4ec223d02f
Rootcaused the bug to a deadlock in cpufreq and ondemand. Due to non-existent ordering between cpu_hotplug lock and dbs_mutex. Basically a race condition between cpu_down() and do_dbs_timer(). cpu_down() flow: * cpu_down() call for CPU 1 * Takes hot plug lock * Calls pre down notifier * cpufreq notifier handler calls cpufreq_driver_target() which takes cpu_hotplug lock again. OK as cpu_hotplug lock is recursive in same process context * CPU 1 goes down * Calls post down notifier * cpufreq notifier handler calls ondemand event stop which takes dbs_mutex So, cpu_hotplug lock is taken before dbs_mutex in this flow. do_dbs_timer is triggerred by a periodic timer event. It first takes dbs_mutex and then takes cpu_hotplug lock in cpufreq_driver_target(). Note the reverse order here compared to above. So, if this timer event happens at right moment during cpu_down, system will deadlok. Attached patch fixes the issue for both ondemand and conservative. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Dave Jones <davej@redhat.com>
529 lines
14 KiB
C
529 lines
14 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_ondemand.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/types.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/mutex.h>
|
|
|
|
/*
|
|
* dbs is used in this file as a shortform for demandbased switching
|
|
* It helps to keep variable names smaller, simpler
|
|
*/
|
|
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
/*
|
|
* The polling frequency of this governor depends on the capability of
|
|
* the processor. Default polling frequency is 1000 times the transition
|
|
* latency of the processor. The governor will work on any processor with
|
|
* transition latency <= 10mS, using appropriate sampling
|
|
* rate.
|
|
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
|
|
* this governor will not work.
|
|
* All times here are in uS.
|
|
*/
|
|
static unsigned int def_sampling_rate;
|
|
#define MIN_SAMPLING_RATE_RATIO (2)
|
|
/* for correct statistics, we need at least 10 ticks between each measure */
|
|
#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
|
|
#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
|
|
#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
|
|
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
|
|
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
|
#define MAX_SAMPLING_DOWN_FACTOR (10)
|
|
#define TRANSITION_LATENCY_LIMIT (10 * 1000)
|
|
|
|
static void do_dbs_timer(void *data);
|
|
|
|
struct cpu_dbs_info_s {
|
|
struct cpufreq_policy *cur_policy;
|
|
unsigned int prev_cpu_idle_up;
|
|
unsigned int prev_cpu_idle_down;
|
|
unsigned int enable;
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
|
|
|
|
static unsigned int dbs_enable; /* number of CPUs using this policy */
|
|
|
|
/*
|
|
* DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
|
|
* lock and dbs_mutex. cpu_hotplug lock should always be held before
|
|
* dbs_mutex. If any function that can potentially take cpu_hotplug lock
|
|
* (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
|
|
* cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
|
|
* is recursive for the same process. -Venki
|
|
*/
|
|
static DEFINE_MUTEX (dbs_mutex);
|
|
static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
|
|
|
|
static struct workqueue_struct *dbs_workq;
|
|
|
|
struct dbs_tuners {
|
|
unsigned int sampling_rate;
|
|
unsigned int sampling_down_factor;
|
|
unsigned int up_threshold;
|
|
unsigned int ignore_nice;
|
|
};
|
|
|
|
static struct dbs_tuners dbs_tuners_ins = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
|
|
.ignore_nice = 0,
|
|
};
|
|
|
|
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
|
|
{
|
|
return kstat_cpu(cpu).cpustat.idle +
|
|
kstat_cpu(cpu).cpustat.iowait +
|
|
( dbs_tuners_ins.ignore_nice ?
|
|
kstat_cpu(cpu).cpustat.nice :
|
|
0);
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
|
|
}
|
|
|
|
static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
|
|
}
|
|
|
|
#define define_one_ro(_name) \
|
|
static struct freq_attr _name = \
|
|
__ATTR(_name, 0444, show_##_name, NULL)
|
|
|
|
define_one_ro(sampling_rate_max);
|
|
define_one_ro(sampling_rate_min);
|
|
|
|
/* cpufreq_ondemand Governor Tunables */
|
|
#define show_one(file_name, object) \
|
|
static ssize_t show_##file_name \
|
|
(struct cpufreq_policy *unused, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
|
|
}
|
|
show_one(sampling_rate, sampling_rate);
|
|
show_one(sampling_down_factor, sampling_down_factor);
|
|
show_one(up_threshold, up_threshold);
|
|
show_one(ignore_nice_load, ignore_nice);
|
|
|
|
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf (buf, "%u", &input);
|
|
if (ret != 1 )
|
|
return -EINVAL;
|
|
|
|
if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_tuners_ins.sampling_down_factor = input;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf (buf, "%u", &input);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dbs_tuners_ins.sampling_rate = input;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf (buf, "%u", &input);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dbs_tuners_ins.up_threshold = input;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf (buf, "%u", &input);
|
|
if ( ret != 1 )
|
|
return -EINVAL;
|
|
|
|
if ( input > 1 )
|
|
input = 1;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
|
|
mutex_unlock(&dbs_mutex);
|
|
return count;
|
|
}
|
|
dbs_tuners_ins.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
|
|
for_each_online_cpu(j) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
|
|
j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
|
|
}
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
#define define_one_rw(_name) \
|
|
static struct freq_attr _name = \
|
|
__ATTR(_name, 0644, show_##_name, store_##_name)
|
|
|
|
define_one_rw(sampling_rate);
|
|
define_one_rw(sampling_down_factor);
|
|
define_one_rw(up_threshold);
|
|
define_one_rw(ignore_nice_load);
|
|
|
|
static struct attribute * dbs_attributes[] = {
|
|
&sampling_rate_max.attr,
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&sampling_down_factor.attr,
|
|
&up_threshold.attr,
|
|
&ignore_nice_load.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group dbs_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
static void dbs_check_cpu(int cpu)
|
|
{
|
|
unsigned int idle_ticks, up_idle_ticks, total_ticks;
|
|
unsigned int freq_next;
|
|
unsigned int freq_down_sampling_rate;
|
|
static int down_skip[NR_CPUS];
|
|
struct cpu_dbs_info_s *this_dbs_info;
|
|
|
|
struct cpufreq_policy *policy;
|
|
unsigned int j;
|
|
|
|
this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
|
|
if (!this_dbs_info->enable)
|
|
return;
|
|
|
|
policy = this_dbs_info->cur_policy;
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less
|
|
* than 20% (default), then we try to increase frequency
|
|
* Every sampling_rate*sampling_down_factor, we look for a the lowest
|
|
* frequency which can sustain the load while keeping idle time over
|
|
* 30%. If such a frequency exist, we try to decrease to this frequency.
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency.
|
|
* Frequency reduction happens at minimum steps of
|
|
* 5% (default) of current frequency
|
|
*/
|
|
|
|
/* Check for frequency increase */
|
|
idle_ticks = UINT_MAX;
|
|
for_each_cpu_mask(j, policy->cpus) {
|
|
unsigned int tmp_idle_ticks, total_idle_ticks;
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
total_idle_ticks = get_cpu_idle_time(j);
|
|
tmp_idle_ticks = total_idle_ticks -
|
|
j_dbs_info->prev_cpu_idle_up;
|
|
j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
|
|
|
|
if (tmp_idle_ticks < idle_ticks)
|
|
idle_ticks = tmp_idle_ticks;
|
|
}
|
|
|
|
/* Scale idle ticks by 100 and compare with up and down ticks */
|
|
idle_ticks *= 100;
|
|
up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
|
|
usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
|
|
if (idle_ticks < up_idle_ticks) {
|
|
down_skip[cpu] = 0;
|
|
for_each_cpu_mask(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
j_dbs_info->prev_cpu_idle_down =
|
|
j_dbs_info->prev_cpu_idle_up;
|
|
}
|
|
/* if we are already at full speed then break out early */
|
|
if (policy->cur == policy->max)
|
|
return;
|
|
|
|
__cpufreq_driver_target(policy, policy->max,
|
|
CPUFREQ_RELATION_H);
|
|
return;
|
|
}
|
|
|
|
/* Check for frequency decrease */
|
|
down_skip[cpu]++;
|
|
if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
|
|
return;
|
|
|
|
idle_ticks = UINT_MAX;
|
|
for_each_cpu_mask(j, policy->cpus) {
|
|
unsigned int tmp_idle_ticks, total_idle_ticks;
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
/* Check for frequency decrease */
|
|
total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
|
|
tmp_idle_ticks = total_idle_ticks -
|
|
j_dbs_info->prev_cpu_idle_down;
|
|
j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
|
|
|
|
if (tmp_idle_ticks < idle_ticks)
|
|
idle_ticks = tmp_idle_ticks;
|
|
}
|
|
|
|
down_skip[cpu] = 0;
|
|
/* if we cannot reduce the frequency anymore, break out early */
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
/* Compute how many ticks there are between two measurements */
|
|
freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
|
|
dbs_tuners_ins.sampling_down_factor;
|
|
total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that
|
|
* can support the current CPU usage without triggering the up
|
|
* policy. To be safe, we focus 10 points under the threshold.
|
|
*/
|
|
freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
|
|
freq_next = (freq_next * policy->cur) /
|
|
(dbs_tuners_ins.up_threshold - 10);
|
|
|
|
if (freq_next < policy->min)
|
|
freq_next = policy->min;
|
|
|
|
if (freq_next <= ((policy->cur * 95) / 100))
|
|
__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
|
|
}
|
|
|
|
static void do_dbs_timer(void *data)
|
|
{
|
|
int i;
|
|
lock_cpu_hotplug();
|
|
mutex_lock(&dbs_mutex);
|
|
for_each_online_cpu(i)
|
|
dbs_check_cpu(i);
|
|
queue_delayed_work(dbs_workq, &dbs_work,
|
|
usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
|
|
mutex_unlock(&dbs_mutex);
|
|
unlock_cpu_hotplug();
|
|
}
|
|
|
|
static inline void dbs_timer_init(void)
|
|
{
|
|
INIT_WORK(&dbs_work, do_dbs_timer, NULL);
|
|
if (!dbs_workq)
|
|
dbs_workq = create_singlethread_workqueue("ondemand");
|
|
if (!dbs_workq) {
|
|
printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
|
|
return;
|
|
}
|
|
queue_delayed_work(dbs_workq, &dbs_work,
|
|
usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
|
|
return;
|
|
}
|
|
|
|
static inline void dbs_timer_exit(void)
|
|
{
|
|
if (dbs_workq)
|
|
cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
|
|
}
|
|
|
|
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpu_dbs_info_s *this_dbs_info;
|
|
unsigned int j;
|
|
|
|
this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if ((!cpu_online(cpu)) ||
|
|
(!policy->cur))
|
|
return -EINVAL;
|
|
|
|
if (policy->cpuinfo.transition_latency >
|
|
(TRANSITION_LATENCY_LIMIT * 1000)) {
|
|
printk(KERN_WARNING "ondemand governor failed to load "
|
|
"due to too long transition latency\n");
|
|
return -EINVAL;
|
|
}
|
|
if (this_dbs_info->enable) /* Already enabled */
|
|
break;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
for_each_cpu_mask(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
j_dbs_info->cur_policy = policy;
|
|
|
|
j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
|
|
j_dbs_info->prev_cpu_idle_down
|
|
= j_dbs_info->prev_cpu_idle_up;
|
|
}
|
|
this_dbs_info->enable = 1;
|
|
sysfs_create_group(&policy->kobj, &dbs_attr_group);
|
|
dbs_enable++;
|
|
/*
|
|
* Start the timerschedule work, when this governor
|
|
* is used for first time
|
|
*/
|
|
if (dbs_enable == 1) {
|
|
unsigned int latency;
|
|
/* policy latency is in nS. Convert it to uS first */
|
|
latency = policy->cpuinfo.transition_latency / 1000;
|
|
if (latency == 0)
|
|
latency = 1;
|
|
|
|
def_sampling_rate = latency *
|
|
DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
|
|
|
|
if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
|
|
def_sampling_rate = MIN_STAT_SAMPLING_RATE;
|
|
|
|
dbs_tuners_ins.sampling_rate = def_sampling_rate;
|
|
dbs_timer_init();
|
|
}
|
|
|
|
mutex_unlock(&dbs_mutex);
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
mutex_lock(&dbs_mutex);
|
|
this_dbs_info->enable = 0;
|
|
sysfs_remove_group(&policy->kobj, &dbs_attr_group);
|
|
dbs_enable--;
|
|
/*
|
|
* Stop the timerschedule work, when this governor
|
|
* is used for first time
|
|
*/
|
|
if (dbs_enable == 0)
|
|
dbs_timer_exit();
|
|
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
lock_cpu_hotplug();
|
|
mutex_lock(&dbs_mutex);
|
|
if (policy->max < this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(
|
|
this_dbs_info->cur_policy,
|
|
policy->max, CPUFREQ_RELATION_H);
|
|
else if (policy->min > this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(
|
|
this_dbs_info->cur_policy,
|
|
policy->min, CPUFREQ_RELATION_L);
|
|
mutex_unlock(&dbs_mutex);
|
|
unlock_cpu_hotplug();
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct cpufreq_governor cpufreq_gov_dbs = {
|
|
.name = "ondemand",
|
|
.governor = cpufreq_governor_dbs,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
return cpufreq_register_governor(&cpufreq_gov_dbs);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
/* Make sure that the scheduled work is indeed not running.
|
|
Assumes the timer has been cancelled first. */
|
|
if (dbs_workq) {
|
|
flush_workqueue(dbs_workq);
|
|
destroy_workqueue(dbs_workq);
|
|
}
|
|
|
|
cpufreq_unregister_governor(&cpufreq_gov_dbs);
|
|
}
|
|
|
|
|
|
MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
|
MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors");
|
|
MODULE_LICENSE ("GPL");
|
|
|
|
module_init(cpufreq_gov_dbs_init);
|
|
module_exit(cpufreq_gov_dbs_exit);
|