c37e7bb5d2
In preparation for the x86_64 generic time conversion, this patch splits out TSC and HPET related code from arch/x86_64/kernel/time.c into respective hpet.c and tsc.c files. [akpm@osdl.org: fix printk timestamps] [akpm@osdl.org: cleanup] Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@muc.de> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
729 lines
18 KiB
C
729 lines
18 KiB
C
/*
|
|
* linux/arch/x86-64/kernel/time.c
|
|
*
|
|
* "High Precision Event Timer" based timekeeping.
|
|
*
|
|
* Copyright (c) 1991,1992,1995 Linus Torvalds
|
|
* Copyright (c) 1994 Alan Modra
|
|
* Copyright (c) 1995 Markus Kuhn
|
|
* Copyright (c) 1996 Ingo Molnar
|
|
* Copyright (c) 1998 Andrea Arcangeli
|
|
* Copyright (c) 2002,2006 Vojtech Pavlik
|
|
* Copyright (c) 2003 Andi Kleen
|
|
* RTC support code taken from arch/i386/kernel/timers/time_hpet.c
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/acpi.h>
|
|
#ifdef CONFIG_ACPI
|
|
#include <acpi/achware.h> /* for PM timer frequency */
|
|
#include <acpi/acpi_bus.h>
|
|
#endif
|
|
#include <asm/8253pit.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <asm/timex.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/sections.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/hpet.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/hpet.h>
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
extern void cpufreq_delayed_get(void);
|
|
#endif
|
|
extern void i8254_timer_resume(void);
|
|
extern int using_apic_timer;
|
|
|
|
static char *timename = NULL;
|
|
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
EXPORT_SYMBOL(rtc_lock);
|
|
DEFINE_SPINLOCK(i8253_lock);
|
|
|
|
unsigned long vxtime_hz = PIT_TICK_RATE;
|
|
int report_lost_ticks; /* command line option */
|
|
unsigned long long monotonic_base;
|
|
|
|
struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
|
|
|
|
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
|
|
struct timespec __xtime __section_xtime;
|
|
struct timezone __sys_tz __section_sys_tz;
|
|
|
|
unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
|
|
|
|
/*
|
|
* This version of gettimeofday() has microsecond resolution and better than
|
|
* microsecond precision, as we're using at least a 10 MHz (usually 14.31818
|
|
* MHz) HPET timer.
|
|
*/
|
|
|
|
void do_gettimeofday(struct timeval *tv)
|
|
{
|
|
unsigned long seq;
|
|
unsigned int sec, usec;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
sec = xtime.tv_sec;
|
|
usec = xtime.tv_nsec / NSEC_PER_USEC;
|
|
|
|
/* i386 does some correction here to keep the clock
|
|
monotonous even when ntpd is fixing drift.
|
|
But they didn't work for me, there is a non monotonic
|
|
clock anyways with ntp.
|
|
I dropped all corrections now until a real solution can
|
|
be found. Note when you fix it here you need to do the same
|
|
in arch/x86_64/kernel/vsyscall.c and export all needed
|
|
variables in vmlinux.lds. -AK */
|
|
usec += do_gettimeoffset();
|
|
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
tv->tv_sec = sec + usec / USEC_PER_SEC;
|
|
tv->tv_usec = usec % USEC_PER_SEC;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_gettimeofday);
|
|
|
|
/*
|
|
* settimeofday() first undoes the correction that gettimeofday would do
|
|
* on the time, and then saves it. This is ugly, but has been like this for
|
|
* ages already.
|
|
*/
|
|
|
|
int do_settimeofday(struct timespec *tv)
|
|
{
|
|
time_t wtm_sec, sec = tv->tv_sec;
|
|
long wtm_nsec, nsec = tv->tv_nsec;
|
|
|
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irq(&xtime_lock);
|
|
|
|
nsec -= do_gettimeoffset() * NSEC_PER_USEC;
|
|
|
|
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
|
|
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
|
|
|
|
set_normalized_timespec(&xtime, sec, nsec);
|
|
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
|
|
|
|
ntp_clear();
|
|
|
|
write_sequnlock_irq(&xtime_lock);
|
|
clock_was_set();
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
/* Assume the lock function has either no stack frame or a copy
|
|
of eflags from PUSHF
|
|
Eflags always has bits 22 and up cleared unlike kernel addresses. */
|
|
if (!user_mode(regs) && in_lock_functions(pc)) {
|
|
unsigned long *sp = (unsigned long *)regs->rsp;
|
|
if (sp[0] >> 22)
|
|
return sp[0];
|
|
if (sp[1] >> 22)
|
|
return sp[1];
|
|
}
|
|
return pc;
|
|
}
|
|
EXPORT_SYMBOL(profile_pc);
|
|
|
|
/*
|
|
* In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
|
|
* ms after the second nowtime has started, because when nowtime is written
|
|
* into the registers of the CMOS clock, it will jump to the next second
|
|
* precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
|
|
* sheet for details.
|
|
*/
|
|
|
|
static void set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int real_seconds, real_minutes, cmos_minutes;
|
|
unsigned char control, freq_select;
|
|
|
|
/*
|
|
* IRQs are disabled when we're called from the timer interrupt,
|
|
* no need for spin_lock_irqsave()
|
|
*/
|
|
|
|
spin_lock(&rtc_lock);
|
|
|
|
/*
|
|
* Tell the clock it's being set and stop it.
|
|
*/
|
|
|
|
control = CMOS_READ(RTC_CONTROL);
|
|
CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
|
|
|
|
freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
|
|
|
|
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
|
BCD_TO_BIN(cmos_minutes);
|
|
|
|
/*
|
|
* since we're only adjusting minutes and seconds, don't interfere with hour
|
|
* overflow. This avoids messing with unknown time zones but requires your RTC
|
|
* not to be off by more than 15 minutes. Since we're calling it only when
|
|
* our clock is externally synchronized using NTP, this shouldn't be a problem.
|
|
*/
|
|
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
|
|
real_minutes += 30; /* correct for half hour time zone */
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - cmos_minutes) >= 30) {
|
|
printk(KERN_WARNING "time.c: can't update CMOS clock "
|
|
"from %d to %d\n", cmos_minutes, real_minutes);
|
|
} else {
|
|
BIN_TO_BCD(real_seconds);
|
|
BIN_TO_BCD(real_minutes);
|
|
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
|
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
|
}
|
|
|
|
/*
|
|
* The following flags have to be released exactly in this order, otherwise the
|
|
* DS12887 (popular MC146818A clone with integrated battery and quartz) will
|
|
* not reset the oscillator and will not update precisely 500 ms later. You
|
|
* won't find this mentioned in the Dallas Semiconductor data sheets, but who
|
|
* believes data sheets anyway ... -- Markus Kuhn
|
|
*/
|
|
|
|
CMOS_WRITE(control, RTC_CONTROL);
|
|
CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
|
|
|
|
spin_unlock(&rtc_lock);
|
|
}
|
|
|
|
|
|
/* monotonic_clock(): returns # of nanoseconds passed since time_init()
|
|
* Note: This function is required to return accurate
|
|
* time even in the absence of multiple timer ticks.
|
|
*/
|
|
extern unsigned long long cycles_2_ns(unsigned long long cyc);
|
|
unsigned long long monotonic_clock(void)
|
|
{
|
|
unsigned long seq;
|
|
u32 last_offset, this_offset, offset;
|
|
unsigned long long base;
|
|
|
|
if (vxtime.mode == VXTIME_HPET) {
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
last_offset = vxtime.last;
|
|
base = monotonic_base;
|
|
this_offset = hpet_readl(HPET_COUNTER);
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
offset = (this_offset - last_offset);
|
|
offset *= NSEC_PER_TICK / hpet_tick;
|
|
} else {
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
last_offset = vxtime.last_tsc;
|
|
base = monotonic_base;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
this_offset = get_cycles_sync();
|
|
offset = cycles_2_ns(this_offset - last_offset);
|
|
}
|
|
return base + offset;
|
|
}
|
|
EXPORT_SYMBOL(monotonic_clock);
|
|
|
|
static noinline void handle_lost_ticks(int lost)
|
|
{
|
|
static long lost_count;
|
|
static int warned;
|
|
if (report_lost_ticks) {
|
|
printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
|
|
print_symbol("rip %s)\n", get_irq_regs()->rip);
|
|
}
|
|
|
|
if (lost_count == 1000 && !warned) {
|
|
printk(KERN_WARNING "warning: many lost ticks.\n"
|
|
KERN_WARNING "Your time source seems to be instable or "
|
|
"some driver is hogging interupts\n");
|
|
print_symbol("rip %s\n", get_irq_regs()->rip);
|
|
if (vxtime.mode == VXTIME_TSC && hpet_address) {
|
|
printk(KERN_WARNING "Falling back to HPET\n");
|
|
if (hpet_use_timer)
|
|
vxtime.last = hpet_readl(HPET_T0_CMP) -
|
|
hpet_tick;
|
|
else
|
|
vxtime.last = hpet_readl(HPET_COUNTER);
|
|
vxtime.mode = VXTIME_HPET;
|
|
vxtime.hpet_address = hpet_address;
|
|
do_gettimeoffset = do_gettimeoffset_hpet;
|
|
}
|
|
/* else should fall back to PIT, but code missing. */
|
|
warned = 1;
|
|
} else
|
|
lost_count++;
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
/* In some cases the CPU can change frequency without us noticing
|
|
Give cpufreq a change to catch up. */
|
|
if ((lost_count+1) % 25 == 0)
|
|
cpufreq_delayed_get();
|
|
#endif
|
|
}
|
|
|
|
void main_timer_handler(void)
|
|
{
|
|
static unsigned long rtc_update = 0;
|
|
unsigned long tsc;
|
|
int delay = 0, offset = 0, lost = 0;
|
|
|
|
/*
|
|
* Here we are in the timer irq handler. We have irqs locally disabled (so we
|
|
* don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
|
|
* on the other CPU, so we need a lock. We also need to lock the vsyscall
|
|
* variables, because both do_timer() and us change them -arca+vojtech
|
|
*/
|
|
|
|
write_seqlock(&xtime_lock);
|
|
|
|
if (hpet_address)
|
|
offset = hpet_readl(HPET_COUNTER);
|
|
|
|
if (hpet_use_timer) {
|
|
/* if we're using the hpet timer functionality,
|
|
* we can more accurately know the counter value
|
|
* when the timer interrupt occured.
|
|
*/
|
|
offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
|
|
delay = hpet_readl(HPET_COUNTER) - offset;
|
|
} else if (!pmtmr_ioport) {
|
|
spin_lock(&i8253_lock);
|
|
outb_p(0x00, 0x43);
|
|
delay = inb_p(0x40);
|
|
delay |= inb(0x40) << 8;
|
|
spin_unlock(&i8253_lock);
|
|
delay = LATCH - 1 - delay;
|
|
}
|
|
|
|
tsc = get_cycles_sync();
|
|
|
|
if (vxtime.mode == VXTIME_HPET) {
|
|
if (offset - vxtime.last > hpet_tick) {
|
|
lost = (offset - vxtime.last) / hpet_tick - 1;
|
|
}
|
|
|
|
monotonic_base +=
|
|
(offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
|
|
|
|
vxtime.last = offset;
|
|
#ifdef CONFIG_X86_PM_TIMER
|
|
} else if (vxtime.mode == VXTIME_PMTMR) {
|
|
lost = pmtimer_mark_offset();
|
|
#endif
|
|
} else {
|
|
offset = (((tsc - vxtime.last_tsc) *
|
|
vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
|
|
|
|
if (offset < 0)
|
|
offset = 0;
|
|
|
|
if (offset > USEC_PER_TICK) {
|
|
lost = offset / USEC_PER_TICK;
|
|
offset %= USEC_PER_TICK;
|
|
}
|
|
|
|
monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc);
|
|
|
|
vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
|
|
|
|
if ((((tsc - vxtime.last_tsc) *
|
|
vxtime.tsc_quot) >> US_SCALE) < offset)
|
|
vxtime.last_tsc = tsc -
|
|
(((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
|
|
}
|
|
|
|
if (lost > 0)
|
|
handle_lost_ticks(lost);
|
|
else
|
|
lost = 0;
|
|
|
|
/*
|
|
* Do the timer stuff.
|
|
*/
|
|
|
|
do_timer(lost + 1);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
|
|
/*
|
|
* In the SMP case we use the local APIC timer interrupt to do the profiling,
|
|
* except when we simulate SMP mode on a uniprocessor system, in that case we
|
|
* have to call the local interrupt handler.
|
|
*/
|
|
|
|
if (!using_apic_timer)
|
|
smp_local_timer_interrupt();
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update CMOS clock
|
|
* accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
|
|
* closest to exactly 500 ms before the next second. If the update fails, we
|
|
* don't care, as it'll be updated on the next turn, and the problem (time way
|
|
* off) isn't likely to go away much sooner anyway.
|
|
*/
|
|
|
|
if (ntp_synced() && xtime.tv_sec > rtc_update &&
|
|
abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
|
|
set_rtc_mmss(xtime.tv_sec);
|
|
rtc_update = xtime.tv_sec + 660;
|
|
}
|
|
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
if (apic_runs_main_timer > 1)
|
|
return IRQ_HANDLED;
|
|
main_timer_handler();
|
|
if (using_apic_timer)
|
|
smp_send_timer_broadcast_ipi();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static unsigned long get_cmos_time(void)
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
unsigned long flags;
|
|
unsigned century = 0;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
|
|
do {
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
hour = CMOS_READ(RTC_HOURS);
|
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
mon = CMOS_READ(RTC_MONTH);
|
|
year = CMOS_READ(RTC_YEAR);
|
|
#ifdef CONFIG_ACPI
|
|
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
|
|
acpi_gbl_FADT.century)
|
|
century = CMOS_READ(acpi_gbl_FADT.century);
|
|
#endif
|
|
} while (sec != CMOS_READ(RTC_SECONDS));
|
|
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
/*
|
|
* We know that x86-64 always uses BCD format, no need to check the
|
|
* config register.
|
|
*/
|
|
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
|
|
if (century) {
|
|
BCD_TO_BIN(century);
|
|
year += century * 100;
|
|
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
|
|
} else {
|
|
/*
|
|
* x86-64 systems only exists since 2002.
|
|
* This will work up to Dec 31, 2100
|
|
*/
|
|
year += 2000;
|
|
}
|
|
|
|
return mktime(year, mon, day, hour, min, sec);
|
|
}
|
|
|
|
|
|
/*
|
|
* pit_calibrate_tsc() uses the speaker output (channel 2) of
|
|
* the PIT. This is better than using the timer interrupt output,
|
|
* because we can read the value of the speaker with just one inb(),
|
|
* where we need three i/o operations for the interrupt channel.
|
|
* We count how many ticks the TSC does in 50 ms.
|
|
*/
|
|
|
|
static unsigned int __init pit_calibrate_tsc(void)
|
|
{
|
|
unsigned long start, end;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8253_lock, flags);
|
|
|
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
|
|
|
outb(0xb0, 0x43);
|
|
outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
|
|
outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
|
|
start = get_cycles_sync();
|
|
while ((inb(0x61) & 0x20) == 0);
|
|
end = get_cycles_sync();
|
|
|
|
spin_unlock_irqrestore(&i8253_lock, flags);
|
|
|
|
return (end - start) / 50;
|
|
}
|
|
|
|
#define PIT_MODE 0x43
|
|
#define PIT_CH0 0x40
|
|
|
|
static void __init __pit_init(int val, u8 mode)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i8253_lock, flags);
|
|
outb_p(mode, PIT_MODE);
|
|
outb_p(val & 0xff, PIT_CH0); /* LSB */
|
|
outb_p(val >> 8, PIT_CH0); /* MSB */
|
|
spin_unlock_irqrestore(&i8253_lock, flags);
|
|
}
|
|
|
|
void __init pit_init(void)
|
|
{
|
|
__pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
|
|
}
|
|
|
|
void __init pit_stop_interrupt(void)
|
|
{
|
|
__pit_init(0, 0x30); /* mode 0 */
|
|
}
|
|
|
|
void __init stop_timer_interrupt(void)
|
|
{
|
|
char *name;
|
|
if (hpet_address) {
|
|
name = "HPET";
|
|
hpet_timer_stop_set_go(0);
|
|
} else {
|
|
name = "PIT";
|
|
pit_stop_interrupt();
|
|
}
|
|
printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
|
|
}
|
|
|
|
int __init time_setup(char *str)
|
|
{
|
|
report_lost_ticks = 1;
|
|
return 1;
|
|
}
|
|
|
|
static struct irqaction irq0 = {
|
|
timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
|
|
};
|
|
|
|
void __init time_init(void)
|
|
{
|
|
if (nohpet)
|
|
hpet_address = 0;
|
|
xtime.tv_sec = get_cmos_time();
|
|
xtime.tv_nsec = 0;
|
|
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
|
|
if (!hpet_arch_init())
|
|
vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
|
|
else
|
|
hpet_address = 0;
|
|
|
|
if (hpet_use_timer) {
|
|
/* set tick_nsec to use the proper rate for HPET */
|
|
tick_nsec = TICK_NSEC_HPET;
|
|
cpu_khz = hpet_calibrate_tsc();
|
|
timename = "HPET";
|
|
#ifdef CONFIG_X86_PM_TIMER
|
|
} else if (pmtmr_ioport && !hpet_address) {
|
|
vxtime_hz = PM_TIMER_FREQUENCY;
|
|
timename = "PM";
|
|
pit_init();
|
|
cpu_khz = pit_calibrate_tsc();
|
|
#endif
|
|
} else {
|
|
pit_init();
|
|
cpu_khz = pit_calibrate_tsc();
|
|
timename = "PIT";
|
|
}
|
|
|
|
vxtime.mode = VXTIME_TSC;
|
|
vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
|
|
vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
|
|
vxtime.last_tsc = get_cycles_sync();
|
|
set_cyc2ns_scale(cpu_khz);
|
|
setup_irq(0, &irq0);
|
|
|
|
#ifndef CONFIG_SMP
|
|
time_init_gtod();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Decide what mode gettimeofday should use.
|
|
*/
|
|
void time_init_gtod(void)
|
|
{
|
|
char *timetype;
|
|
|
|
if (unsynchronized_tsc())
|
|
notsc = 1;
|
|
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
|
|
vgetcpu_mode = VGETCPU_RDTSCP;
|
|
else
|
|
vgetcpu_mode = VGETCPU_LSL;
|
|
|
|
if (hpet_address && notsc) {
|
|
timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
|
|
if (hpet_use_timer)
|
|
vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
|
|
else
|
|
vxtime.last = hpet_readl(HPET_COUNTER);
|
|
vxtime.mode = VXTIME_HPET;
|
|
vxtime.hpet_address = hpet_address;
|
|
do_gettimeoffset = do_gettimeoffset_hpet;
|
|
#ifdef CONFIG_X86_PM_TIMER
|
|
/* Using PM for gettimeofday is quite slow, but we have no other
|
|
choice because the TSC is too unreliable on some systems. */
|
|
} else if (pmtmr_ioport && !hpet_address && notsc) {
|
|
timetype = "PM";
|
|
do_gettimeoffset = do_gettimeoffset_pm;
|
|
vxtime.mode = VXTIME_PMTMR;
|
|
sysctl_vsyscall = 0;
|
|
printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
|
|
#endif
|
|
} else {
|
|
timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
|
|
vxtime.mode = VXTIME_TSC;
|
|
}
|
|
|
|
printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
|
|
vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
|
|
printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
|
|
cpu_khz / 1000, cpu_khz % 1000);
|
|
vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
|
|
vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
|
|
vxtime.last_tsc = get_cycles_sync();
|
|
|
|
set_cyc2ns_scale(cpu_khz);
|
|
}
|
|
|
|
__setup("report_lost_ticks", time_setup);
|
|
|
|
static long clock_cmos_diff;
|
|
static unsigned long sleep_start;
|
|
|
|
/*
|
|
* sysfs support for the timer.
|
|
*/
|
|
|
|
static int timer_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
/*
|
|
* Estimate time zone so that set_time can update the clock
|
|
*/
|
|
long cmos_time = get_cmos_time();
|
|
|
|
clock_cmos_diff = -cmos_time;
|
|
clock_cmos_diff += get_seconds();
|
|
sleep_start = cmos_time;
|
|
return 0;
|
|
}
|
|
|
|
static int timer_resume(struct sys_device *dev)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long sec;
|
|
unsigned long ctime = get_cmos_time();
|
|
long sleep_length = (ctime - sleep_start) * HZ;
|
|
|
|
if (sleep_length < 0) {
|
|
printk(KERN_WARNING "Time skew detected in timer resume!\n");
|
|
/* The time after the resume must not be earlier than the time
|
|
* before the suspend or some nasty things will happen
|
|
*/
|
|
sleep_length = 0;
|
|
ctime = sleep_start;
|
|
}
|
|
if (hpet_address)
|
|
hpet_reenable();
|
|
else
|
|
i8254_timer_resume();
|
|
|
|
sec = ctime + clock_cmos_diff;
|
|
write_seqlock_irqsave(&xtime_lock,flags);
|
|
xtime.tv_sec = sec;
|
|
xtime.tv_nsec = 0;
|
|
if (vxtime.mode == VXTIME_HPET) {
|
|
if (hpet_use_timer)
|
|
vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
|
|
else
|
|
vxtime.last = hpet_readl(HPET_COUNTER);
|
|
#ifdef CONFIG_X86_PM_TIMER
|
|
} else if (vxtime.mode == VXTIME_PMTMR) {
|
|
pmtimer_resume();
|
|
#endif
|
|
} else
|
|
vxtime.last_tsc = get_cycles_sync();
|
|
write_sequnlock_irqrestore(&xtime_lock,flags);
|
|
jiffies += sleep_length;
|
|
monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
|
|
touch_softlockup_watchdog();
|
|
return 0;
|
|
}
|
|
|
|
static struct sysdev_class timer_sysclass = {
|
|
.resume = timer_resume,
|
|
.suspend = timer_suspend,
|
|
set_kset_name("timer"),
|
|
};
|
|
|
|
/* XXX this driverfs stuff should probably go elsewhere later -john */
|
|
static struct sys_device device_timer = {
|
|
.id = 0,
|
|
.cls = &timer_sysclass,
|
|
};
|
|
|
|
static int time_init_device(void)
|
|
{
|
|
int error = sysdev_class_register(&timer_sysclass);
|
|
if (!error)
|
|
error = sysdev_register(&device_timer);
|
|
return error;
|
|
}
|
|
|
|
device_initcall(time_init_device);
|