->writesize_mask;
|
|
return do_div(sz, mtd->writesize);
|
|
}
|
|
|
|
/* Kernel-side ioctl definitions */
|
|
|
|
struct mtd_partition;
|
|
struct mtd_part_parser_data;
|
|
|
|
extern int mtd_device_parse_register(struct mtd_info *mtd,
|
|
const char **part_probe_types,
|
|
struct mtd_part_parser_data *parser_data,
|
|
const struct mtd_partition *defparts,
|
|
int defnr_parts);
|
|
#define mtd_device_register(master, parts, nr_parts) \
|
|
mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
|
|
extern int mtd_device_unregister(struct mtd_info *master);
|
|
extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
|
|
extern int __get_mtd_device(struct mtd_info *mtd);
|
|
extern void __put_mtd_device(struct mtd_info *mtd);
|
|
extern struct mtd_info *get_mtd_device_nm(const char *name);
|
|
extern void put_mtd_device(struct mtd_info *mtd);
|
|
|
|
|
|
struct mtd_notifier {
|
|
void (*add)(struct mtd_info *mtd);
|
|
void (*remove)(struct mtd_info *mtd);
|
|
struct list_head list;
|
|
};
|
|
|
|
|
|
extern void register_mtd_user (struct mtd_notifier *new);
|
|
extern int unregister_mtd_user (struct mtd_notifier *old);
|
|
|
|
int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
|
|
unsigned long count, loff_t to, size_t *retlen);
|
|
|
|
int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
|
|
unsigned long count, loff_t from, size_t *retlen);
|
|
|
|
void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
|
|
|
|
void mtd_erase_callback(struct erase_info *instr);
|
|
|
|
static inline int mtd_is_bitflip(int err) {
|
|
return err == -EUCLEAN;
|
|
}
|
|
|
|
static inline int mtd_is_eccerr(int err) {
|
|
return err == -EBADMSG;
|
|
}
|
|
|
|
static inline int mtd_is_bitflip_or_eccerr(int err) {
|
|
return mtd_is_bitflip(err) || mtd_is_eccerr(err);
|
|
}
|
|
|
|
#endif /* __MTD_MTD_H__ */
|