kernel-fxtec-pro1x/drivers/regulator/spm-regulator.c
Kiran Gunda a878300ad6 regulator: spm_regulator: Add snapshot of spm_regulator driver
This is snapshot of the spm_regulator driver as of
msm-4.14 'commit 89909bd394e299cbe ("Merge "clk:
qcom: gcc-sdm429w: Update plls for SDM429W"")'.

Also replace the __invoke_psci_fn_smc wrapper with arm_smccc_smc as
__invoke_psci_fn_smc is no longer available.

Change-Id: Ia6ded6dc21ecff2114ddd20e26706d9196239956
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
2020-05-19 00:16:32 +05:30

1351 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2013-2017, 2020, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/arm-smccc.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/regmap.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/spmi.h>
#include <linux/platform_device.h>
#include <linux/string.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/spm-regulator.h>
#include <soc/qcom/spm.h>
#include <linux/arm-smccc.h>
#if defined(CONFIG_ARM64) || (defined(CONFIG_ARM) && defined(CONFIG_ARM_PSCI))
#else
#define __invoke_psci_fn_smc(a, b, c, d) 0
#endif
#define SPM_REGULATOR_DRIVER_NAME "qcom,spm-regulator"
struct voltage_range {
int min_uV;
int set_point_min_uV;
int max_uV;
int step_uV;
};
enum qpnp_regulator_uniq_type {
QPNP_TYPE_HF,
QPNP_TYPE_FTS2,
QPNP_TYPE_FTS2p5,
QPNP_TYPE_FTS426,
QPNP_TYPE_ULT_HF,
QPNP_TYPE_HFS430,
};
enum qpnp_regulator_type {
QPNP_HF_TYPE = 0x03,
QPNP_FTS2_TYPE = 0x1C,
QPNP_FTS2p5_TYPE = 0x1C,
QPNP_FTS426_TYPE = 0x1C,
QPNP_ULT_HF_TYPE = 0x22,
};
enum qpnp_regulator_subtype {
QPNP_FTS2_SUBTYPE = 0x08,
QPNP_HF_SUBTYPE = 0x08,
QPNP_FTS2p5_SUBTYPE = 0x09,
QPNP_FTS426_SUBTYPE = 0x0A,
QPNP_ULT_HF_SUBTYPE = 0x0D,
QPNP_HFS430_SUBTYPE = 0x0A,
};
enum qpnp_logical_mode {
QPNP_LOGICAL_MODE_AUTO,
QPNP_LOGICAL_MODE_PWM,
};
static const struct voltage_range fts2_range0 = {0, 350000, 1275000, 5000};
static const struct voltage_range fts2_range1 = {0, 700000, 2040000, 10000};
static const struct voltage_range fts2p5_range0
= { 80000, 350000, 1355000, 5000};
static const struct voltage_range fts2p5_range1
= {160000, 700000, 2200000, 10000};
static const struct voltage_range fts426_range = {0, 320000, 1352000, 4000};
static const struct voltage_range hfs430_range = {0, 320000, 2040000, 8000};
static const struct voltage_range ult_hf_range0 = {375000, 375000, 1562500,
12500};
static const struct voltage_range ult_hf_range1 = {750000, 750000, 1525000,
25000};
static const struct voltage_range hf_range0 = {375000, 375000, 1562500, 12500};
static const struct voltage_range hf_range1 = {1550000, 1550000, 3125000,
25000};
#define QPNP_SMPS_REG_TYPE 0x04
#define QPNP_SMPS_REG_SUBTYPE 0x05
#define QPNP_SMPS_REG_VOLTAGE_RANGE 0x40
#define QPNP_SMPS_REG_VOLTAGE_SETPOINT 0x41
#define QPNP_SMPS_REG_MODE 0x45
#define QPNP_SMPS_REG_STEP_CTRL 0x61
#define QPNP_SMPS_REG_UL_LL_CTRL 0x68
/* FTS426/HFS430 voltage control registers */
#define QPNP_FTS426_HFS430_REG_VOLTAGE_LB 0x40
#define QPNP_FTS426_HFS430_REG_VOLTAGE_UB 0x41
#define QPNP_FTS426_HFS430_REG_VOLTAGE_VALID_LB 0x42
#define QPNP_FTS426_HFS430_REG_VOLTAGE_VALID_UB 0x43
/* HF voltage limit registers */
#define QPNP_HF_REG_VOLTAGE_ULS 0x69
#define QPNP_HF_REG_VOLTAGE_LLS 0x6B
/* FTS voltage limit registers */
#define QPNP_FTS_REG_VOLTAGE_ULS_VALID 0x6A
#define QPNP_FTS_REG_VOLTAGE_LLS_VALID 0x6C
/* FTS426/HFS430 voltage limit registers */
#define QPNP_FTS426_HFS430_REG_VOLTAGE_ULS_LB 0x68
#define QPNP_FTS426_HFS430_REG_VOLTAGE_ULS_UB 0x69
/* Common regulator UL & LL limits control register layout */
#define QPNP_COMMON_UL_EN_MASK 0x80
#define QPNP_COMMON_LL_EN_MASK 0x40
#define QPNP_SMPS_MODE_PWM 0x80
#define QPNP_SMPS_MODE_AUTO 0x40
#define QPNP_FTS426_HFS430_MODE_PWM 0x07
#define QPNP_FTS426_HFS430_MODE_AUTO 0x06
#define QPNP_SMPS_STEP_CTRL_STEP_MASK 0x18
#define QPNP_SMPS_STEP_CTRL_STEP_SHIFT 3
#define QPNP_SMPS_STEP_CTRL_DELAY_MASK 0x07
#define QPNP_SMPS_STEP_CTRL_DELAY_SHIFT 0
#define QPNP_FTS426_HFS430_STEP_CTRL_DELAY_MASK 0x03
#define QPNP_FTS426_HFS430_STEP_CTRL_DELAY_SHIFT 0
/* Clock rate in kHz of the FTS2 regulator reference clock. */
#define QPNP_SMPS_CLOCK_RATE 19200
#define QPNP_FTS426_CLOCK_RATE 4800
#define QPNP_HFS430_CLOCK_RATE 1600
/* Time to delay in us to ensure that a mode change has completed. */
#define QPNP_FTS2_MODE_CHANGE_DELAY 50
/* Minimum time in us that it takes to complete a single SPMI write. */
#define QPNP_SPMI_WRITE_MIN_DELAY 8
/* Minimum voltage stepper delay for each step. */
#define QPNP_FTS2_STEP_DELAY 8
#define QPNP_HF_STEP_DELAY 20
#define QPNP_FTS426_HFS430_STEP_DELAY 2
/* Arbitrarily large max step size used to avoid possible numerical overflow */
#define SPM_REGULATOR_MAX_STEP_UV 10000000
/*
* The ratio QPNP_FTS2_STEP_MARGIN_NUM/QPNP_FTS2_STEP_MARGIN_DEN is use to
* adjust the step rate in order to account for oscillator variance.
*/
#define QPNP_FTS2_STEP_MARGIN_NUM 4
#define QPNP_FTS2_STEP_MARGIN_DEN 5
#define QPNP_FTS426_HFS430_STEP_MARGIN_NUM 10
#define QPNP_FTS426_HFS430_STEP_MARGIN_DEN 11
/*
* Settling delay for FTS2.5
* Warm-up=20uS, 0-10% & 90-100% non-linear V-ramp delay = 50uS
*/
#define FTS2P5_SETTLING_DELAY_US 70
/* VSET value to decide the range of ULT SMPS */
#define ULT_SMPS_RANGE_SPLIT 0x60
struct spm_vreg {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct platform_device *pdev;
struct regmap *regmap;
const struct voltage_range *range;
int uV;
int last_set_uV;
unsigned int vlevel;
unsigned int last_set_vlevel;
u32 max_step_uV;
bool online;
u16 spmi_base_addr;
enum qpnp_logical_mode init_mode;
enum qpnp_logical_mode mode;
int step_rate;
enum qpnp_regulator_uniq_type regulator_type;
u32 cpu_num;
bool bypass_spm;
struct regulator_desc avs_rdesc;
struct regulator_dev *avs_rdev;
int avs_min_uV;
int avs_max_uV;
bool avs_enabled;
u32 recal_cluster_mask;
};
static inline bool spm_regulator_using_avs(struct spm_vreg *vreg)
{
return vreg->avs_rdev && !vreg->bypass_spm;
}
static int spm_regulator_uv_to_vlevel(struct spm_vreg *vreg, int uV)
{
int vlevel;
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430)
return roundup(uV, vreg->range->step_uV) / 1000;
vlevel = DIV_ROUND_UP(uV - vreg->range->min_uV, vreg->range->step_uV);
/* Fix VSET for ULT HF Buck */
if (vreg->regulator_type == QPNP_TYPE_ULT_HF
&& vreg->range == &ult_hf_range1) {
vlevel &= 0x1F;
vlevel |= ULT_SMPS_RANGE_SPLIT;
}
return vlevel;
}
static int spm_regulator_vlevel_to_uv(struct spm_vreg *vreg, int vlevel)
{
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430)
return vlevel * 1000;
/*
* Calculate ULT HF buck VSET based on range:
* In case of range 0: VSET is a 7 bit value.
* In case of range 1: VSET is a 5 bit value.
*/
if (vreg->regulator_type == QPNP_TYPE_ULT_HF
&& vreg->range == &ult_hf_range1)
vlevel &= ~ULT_SMPS_RANGE_SPLIT;
return vlevel * vreg->range->step_uV + vreg->range->min_uV;
}
static unsigned int spm_regulator_vlevel_to_selector(struct spm_vreg *vreg,
unsigned int vlevel)
{
/* Fix VSET for ULT HF Buck */
if (vreg->regulator_type == QPNP_TYPE_ULT_HF
&& vreg->range == &ult_hf_range1)
vlevel &= ~ULT_SMPS_RANGE_SPLIT;
if (vreg->regulator_type == QPNP_TYPE_HFS430)
vlevel = spm_regulator_vlevel_to_uv(vreg, vlevel)
/ vreg->range->step_uV;
return vlevel - (vreg->range->set_point_min_uV - vreg->range->min_uV)
/ vreg->range->step_uV;
}
static int qpnp_smps_read_voltage(struct spm_vreg *vreg)
{
int rc;
u8 val[2] = {0};
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430) {
rc = regmap_bulk_read(vreg->regmap,
vreg->spmi_base_addr
+ QPNP_FTS426_HFS430_REG_VOLTAGE_VALID_LB,
val, 2);
if (rc) {
dev_err(&vreg->pdev->dev, "%s: could not read voltage setpoint registers, rc=%d\n",
__func__, rc);
return rc;
}
vreg->last_set_vlevel = ((unsigned int)val[1] << 8) | val[0];
} else {
rc = regmap_bulk_read(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT,
val, 1);
if (rc) {
dev_err(&vreg->pdev->dev, "%s: could not read voltage setpoint register, rc=%d\n",
__func__, rc);
return rc;
}
vreg->last_set_vlevel = val[0];
}
vreg->last_set_uV = spm_regulator_vlevel_to_uv(vreg,
vreg->last_set_vlevel);
return rc;
}
static int qpnp_smps_write_voltage(struct spm_vreg *vreg, unsigned int vlevel)
{
int rc = 0;
u8 reg[2];
/* Set voltage control registers via SPMI. */
reg[0] = vlevel & 0xFF;
reg[1] = (vlevel >> 8) & 0xFF;
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430) {
rc = regmap_bulk_write(vreg->regmap,
vreg->spmi_base_addr
+ QPNP_FTS426_HFS430_REG_VOLTAGE_LB,
reg, 2);
} else {
rc = regmap_write(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT,
reg[0]);
}
if (rc)
pr_err("%s: regmap_write failed, rc=%d\n",
vreg->rdesc.name, rc);
return rc;
}
static inline enum qpnp_logical_mode qpnp_regval_to_mode(struct spm_vreg *vreg,
u8 regval)
{
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430)
return (regval == QPNP_FTS426_HFS430_MODE_PWM)
? QPNP_LOGICAL_MODE_PWM : QPNP_LOGICAL_MODE_AUTO;
else
return (regval & QPNP_SMPS_MODE_PWM)
? QPNP_LOGICAL_MODE_PWM : QPNP_LOGICAL_MODE_AUTO;
}
static inline u8 qpnp_mode_to_regval(struct spm_vreg *vreg,
enum qpnp_logical_mode mode)
{
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430)
return (mode == QPNP_LOGICAL_MODE_PWM)
? QPNP_FTS426_HFS430_MODE_PWM
: QPNP_FTS426_HFS430_MODE_AUTO;
else
return (mode == QPNP_LOGICAL_MODE_PWM)
? QPNP_SMPS_MODE_PWM : QPNP_SMPS_MODE_AUTO;
}
static int qpnp_smps_set_mode(struct spm_vreg *vreg, u8 mode)
{
int rc;
rc = regmap_write(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_MODE,
qpnp_mode_to_regval(vreg, mode));
if (rc)
dev_err(&vreg->pdev->dev,
"%s: could not write to mode register, rc=%d\n",
__func__, rc);
return rc;
}
static int spm_regulator_get_voltage(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
int vlevel, rc;
if (spm_regulator_using_avs(vreg)) {
vlevel = msm_spm_get_vdd(vreg->cpu_num);
if (vlevel < 0) {
pr_debug("%s: msm_spm_get_vdd failed, rc=%d; falling back on SPMI read\n",
vreg->rdesc.name, vlevel);
rc = qpnp_smps_read_voltage(vreg);
if (rc) {
pr_err("%s: voltage read failed, rc=%d\n",
vreg->rdesc.name, rc);
return rc;
}
return vreg->last_set_uV;
}
vreg->last_set_vlevel = vlevel;
vreg->last_set_uV = spm_regulator_vlevel_to_uv(vreg, vlevel);
return vreg->last_set_uV;
} else {
return vreg->uV;
}
};
static int spm_regulator_write_voltage(struct spm_vreg *vreg, int uV)
{
unsigned int vlevel = spm_regulator_uv_to_vlevel(vreg, uV);
bool spm_failed = false;
int rc = 0;
u32 slew_delay;
if (likely(!vreg->bypass_spm)) {
/* Set voltage control register via SPM. */
rc = msm_spm_set_vdd(vreg->cpu_num, vlevel);
if (rc) {
pr_debug("%s: msm_spm_set_vdd failed, rc=%d; falling back on SPMI write\n",
vreg->rdesc.name, rc);
spm_failed = true;
}
}
if (unlikely(vreg->bypass_spm || spm_failed)) {
rc = qpnp_smps_write_voltage(vreg, vlevel);
if (rc) {
pr_err("%s: voltage write failed, rc=%d\n",
vreg->rdesc.name, rc);
return rc;
}
}
if (uV > vreg->last_set_uV) {
/* Wait for voltage stepping to complete. */
slew_delay = DIV_ROUND_UP(uV - vreg->last_set_uV,
vreg->step_rate);
if (vreg->regulator_type == QPNP_TYPE_FTS2p5)
slew_delay += FTS2P5_SETTLING_DELAY_US;
udelay(slew_delay);
} else if (vreg->regulator_type == QPNP_TYPE_FTS2p5) {
/* add the ramp-down delay */
slew_delay = DIV_ROUND_UP(vreg->last_set_uV - uV,
vreg->step_rate) + FTS2P5_SETTLING_DELAY_US;
udelay(slew_delay);
}
vreg->last_set_uV = uV;
vreg->last_set_vlevel = vlevel;
return rc;
}
static int spm_regulator_recalibrate(struct spm_vreg *vreg)
{
struct arm_smccc_res res;
if (!vreg->recal_cluster_mask)
return 0;
arm_smccc_smc(0xC4000020, vreg->recal_cluster_mask,
2, 0, 0, 0, 0, 0, &res);
if (res.a0)
pr_err("%s: recalibration failed, rc=%ld\n", vreg->rdesc.name,
res.a0);
return res.a0;
}
static int _spm_regulator_set_voltage(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
bool pwm_required;
int rc = 0;
int uV;
rc = spm_regulator_get_voltage(rdev);
if (rc < 0)
return rc;
if (vreg->vlevel == vreg->last_set_vlevel)
return 0;
pwm_required = (vreg->regulator_type == QPNP_TYPE_FTS2)
&& (vreg->init_mode != QPNP_LOGICAL_MODE_PWM)
&& vreg->uV > vreg->last_set_uV;
if (pwm_required) {
/* Switch to PWM mode so that voltage ramping is fast. */
rc = qpnp_smps_set_mode(vreg, QPNP_LOGICAL_MODE_PWM);
if (rc)
return rc;
}
do {
uV = vreg->uV > vreg->last_set_uV
? min(vreg->uV, vreg->last_set_uV + (int)vreg->max_step_uV)
: max(vreg->uV, vreg->last_set_uV - (int)vreg->max_step_uV);
rc = spm_regulator_write_voltage(vreg, uV);
if (rc)
return rc;
} while (vreg->last_set_uV != vreg->uV);
if (pwm_required) {
/* Wait for mode transition to complete. */
udelay(QPNP_FTS2_MODE_CHANGE_DELAY - QPNP_SPMI_WRITE_MIN_DELAY);
/* Switch to AUTO mode so that power consumption is lowered. */
rc = qpnp_smps_set_mode(vreg, QPNP_LOGICAL_MODE_AUTO);
if (rc)
return rc;
}
rc = spm_regulator_recalibrate(vreg);
return rc;
}
static int spm_regulator_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned int *selector)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
const struct voltage_range *range = vreg->range;
int uV = min_uV;
unsigned int vlevel;
if (uV < range->set_point_min_uV && max_uV >= range->set_point_min_uV)
uV = range->set_point_min_uV;
if (uV < range->set_point_min_uV || uV > range->max_uV) {
pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n",
vreg->rdesc.name, min_uV, max_uV,
range->set_point_min_uV, range->max_uV);
return -EINVAL;
}
vlevel = spm_regulator_uv_to_vlevel(vreg, uV);
uV = spm_regulator_vlevel_to_uv(vreg, vlevel);
if (uV > max_uV) {
pr_err("%s: request v=[%d, %d] cannot be met by any set point\n",
vreg->rdesc.name, min_uV, max_uV);
return -EINVAL;
}
*selector = spm_regulator_vlevel_to_selector(vreg, vlevel);
vreg->vlevel = vlevel;
vreg->uV = uV;
if (!vreg->online)
return 0;
return _spm_regulator_set_voltage(rdev);
}
static int spm_regulator_list_voltage(struct regulator_dev *rdev,
unsigned int selector)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
if (selector >= vreg->rdesc.n_voltages)
return 0;
return selector * vreg->range->step_uV + vreg->range->set_point_min_uV;
}
static int spm_regulator_enable(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = _spm_regulator_set_voltage(rdev);
if (!rc)
vreg->online = true;
return rc;
}
static int spm_regulator_disable(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
vreg->online = false;
return 0;
}
static int spm_regulator_is_enabled(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->online;
}
static unsigned int spm_regulator_get_mode(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->mode == QPNP_LOGICAL_MODE_PWM
? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE;
}
static int spm_regulator_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
/*
* Map REGULATOR_MODE_NORMAL to PWM mode and REGULATOR_MODE_IDLE to
* init_mode. This ensures that the regulator always stays in PWM mode
* in the case that qcom,mode has been specified as "pwm" in device
* tree.
*/
vreg->mode = (mode == REGULATOR_MODE_NORMAL) ? QPNP_LOGICAL_MODE_PWM
: vreg->init_mode;
return qpnp_smps_set_mode(vreg, vreg->mode);
}
static struct regulator_ops spm_regulator_ops = {
.get_voltage = spm_regulator_get_voltage,
.set_voltage = spm_regulator_set_voltage,
.list_voltage = spm_regulator_list_voltage,
.get_mode = spm_regulator_get_mode,
.set_mode = spm_regulator_set_mode,
.enable = spm_regulator_enable,
.disable = spm_regulator_disable,
.is_enabled = spm_regulator_is_enabled,
};
static int spm_regulator_avs_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned int *selector)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
const struct voltage_range *range = vreg->range;
unsigned int vlevel_min, vlevel_max;
int uV, avs_min_uV, avs_max_uV, rc;
uV = min_uV;
if (uV < range->set_point_min_uV && max_uV >= range->set_point_min_uV)
uV = range->set_point_min_uV;
if (uV < range->set_point_min_uV || uV > range->max_uV) {
pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n",
vreg->avs_rdesc.name, min_uV, max_uV,
range->set_point_min_uV, range->max_uV);
return -EINVAL;
}
vlevel_min = spm_regulator_uv_to_vlevel(vreg, uV);
avs_min_uV = spm_regulator_vlevel_to_uv(vreg, vlevel_min);
if (avs_min_uV > max_uV) {
pr_err("%s: request v=[%d, %d] cannot be met by any set point\n",
vreg->avs_rdesc.name, min_uV, max_uV);
return -EINVAL;
}
uV = max_uV;
if (uV > range->max_uV && min_uV <= range->max_uV)
uV = range->max_uV;
if (uV < range->set_point_min_uV || uV > range->max_uV) {
pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n",
vreg->avs_rdesc.name, min_uV, max_uV,
range->set_point_min_uV, range->max_uV);
return -EINVAL;
}
vlevel_max = spm_regulator_uv_to_vlevel(vreg, uV);
avs_max_uV = spm_regulator_vlevel_to_uv(vreg, vlevel_max);
if (avs_max_uV < min_uV) {
pr_err("%s: request v=[%d, %d] cannot be met by any set point\n",
vreg->avs_rdesc.name, min_uV, max_uV);
return -EINVAL;
}
if (likely(!vreg->bypass_spm)) {
rc = msm_spm_avs_set_limit(vreg->cpu_num, vlevel_min,
vlevel_max);
if (rc) {
pr_err("%s: AVS limit setting failed, rc=%d\n",
vreg->avs_rdesc.name, rc);
return rc;
}
}
*selector = spm_regulator_vlevel_to_selector(vreg, vlevel_min);
vreg->avs_min_uV = avs_min_uV;
vreg->avs_max_uV = avs_max_uV;
return 0;
}
static int spm_regulator_avs_get_voltage(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->avs_min_uV;
}
static int spm_regulator_avs_enable(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
if (likely(!vreg->bypass_spm)) {
rc = msm_spm_avs_enable(vreg->cpu_num);
if (rc) {
pr_err("%s: AVS enable failed, rc=%d\n",
vreg->avs_rdesc.name, rc);
return rc;
}
}
vreg->avs_enabled = true;
return 0;
}
static int spm_regulator_avs_disable(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
if (likely(!vreg->bypass_spm)) {
rc = msm_spm_avs_disable(vreg->cpu_num);
if (rc) {
pr_err("%s: AVS disable failed, rc=%d\n",
vreg->avs_rdesc.name, rc);
return rc;
}
}
vreg->avs_enabled = false;
return 0;
}
static int spm_regulator_avs_is_enabled(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->avs_enabled;
}
static struct regulator_ops spm_regulator_avs_ops = {
.get_voltage = spm_regulator_avs_get_voltage,
.set_voltage = spm_regulator_avs_set_voltage,
.list_voltage = spm_regulator_list_voltage,
.enable = spm_regulator_avs_enable,
.disable = spm_regulator_avs_disable,
.is_enabled = spm_regulator_avs_is_enabled,
};
static int qpnp_smps_check_type(struct spm_vreg *vreg)
{
int rc;
u8 type[2];
rc = regmap_bulk_read(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_TYPE,
type,
2);
if (rc) {
dev_err(&vreg->pdev->dev,
"%s: could not read type register, rc=%d\n",
__func__, rc);
return rc;
}
if (type[0] == QPNP_FTS2_TYPE && type[1] == QPNP_FTS2_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_FTS2;
} else if (type[0] == QPNP_FTS2p5_TYPE
&& type[1] == QPNP_FTS2p5_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_FTS2p5;
} else if (type[0] == QPNP_FTS426_TYPE
&& type[1] == QPNP_FTS426_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_FTS426;
} else if (type[0] == QPNP_HF_TYPE
&& type[1] == QPNP_HFS430_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_HFS430;
} else if (type[0] == QPNP_ULT_HF_TYPE
&& type[1] == QPNP_ULT_HF_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_ULT_HF;
} else if (type[0] == QPNP_HF_TYPE
&& type[1] == QPNP_HF_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_HF;
} else {
dev_err(&vreg->pdev->dev,
"%s: invalid type=0x%02X, subtype=0x%02X register pair\n",
__func__, type[0], type[1]);
return -ENODEV;
}
return rc;
}
static int qpnp_smps_init_range(struct spm_vreg *vreg,
const struct voltage_range *range0, const struct voltage_range *range1)
{
int rc;
u8 reg = 0;
uint val;
rc = regmap_read(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_RANGE,
&val);
if (rc) {
dev_err(&vreg->pdev->dev,
"%s: could not read voltage range register, rc=%d\n",
__func__, rc);
return rc;
}
reg = (u8)val;
if (reg == 0x00) {
vreg->range = range0;
} else if (reg == 0x01) {
vreg->range = range1;
} else {
dev_err(&vreg->pdev->dev, "%s: voltage range=%d is invalid\n",
__func__, reg);
rc = -EINVAL;
}
return rc;
}
static int qpnp_ult_hf_init_range(struct spm_vreg *vreg)
{
int rc;
u8 reg = 0;
uint val;
rc = regmap_read(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT,
&val);
if (rc) {
dev_err(&vreg->pdev->dev,
"%s: could not read voltage range register, rc=%d\n",
__func__, rc);
return rc;
}
reg = (u8)val;
vreg->range = (reg < ULT_SMPS_RANGE_SPLIT) ? &ult_hf_range0 :
&ult_hf_range1;
return rc;
}
static int qpnp_smps_init_voltage(struct spm_vreg *vreg)
{
int rc;
rc = qpnp_smps_read_voltage(vreg);
if (rc) {
pr_err("%s: voltage read failed, rc=%d\n", vreg->rdesc.name,
rc);
return rc;
}
vreg->vlevel = vreg->last_set_vlevel;
vreg->uV = vreg->last_set_uV;
/* Initialize SAW voltage control register */
if (!vreg->bypass_spm) {
rc = msm_spm_set_vdd(vreg->cpu_num, vreg->vlevel);
if (rc)
pr_err("%s: msm_spm_set_vdd failed, rc=%d\n",
vreg->rdesc.name, rc);
}
return 0;
}
static int qpnp_smps_init_mode(struct spm_vreg *vreg)
{
const char *mode_name;
int rc;
uint val;
rc = of_property_read_string(vreg->pdev->dev.of_node, "qcom,mode",
&mode_name);
if (!rc) {
if (strcmp("pwm", mode_name) == 0) {
vreg->init_mode = QPNP_LOGICAL_MODE_PWM;
} else if ((strcmp("auto", mode_name) == 0) &&
(vreg->regulator_type != QPNP_TYPE_ULT_HF)) {
vreg->init_mode = QPNP_LOGICAL_MODE_AUTO;
} else {
dev_err(&vreg->pdev->dev,
"%s: unknown regulator mode: %s\n",
__func__, mode_name);
return -EINVAL;
}
rc = qpnp_smps_set_mode(vreg, vreg->init_mode);
if (rc)
return rc;
} else {
rc = regmap_read(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_MODE,
&val);
if (rc)
dev_err(&vreg->pdev->dev,
"%s: could not read mode register, rc=%d\n",
__func__, rc);
vreg->init_mode = qpnp_regval_to_mode(vreg, val);
}
vreg->mode = vreg->init_mode;
return rc;
}
static int qpnp_smps_init_step_rate(struct spm_vreg *vreg)
{
int rc;
u8 reg = 0;
int step = 0, delay;
uint val;
rc = regmap_read(vreg->regmap,
vreg->spmi_base_addr + QPNP_SMPS_REG_STEP_CTRL, &val);
if (rc) {
dev_err(&vreg->pdev->dev,
"%s: could not read stepping control register, rc=%d\n",
__func__, rc);
return rc;
}
reg = (u8)val;
/* ULT and FTS426 bucks do not support steps */
if (vreg->regulator_type != QPNP_TYPE_ULT_HF && vreg->regulator_type !=
QPNP_TYPE_FTS426 && vreg->regulator_type != QPNP_TYPE_HFS430)
step = (reg & QPNP_SMPS_STEP_CTRL_STEP_MASK)
>> QPNP_SMPS_STEP_CTRL_STEP_SHIFT;
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430) {
delay = (reg & QPNP_FTS426_HFS430_STEP_CTRL_DELAY_MASK)
>> QPNP_FTS426_HFS430_STEP_CTRL_DELAY_SHIFT;
/* step_rate has units of uV/us. */
vreg->step_rate = ((vreg->regulator_type == QPNP_TYPE_FTS426)
? QPNP_FTS426_CLOCK_RATE
: QPNP_HFS430_CLOCK_RATE)
* vreg->range->step_uV;
} else {
delay = (reg & QPNP_SMPS_STEP_CTRL_DELAY_MASK)
>> QPNP_SMPS_STEP_CTRL_DELAY_SHIFT;
/* step_rate has units of uV/us. */
vreg->step_rate = QPNP_SMPS_CLOCK_RATE * vreg->range->step_uV
* (1 << step);
}
if ((vreg->regulator_type == QPNP_TYPE_ULT_HF)
|| (vreg->regulator_type == QPNP_TYPE_HF))
vreg->step_rate /= 1000 * (QPNP_HF_STEP_DELAY << delay);
else if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430)
vreg->step_rate /= 1000 * (QPNP_FTS426_HFS430_STEP_DELAY
<< delay);
else
vreg->step_rate /= 1000 * (QPNP_FTS2_STEP_DELAY << delay);
if (vreg->regulator_type == QPNP_TYPE_FTS426
|| vreg->regulator_type == QPNP_TYPE_HFS430)
vreg->step_rate = vreg->step_rate
* QPNP_FTS426_HFS430_STEP_MARGIN_NUM
/ QPNP_FTS426_HFS430_STEP_MARGIN_DEN;
else
vreg->step_rate = vreg->step_rate * QPNP_FTS2_STEP_MARGIN_NUM
/ QPNP_FTS2_STEP_MARGIN_DEN;
/* Ensure that the stepping rate is greater than 0. */
vreg->step_rate = max(vreg->step_rate, 1);
return rc;
}
static int qpnp_smps_check_constraints(struct spm_vreg *vreg,
struct regulator_init_data *init_data)
{
int rc = 0, limit_min_uV, limit_max_uV;
u16 ul_reg, ll_reg;
u8 reg[2];
limit_min_uV = 0;
limit_max_uV = INT_MAX;
ul_reg = QPNP_FTS_REG_VOLTAGE_ULS_VALID;
ll_reg = QPNP_FTS_REG_VOLTAGE_LLS_VALID;
switch (vreg->regulator_type) {
case QPNP_TYPE_HF:
ul_reg = QPNP_HF_REG_VOLTAGE_ULS;
ll_reg = QPNP_HF_REG_VOLTAGE_LLS;
case QPNP_TYPE_FTS2:
case QPNP_TYPE_FTS2p5:
rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr
+ QPNP_SMPS_REG_UL_LL_CTRL, reg, 1);
if (rc) {
dev_err(&vreg->pdev->dev, "%s: UL_LL register read failed, rc=%d\n",
__func__, rc);
return rc;
}
if (reg[0] & QPNP_COMMON_UL_EN_MASK) {
rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr
+ ul_reg, &reg[1], 1);
if (rc) {
dev_err(&vreg->pdev->dev, "%s: ULS register read failed, rc=%d\n",
__func__, rc);
return rc;
}
limit_max_uV = spm_regulator_vlevel_to_uv(vreg, reg[1]);
}
if (reg[0] & QPNP_COMMON_LL_EN_MASK) {
rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr
+ ll_reg, &reg[1], 1);
if (rc) {
dev_err(&vreg->pdev->dev, "%s: LLS register read failed, rc=%d\n",
__func__, rc);
return rc;
}
limit_min_uV = spm_regulator_vlevel_to_uv(vreg, reg[1]);
}
break;
case QPNP_TYPE_FTS426:
case QPNP_TYPE_HFS430:
rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr
+ QPNP_FTS426_HFS430_REG_VOLTAGE_ULS_LB,
reg, 2);
if (rc) {
dev_err(&vreg->pdev->dev, "%s: could not read voltage limit registers, rc=%d\n",
__func__, rc);
return rc;
}
limit_max_uV = spm_regulator_vlevel_to_uv(vreg,
((unsigned int)reg[1] << 8) | reg[0]);
break;
case QPNP_TYPE_ULT_HF:
/* no HW voltage limit configuration */
break;
}
if (init_data->constraints.min_uV < limit_min_uV
|| init_data->constraints.max_uV > limit_max_uV) {
dev_err(&vreg->pdev->dev, "regulator min/max(%d/%d) constraints do not fit within HW configured min/max(%d/%d) constraints\n",
init_data->constraints.min_uV,
init_data->constraints.max_uV, limit_min_uV,
limit_max_uV);
return -EINVAL;
}
return rc;
}
static bool spm_regulator_using_range0(struct spm_vreg *vreg)
{
return vreg->range == &fts2_range0 || vreg->range == &fts2p5_range0
|| vreg->range == &ult_hf_range0 || vreg->range == &hf_range0
|| vreg->range == &fts426_range;
}
/* Register a regulator to enable/disable AVS and set AVS min/max limits. */
static int spm_regulator_avs_register(struct spm_vreg *vreg,
struct device *dev, struct device_node *node)
{
struct regulator_config reg_config = {};
struct device_node *avs_node = NULL;
struct device_node *child_node;
struct regulator_init_data *init_data;
int rc;
/*
* Find the first available child node (if any). It corresponds to an
* AVS limits regulator.
*/
for_each_available_child_of_node(node, child_node) {
avs_node = child_node;
break;
}
if (!avs_node)
return 0;
init_data = of_get_regulator_init_data(dev, avs_node, &vreg->avs_rdesc);
if (!init_data) {
dev_err(dev, "%s: unable to allocate memory\n", __func__);
return -ENOMEM;
}
init_data->constraints.input_uV = init_data->constraints.max_uV;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS
| REGULATOR_CHANGE_VOLTAGE;
if (!init_data->constraints.name) {
dev_err(dev, "%s: AVS node is missing regulator name\n",
__func__);
return -EINVAL;
}
vreg->avs_rdesc.name = init_data->constraints.name;
vreg->avs_rdesc.type = REGULATOR_VOLTAGE;
vreg->avs_rdesc.owner = THIS_MODULE;
vreg->avs_rdesc.ops = &spm_regulator_avs_ops;
vreg->avs_rdesc.n_voltages
= (vreg->range->max_uV - vreg->range->set_point_min_uV)
/ vreg->range->step_uV + 1;
reg_config.dev = dev;
reg_config.init_data = init_data;
reg_config.driver_data = vreg;
reg_config.of_node = avs_node;
vreg->avs_rdev = regulator_register(&vreg->avs_rdesc, &reg_config);
if (IS_ERR(vreg->avs_rdev)) {
rc = PTR_ERR(vreg->avs_rdev);
dev_err(dev, "%s: AVS regulator_register failed, rc=%d\n",
__func__, rc);
return rc;
}
if (vreg->bypass_spm)
pr_debug("%s: SPM bypassed so AVS regulator calls are no-ops\n",
vreg->avs_rdesc.name);
return 0;
}
static int spm_regulator_probe(struct platform_device *pdev)
{
struct regulator_config reg_config = {};
struct device_node *node = pdev->dev.of_node;
struct regulator_init_data *init_data;
struct spm_vreg *vreg;
unsigned int base;
bool bypass_spm;
int rc;
if (!node) {
dev_err(&pdev->dev, "%s: device node missing\n", __func__);
return -ENODEV;
}
bypass_spm = of_property_read_bool(node, "qcom,bypass-spm");
if (!bypass_spm) {
rc = msm_spm_probe_done();
if (rc) {
if (rc != -EPROBE_DEFER)
dev_err(&pdev->dev,
"%s: spm unavailable, rc=%d\n",
__func__, rc);
return rc;
}
}
vreg = devm_kzalloc(&pdev->dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg)
return -ENOMEM;
vreg->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!vreg->regmap) {
dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
return -EINVAL;
}
vreg->pdev = pdev;
vreg->bypass_spm = bypass_spm;
rc = of_property_read_u32(pdev->dev.of_node, "reg", &base);
if (rc < 0) {
dev_err(&pdev->dev,
"Couldn't find reg in node = %s rc = %d\n",
pdev->dev.of_node->full_name, rc);
return rc;
}
vreg->spmi_base_addr = base;
rc = qpnp_smps_check_type(vreg);
if (rc)
return rc;
/* Specify CPU 0 as default in order to handle shared regulator case. */
vreg->cpu_num = 0;
of_property_read_u32(vreg->pdev->dev.of_node, "qcom,cpu-num",
&vreg->cpu_num);
of_property_read_u32(vreg->pdev->dev.of_node, "qcom,recal-mask",
&vreg->recal_cluster_mask);
/*
* The regulator must be initialized to range 0 or range 1 during
* PMIC power on sequence. Once it is set, it cannot be changed
* dynamically.
*/
if (vreg->regulator_type == QPNP_TYPE_FTS2)
rc = qpnp_smps_init_range(vreg, &fts2_range0, &fts2_range1);
else if (vreg->regulator_type == QPNP_TYPE_FTS2p5)
rc = qpnp_smps_init_range(vreg, &fts2p5_range0, &fts2p5_range1);
else if (vreg->regulator_type == QPNP_TYPE_FTS426)
vreg->range = &fts426_range;
else if (vreg->regulator_type == QPNP_TYPE_HFS430)
vreg->range = &hfs430_range;
else if (vreg->regulator_type == QPNP_TYPE_HF)
rc = qpnp_smps_init_range(vreg, &hf_range0, &hf_range1);
else if (vreg->regulator_type == QPNP_TYPE_ULT_HF)
rc = qpnp_ult_hf_init_range(vreg);
if (rc)
return rc;
rc = qpnp_smps_init_voltage(vreg);
if (rc)
return rc;
rc = qpnp_smps_init_mode(vreg);
if (rc)
return rc;
rc = qpnp_smps_init_step_rate(vreg);
if (rc)
return rc;
init_data = of_get_regulator_init_data(&pdev->dev, node, &vreg->rdesc);
if (!init_data) {
dev_err(&pdev->dev, "%s: unable to allocate memory\n",
__func__);
return -ENOMEM;
}
init_data->constraints.input_uV = init_data->constraints.max_uV;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS
| REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_MODE;
init_data->constraints.valid_modes_mask
= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE;
if (!init_data->constraints.name) {
dev_err(&pdev->dev, "%s: node is missing regulator name\n",
__func__);
return -EINVAL;
}
rc = qpnp_smps_check_constraints(vreg, init_data);
if (rc) {
dev_err(&pdev->dev, "%s: regulator constraints check failed, rc=%d\n",
__func__, rc);
return rc;
}
vreg->rdesc.name = init_data->constraints.name;
vreg->rdesc.type = REGULATOR_VOLTAGE;
vreg->rdesc.owner = THIS_MODULE;
vreg->rdesc.ops = &spm_regulator_ops;
vreg->rdesc.n_voltages
= (vreg->range->max_uV - vreg->range->set_point_min_uV)
/ vreg->range->step_uV + 1;
vreg->max_step_uV = SPM_REGULATOR_MAX_STEP_UV;
of_property_read_u32(vreg->pdev->dev.of_node,
"qcom,max-voltage-step", &vreg->max_step_uV);
if (vreg->max_step_uV > SPM_REGULATOR_MAX_STEP_UV)
vreg->max_step_uV = SPM_REGULATOR_MAX_STEP_UV;
vreg->max_step_uV = rounddown(vreg->max_step_uV, vreg->range->step_uV);
pr_debug("%s: max single voltage step size=%u uV\n",
vreg->rdesc.name, vreg->max_step_uV);
reg_config.dev = &pdev->dev;
reg_config.init_data = init_data;
reg_config.driver_data = vreg;
reg_config.of_node = node;
vreg->rdev = regulator_register(&vreg->rdesc, &reg_config);
if (IS_ERR(vreg->rdev)) {
rc = PTR_ERR(vreg->rdev);
dev_err(&pdev->dev, "%s: regulator_register failed, rc=%d\n",
__func__, rc);
return rc;
}
rc = spm_regulator_avs_register(vreg, &pdev->dev, node);
if (rc) {
regulator_unregister(vreg->rdev);
return rc;
}
dev_set_drvdata(&pdev->dev, vreg);
pr_info("name=%s, range=%s, voltage=%d uV, mode=%s, step rate=%d uV/us\n",
vreg->rdesc.name,
spm_regulator_using_range0(vreg) ? "LV" : "MV",
vreg->uV,
vreg->init_mode == QPNP_LOGICAL_MODE_PWM ? "PWM" :
(vreg->init_mode == QPNP_LOGICAL_MODE_AUTO ? "AUTO" : "PFM"),
vreg->step_rate);
return rc;
}
static int spm_regulator_remove(struct platform_device *pdev)
{
struct spm_vreg *vreg = dev_get_drvdata(&pdev->dev);
if (vreg->avs_rdev)
regulator_unregister(vreg->avs_rdev);
regulator_unregister(vreg->rdev);
return 0;
}
static const struct of_device_id spm_regulator_match_table[] = {
{ .compatible = SPM_REGULATOR_DRIVER_NAME, },
{}
};
static const struct platform_device_id spm_regulator_id[] = {
{ SPM_REGULATOR_DRIVER_NAME, 0 },
{}
};
MODULE_DEVICE_TABLE(spmi, spm_regulator_id);
static struct platform_driver spm_regulator_driver = {
.driver = {
.name = SPM_REGULATOR_DRIVER_NAME,
.of_match_table = spm_regulator_match_table,
},
.probe = spm_regulator_probe,
.remove = spm_regulator_remove,
.id_table = spm_regulator_id,
};
/**
* spm_regulator_init() - register spmi driver for spm-regulator
*
* This initialization function should be called in systems in which driver
* registration ordering must be controlled precisely.
*
* Returns 0 on success or errno on failure.
*/
int __init spm_regulator_init(void)
{
static bool has_registered;
if (has_registered)
return 0;
has_registered = true;
return platform_driver_register(&spm_regulator_driver);
}
EXPORT_SYMBOL(spm_regulator_init);
static void __exit spm_regulator_exit(void)
{
platform_driver_unregister(&spm_regulator_driver);
}
arch_initcall(spm_regulator_init);
module_exit(spm_regulator_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("SPM regulator driver");
MODULE_ALIAS("platform:spm-regulator");