kernel-fxtec-pro1x/drivers/video/omap/dispc.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1546 lines
37 KiB
C

/*
* OMAP2 display controller support
*
* Copyright (C) 2005 Nokia Corporation
* Author: Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <plat/sram.h>
#include <plat/board.h>
#include "omapfb.h"
#include "dispc.h"
#define MODULE_NAME "dispc"
#define DSS_BASE 0x48050000
#define DSS_SYSCONFIG 0x0010
#define DISPC_BASE 0x48050400
/* DISPC common */
#define DISPC_REVISION 0x0000
#define DISPC_SYSCONFIG 0x0010
#define DISPC_SYSSTATUS 0x0014
#define DISPC_IRQSTATUS 0x0018
#define DISPC_IRQENABLE 0x001C
#define DISPC_CONTROL 0x0040
#define DISPC_CONFIG 0x0044
#define DISPC_CAPABLE 0x0048
#define DISPC_DEFAULT_COLOR0 0x004C
#define DISPC_DEFAULT_COLOR1 0x0050
#define DISPC_TRANS_COLOR0 0x0054
#define DISPC_TRANS_COLOR1 0x0058
#define DISPC_LINE_STATUS 0x005C
#define DISPC_LINE_NUMBER 0x0060
#define DISPC_TIMING_H 0x0064
#define DISPC_TIMING_V 0x0068
#define DISPC_POL_FREQ 0x006C
#define DISPC_DIVISOR 0x0070
#define DISPC_SIZE_DIG 0x0078
#define DISPC_SIZE_LCD 0x007C
#define DISPC_DATA_CYCLE1 0x01D4
#define DISPC_DATA_CYCLE2 0x01D8
#define DISPC_DATA_CYCLE3 0x01DC
/* DISPC GFX plane */
#define DISPC_GFX_BA0 0x0080
#define DISPC_GFX_BA1 0x0084
#define DISPC_GFX_POSITION 0x0088
#define DISPC_GFX_SIZE 0x008C
#define DISPC_GFX_ATTRIBUTES 0x00A0
#define DISPC_GFX_FIFO_THRESHOLD 0x00A4
#define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
#define DISPC_GFX_ROW_INC 0x00AC
#define DISPC_GFX_PIXEL_INC 0x00B0
#define DISPC_GFX_WINDOW_SKIP 0x00B4
#define DISPC_GFX_TABLE_BA 0x00B8
/* DISPC Video plane 1/2 */
#define DISPC_VID1_BASE 0x00BC
#define DISPC_VID2_BASE 0x014C
/* Offsets into DISPC_VID1/2_BASE */
#define DISPC_VID_BA0 0x0000
#define DISPC_VID_BA1 0x0004
#define DISPC_VID_POSITION 0x0008
#define DISPC_VID_SIZE 0x000C
#define DISPC_VID_ATTRIBUTES 0x0010
#define DISPC_VID_FIFO_THRESHOLD 0x0014
#define DISPC_VID_FIFO_SIZE_STATUS 0x0018
#define DISPC_VID_ROW_INC 0x001C
#define DISPC_VID_PIXEL_INC 0x0020
#define DISPC_VID_FIR 0x0024
#define DISPC_VID_PICTURE_SIZE 0x0028
#define DISPC_VID_ACCU0 0x002C
#define DISPC_VID_ACCU1 0x0030
/* 8 elements in 8 byte increments */
#define DISPC_VID_FIR_COEF_H0 0x0034
/* 8 elements in 8 byte increments */
#define DISPC_VID_FIR_COEF_HV0 0x0038
/* 5 elements in 4 byte increments */
#define DISPC_VID_CONV_COEF0 0x0074
#define DISPC_IRQ_FRAMEMASK 0x0001
#define DISPC_IRQ_VSYNC 0x0002
#define DISPC_IRQ_EVSYNC_EVEN 0x0004
#define DISPC_IRQ_EVSYNC_ODD 0x0008
#define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
#define DISPC_IRQ_PROG_LINE_NUM 0x0020
#define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
#define DISPC_IRQ_GFX_END_WIN 0x0080
#define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
#define DISPC_IRQ_OCP_ERR 0x0200
#define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
#define DISPC_IRQ_VID1_END_WIN 0x0800
#define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
#define DISPC_IRQ_VID2_END_WIN 0x2000
#define DISPC_IRQ_SYNC_LOST 0x4000
#define DISPC_IRQ_MASK_ALL 0x7fff
#define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
DISPC_IRQ_SYNC_LOST)
#define RFBI_CONTROL 0x48050040
#define MAX_PALETTE_SIZE (256 * 16)
#define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
#define MOD_REG_FLD(reg, mask, val) \
dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
#define OMAP2_SRAM_START 0x40200000
/* Maximum size, in reality this is smaller if SRAM is partially locked. */
#define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
/* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
#define DISPC_MEMTYPE_NUM 2
#define RESMAP_SIZE(_page_cnt) \
((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
#define RESMAP_PTR(_res_map, _page_nr) \
(((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
#define RESMAP_MASK(_page_nr) \
(1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
struct resmap {
unsigned long start;
unsigned page_cnt;
unsigned long *map;
};
#define MAX_IRQ_HANDLERS 4
static struct {
void __iomem *base;
struct omapfb_mem_desc mem_desc;
struct resmap *res_map[DISPC_MEMTYPE_NUM];
atomic_t map_count[OMAPFB_PLANE_NUM];
dma_addr_t palette_paddr;
void *palette_vaddr;
int ext_mode;
struct {
u32 irq_mask;
void (*callback)(void *);
void *data;
} irq_handlers[MAX_IRQ_HANDLERS];
struct completion frame_done;
int fir_hinc[OMAPFB_PLANE_NUM];
int fir_vinc[OMAPFB_PLANE_NUM];
struct clk *dss_ick, *dss1_fck;
struct clk *dss_54m_fck;
enum omapfb_update_mode update_mode;
struct omapfb_device *fbdev;
struct omapfb_color_key color_key;
} dispc;
static void enable_lcd_clocks(int enable);
static void inline dispc_write_reg(int idx, u32 val)
{
__raw_writel(val, dispc.base + idx);
}
static u32 inline dispc_read_reg(int idx)
{
u32 l = __raw_readl(dispc.base + idx);
return l;
}
/* Select RFBI or bypass mode */
static void enable_rfbi_mode(int enable)
{
void __iomem *rfbi_control;
u32 l;
l = dispc_read_reg(DISPC_CONTROL);
/* Enable RFBI, GPIO0/1 */
l &= ~((1 << 11) | (1 << 15) | (1 << 16));
l |= enable ? (1 << 11) : 0;
/* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
l |= 1 << 15;
l |= enable ? 0 : (1 << 16);
dispc_write_reg(DISPC_CONTROL, l);
/* Set bypass mode in RFBI module */
rfbi_control = ioremap(RFBI_CONTROL, SZ_1K);
if (!rfbi_control) {
pr_err("Unable to ioremap rfbi_control\n");
return;
}
l = __raw_readl(rfbi_control);
l |= enable ? 0 : (1 << 1);
__raw_writel(l, rfbi_control);
iounmap(rfbi_control);
}
static void set_lcd_data_lines(int data_lines)
{
u32 l;
int code = 0;
switch (data_lines) {
case 12:
code = 0;
break;
case 16:
code = 1;
break;
case 18:
code = 2;
break;
case 24:
code = 3;
break;
default:
BUG();
}
l = dispc_read_reg(DISPC_CONTROL);
l &= ~(0x03 << 8);
l |= code << 8;
dispc_write_reg(DISPC_CONTROL, l);
}
static void set_load_mode(int mode)
{
BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
DISPC_LOAD_CLUT_ONCE_FRAME));
MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
}
void omap_dispc_set_lcd_size(int x, int y)
{
BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
((y - 1) << 16) | (x - 1));
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_set_lcd_size);
void omap_dispc_set_digit_size(int x, int y)
{
BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
((y - 1) << 16) | (x - 1));
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_set_digit_size);
static void setup_plane_fifo(int plane, int ext_mode)
{
const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
int low, high;
u32 l;
BUG_ON(plane > 2);
l = dispc_read_reg(fsz_reg[plane]);
l &= FLD_MASK(0, 11);
if (ext_mode) {
low = l * 3 / 4;
high = l;
} else {
low = l / 4;
high = l * 3 / 4;
}
MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
(high << 16) | low);
}
void omap_dispc_enable_lcd_out(int enable)
{
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
void omap_dispc_enable_digit_out(int enable)
{
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_digit_out);
static inline int _setup_plane(int plane, int channel_out,
u32 paddr, int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
DISPC_VID2_BASE + DISPC_VID_BA0 };
const u32 ps_reg[] = { DISPC_GFX_POSITION,
DISPC_VID1_BASE + DISPC_VID_POSITION,
DISPC_VID2_BASE + DISPC_VID_POSITION };
const u32 sz_reg[] = { DISPC_GFX_SIZE,
DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
DISPC_VID1_BASE + DISPC_VID_ROW_INC,
DISPC_VID2_BASE + DISPC_VID_ROW_INC };
const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
DISPC_VID2_BASE + DISPC_VID_SIZE };
int chout_shift, burst_shift;
int chout_val;
int color_code;
int bpp;
int cconv_en;
int set_vsize;
u32 l;
#ifdef VERBOSE
dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
" pos_x %d pos_y %d width %d height %d color_mode %d\n",
plane, channel_out, paddr, screen_width, pos_x, pos_y,
width, height, color_mode);
#endif
set_vsize = 0;
switch (plane) {
case OMAPFB_PLANE_GFX:
burst_shift = 6;
chout_shift = 8;
break;
case OMAPFB_PLANE_VID1:
case OMAPFB_PLANE_VID2:
burst_shift = 14;
chout_shift = 16;
set_vsize = 1;
break;
default:
return -EINVAL;
}
switch (channel_out) {
case OMAPFB_CHANNEL_OUT_LCD:
chout_val = 0;
break;
case OMAPFB_CHANNEL_OUT_DIGIT:
chout_val = 1;
break;
default:
return -EINVAL;
}
cconv_en = 0;
switch (color_mode) {
case OMAPFB_COLOR_RGB565:
color_code = DISPC_RGB_16_BPP;
bpp = 16;
break;
case OMAPFB_COLOR_YUV422:
if (plane == 0)
return -EINVAL;
color_code = DISPC_UYVY_422;
cconv_en = 1;
bpp = 16;
break;
case OMAPFB_COLOR_YUY422:
if (plane == 0)
return -EINVAL;
color_code = DISPC_YUV2_422;
cconv_en = 1;
bpp = 16;
break;
default:
return -EINVAL;
}
l = dispc_read_reg(at_reg[plane]);
l &= ~(0x0f << 1);
l |= color_code << 1;
l &= ~(1 << 9);
l |= cconv_en << 9;
l &= ~(0x03 << burst_shift);
l |= DISPC_BURST_8x32 << burst_shift;
l &= ~(1 << chout_shift);
l |= chout_val << chout_shift;
dispc_write_reg(at_reg[plane], l);
dispc_write_reg(ba_reg[plane], paddr);
MOD_REG_FLD(ps_reg[plane],
FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
((height - 1) << 16) | (width - 1));
if (set_vsize) {
/* Set video size if set_scale hasn't set it */
if (!dispc.fir_vinc[plane])
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(16, 11), (height - 1) << 16);
if (!dispc.fir_hinc[plane])
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(0, 11), width - 1);
}
dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
return height * screen_width * bpp / 8;
}
static int omap_dispc_setup_plane(int plane, int channel_out,
unsigned long offset,
int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
u32 paddr;
int r;
if ((unsigned)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
paddr = dispc.mem_desc.region[plane].paddr + offset;
enable_lcd_clocks(1);
r = _setup_plane(plane, channel_out, paddr,
screen_width,
pos_x, pos_y, width, height, color_mode);
enable_lcd_clocks(0);
return r;
}
static void write_firh_reg(int plane, int reg, u32 value)
{
u32 base;
if (plane == 1)
base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
else
base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
dispc_write_reg(base + reg * 8, value);
}
static void write_firhv_reg(int plane, int reg, u32 value)
{
u32 base;
if (plane == 1)
base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
else
base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
dispc_write_reg(base + reg * 8, value);
}
static void set_upsampling_coef_table(int plane)
{
const u32 coef[][2] = {
{ 0x00800000, 0x00800000 },
{ 0x0D7CF800, 0x037B02FF },
{ 0x1E70F5FF, 0x0C6F05FE },
{ 0x335FF5FE, 0x205907FB },
{ 0xF74949F7, 0x00404000 },
{ 0xF55F33FB, 0x075920FE },
{ 0xF5701EFE, 0x056F0CFF },
{ 0xF87C0DFF, 0x027B0300 },
};
int i;
for (i = 0; i < 8; i++) {
write_firh_reg(plane, i, coef[i][0]);
write_firhv_reg(plane, i, coef[i][1]);
}
}
static int omap_dispc_set_scale(int plane,
int orig_width, int orig_height,
int out_width, int out_height)
{
const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
DISPC_VID2_BASE + DISPC_VID_SIZE };
const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
DISPC_VID2_BASE + DISPC_VID_FIR };
u32 l;
int fir_hinc;
int fir_vinc;
if ((unsigned)plane > OMAPFB_PLANE_NUM)
return -ENODEV;
if (plane == OMAPFB_PLANE_GFX &&
(out_width != orig_width || out_height != orig_height))
return -EINVAL;
enable_lcd_clocks(1);
if (orig_width < out_width) {
/*
* Upsampling.
* Currently you can only scale both dimensions in one way.
*/
if (orig_height > out_height ||
orig_width * 8 < out_width ||
orig_height * 8 < out_height) {
enable_lcd_clocks(0);
return -EINVAL;
}
set_upsampling_coef_table(plane);
} else if (orig_width > out_width) {
/* Downsampling not yet supported
*/
enable_lcd_clocks(0);
return -EINVAL;
}
if (!orig_width || orig_width == out_width)
fir_hinc = 0;
else
fir_hinc = 1024 * orig_width / out_width;
if (!orig_height || orig_height == out_height)
fir_vinc = 0;
else
fir_vinc = 1024 * orig_height / out_height;
dispc.fir_hinc[plane] = fir_hinc;
dispc.fir_vinc[plane] = fir_vinc;
MOD_REG_FLD(fir_reg[plane],
FLD_MASK(16, 12) | FLD_MASK(0, 12),
((fir_vinc & 4095) << 16) |
(fir_hinc & 4095));
dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
"orig_height %d fir_hinc %d fir_vinc %d\n",
out_width, out_height, orig_width, orig_height,
fir_hinc, fir_vinc);
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(16, 11) | FLD_MASK(0, 11),
((out_height - 1) << 16) | (out_width - 1));
l = dispc_read_reg(at_reg[plane]);
l &= ~(0x03 << 5);
l |= fir_hinc ? (1 << 5) : 0;
l |= fir_vinc ? (1 << 6) : 0;
dispc_write_reg(at_reg[plane], l);
enable_lcd_clocks(0);
return 0;
}
static int omap_dispc_enable_plane(int plane, int enable)
{
const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
if ((unsigned int)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
enable_lcd_clocks(1);
MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
enable_lcd_clocks(0);
return 0;
}
static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
{
u32 df_reg, tr_reg;
int shift, val;
switch (ck->channel_out) {
case OMAPFB_CHANNEL_OUT_LCD:
df_reg = DISPC_DEFAULT_COLOR0;
tr_reg = DISPC_TRANS_COLOR0;
shift = 10;
break;
case OMAPFB_CHANNEL_OUT_DIGIT:
df_reg = DISPC_DEFAULT_COLOR1;
tr_reg = DISPC_TRANS_COLOR1;
shift = 12;
break;
default:
return -EINVAL;
}
switch (ck->key_type) {
case OMAPFB_COLOR_KEY_DISABLED:
val = 0;
break;
case OMAPFB_COLOR_KEY_GFX_DST:
val = 1;
break;
case OMAPFB_COLOR_KEY_VID_SRC:
val = 3;
break;
default:
return -EINVAL;
}
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
if (val != 0)
dispc_write_reg(tr_reg, ck->trans_key);
dispc_write_reg(df_reg, ck->background);
enable_lcd_clocks(0);
dispc.color_key = *ck;
return 0;
}
static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
{
*ck = dispc.color_key;
return 0;
}
static void load_palette(void)
{
}
static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
{
int r = 0;
if (mode != dispc.update_mode) {
switch (mode) {
case OMAPFB_AUTO_UPDATE:
case OMAPFB_MANUAL_UPDATE:
enable_lcd_clocks(1);
omap_dispc_enable_lcd_out(1);
dispc.update_mode = mode;
break;
case OMAPFB_UPDATE_DISABLED:
init_completion(&dispc.frame_done);
omap_dispc_enable_lcd_out(0);
if (!wait_for_completion_timeout(&dispc.frame_done,
msecs_to_jiffies(500))) {
dev_err(dispc.fbdev->dev,
"timeout waiting for FRAME DONE\n");
}
dispc.update_mode = mode;
enable_lcd_clocks(0);
break;
default:
r = -EINVAL;
}
}
return r;
}
static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
{
caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
if (plane > 0)
caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
(1 << OMAPFB_COLOR_YUV422) |
(1 << OMAPFB_COLOR_YUY422);
if (plane == 0)
caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
(1 << OMAPFB_COLOR_CLUT_4BPP) |
(1 << OMAPFB_COLOR_CLUT_2BPP) |
(1 << OMAPFB_COLOR_CLUT_1BPP) |
(1 << OMAPFB_COLOR_RGB444);
}
static enum omapfb_update_mode omap_dispc_get_update_mode(void)
{
return dispc.update_mode;
}
static void setup_color_conv_coef(void)
{
u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
const struct color_conv_coef {
int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
int full_range;
} ctbl_bt601_5 = {
298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
};
const struct color_conv_coef *ct;
#define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
ct = &ctbl_bt601_5;
MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
#undef CVAL
MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
}
static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
{
unsigned long fck, lck;
*lck_div = 1;
pck = max(1, pck);
fck = clk_get_rate(dispc.dss1_fck);
lck = fck;
*pck_div = (lck + pck - 1) / pck;
if (is_tft)
*pck_div = max(2, *pck_div);
else
*pck_div = max(3, *pck_div);
if (*pck_div > 255) {
*pck_div = 255;
lck = pck * *pck_div;
*lck_div = fck / lck;
BUG_ON(*lck_div < 1);
if (*lck_div > 255) {
*lck_div = 255;
dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
pck / 1000);
}
}
}
static void set_lcd_tft_mode(int enable)
{
u32 mask;
mask = 1 << 3;
MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
}
static void set_lcd_timings(void)
{
u32 l;
int lck_div, pck_div;
struct lcd_panel *panel = dispc.fbdev->panel;
int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
unsigned long fck;
l = dispc_read_reg(DISPC_TIMING_H);
l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
dispc_write_reg(DISPC_TIMING_H, l);
l = dispc_read_reg(DISPC_TIMING_V);
l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
dispc_write_reg(DISPC_TIMING_V, l);
l = dispc_read_reg(DISPC_POL_FREQ);
l &= ~FLD_MASK(12, 6);
l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
l |= panel->acb & 0xff;
dispc_write_reg(DISPC_POL_FREQ, l);
calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
l = dispc_read_reg(DISPC_DIVISOR);
l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
l |= (lck_div << 16) | (pck_div << 0);
dispc_write_reg(DISPC_DIVISOR, l);
/* update panel info with the exact clock */
fck = clk_get_rate(dispc.dss1_fck);
panel->pixel_clock = fck / lck_div / pck_div / 1000;
}
static void recalc_irq_mask(void)
{
int i;
unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
if (!dispc.irq_handlers[i].callback)
continue;
irq_mask |= dispc.irq_handlers[i].irq_mask;
}
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
enable_lcd_clocks(0);
}
int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
void *data)
{
int i;
BUG_ON(callback == NULL);
for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
if (dispc.irq_handlers[i].callback)
continue;
dispc.irq_handlers[i].irq_mask = irq_mask;
dispc.irq_handlers[i].callback = callback;
dispc.irq_handlers[i].data = data;
recalc_irq_mask();
return 0;
}
return -EBUSY;
}
EXPORT_SYMBOL(omap_dispc_request_irq);
void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
void *data)
{
int i;
for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
if (dispc.irq_handlers[i].callback == callback &&
dispc.irq_handlers[i].data == data) {
dispc.irq_handlers[i].irq_mask = 0;
dispc.irq_handlers[i].callback = NULL;
dispc.irq_handlers[i].data = NULL;
recalc_irq_mask();
return;
}
}
BUG();
}
EXPORT_SYMBOL(omap_dispc_free_irq);
static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
{
u32 stat;
int i = 0;
enable_lcd_clocks(1);
stat = dispc_read_reg(DISPC_IRQSTATUS);
if (stat & DISPC_IRQ_FRAMEMASK)
complete(&dispc.frame_done);
if (stat & DISPC_IRQ_MASK_ERROR) {
if (printk_ratelimit()) {
dev_err(dispc.fbdev->dev, "irq error status %04x\n",
stat & 0x7fff);
}
}
for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
if (unlikely(dispc.irq_handlers[i].callback &&
(stat & dispc.irq_handlers[i].irq_mask)))
dispc.irq_handlers[i].callback(
dispc.irq_handlers[i].data);
}
dispc_write_reg(DISPC_IRQSTATUS, stat);
enable_lcd_clocks(0);
return IRQ_HANDLED;
}
static int get_dss_clocks(void)
{
dispc.dss_ick = clk_get(&dispc.fbdev->dssdev->dev, "ick");
if (IS_ERR(dispc.dss_ick)) {
dev_err(dispc.fbdev->dev, "can't get ick\n");
return PTR_ERR(dispc.dss_ick);
}
dispc.dss1_fck = clk_get(&dispc.fbdev->dssdev->dev, "dss1_fck");
if (IS_ERR(dispc.dss1_fck)) {
dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
clk_put(dispc.dss_ick);
return PTR_ERR(dispc.dss1_fck);
}
dispc.dss_54m_fck = clk_get(&dispc.fbdev->dssdev->dev, "tv_fck");
if (IS_ERR(dispc.dss_54m_fck)) {
dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
clk_put(dispc.dss_ick);
clk_put(dispc.dss1_fck);
return PTR_ERR(dispc.dss_54m_fck);
}
return 0;
}
static void put_dss_clocks(void)
{
clk_put(dispc.dss_54m_fck);
clk_put(dispc.dss1_fck);
clk_put(dispc.dss_ick);
}
static void enable_lcd_clocks(int enable)
{
if (enable) {
clk_enable(dispc.dss_ick);
clk_enable(dispc.dss1_fck);
} else {
clk_disable(dispc.dss1_fck);
clk_disable(dispc.dss_ick);
}
}
static void enable_digit_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss_54m_fck);
else
clk_disable(dispc.dss_54m_fck);
}
static void omap_dispc_suspend(void)
{
if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
init_completion(&dispc.frame_done);
omap_dispc_enable_lcd_out(0);
if (!wait_for_completion_timeout(&dispc.frame_done,
msecs_to_jiffies(500))) {
dev_err(dispc.fbdev->dev,
"timeout waiting for FRAME DONE\n");
}
enable_lcd_clocks(0);
}
}
static void omap_dispc_resume(void)
{
if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
enable_lcd_clocks(1);
if (!dispc.ext_mode) {
set_lcd_timings();
load_palette();
}
omap_dispc_enable_lcd_out(1);
}
}
static int omap_dispc_update_window(struct fb_info *fbi,
struct omapfb_update_window *win,
void (*complete_callback)(void *arg),
void *complete_callback_data)
{
return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
}
static int mmap_kern(struct omapfb_mem_region *region)
{
struct vm_struct *kvma;
struct vm_area_struct vma;
pgprot_t pgprot;
unsigned long vaddr;
kvma = get_vm_area(region->size, VM_IOREMAP);
if (kvma == NULL) {
dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
return -ENOMEM;
}
vma.vm_mm = &init_mm;
vaddr = (unsigned long)kvma->addr;
pgprot = pgprot_writecombine(pgprot_kernel);
vma.vm_start = vaddr;
vma.vm_end = vaddr + region->size;
if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
region->size, pgprot) < 0) {
dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
return -EAGAIN;
}
region->vaddr = (void *)vaddr;
return 0;
}
static void mmap_user_open(struct vm_area_struct *vma)
{
int plane = (int)vma->vm_private_data;
atomic_inc(&dispc.map_count[plane]);
}
static void mmap_user_close(struct vm_area_struct *vma)
{
int plane = (int)vma->vm_private_data;
atomic_dec(&dispc.map_count[plane]);
}
static const struct vm_operations_struct mmap_user_ops = {
.open = mmap_user_open,
.close = mmap_user_close,
};
static int omap_dispc_mmap_user(struct fb_info *info,
struct vm_area_struct *vma)
{
struct omapfb_plane_struct *plane = info->par;
unsigned long off;
unsigned long start;
u32 len;
if (vma->vm_end - vma->vm_start == 0)
return 0;
if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
return -EINVAL;
off = vma->vm_pgoff << PAGE_SHIFT;
start = info->fix.smem_start;
len = info->fix.smem_len;
if (off >= len)
return -EINVAL;
if ((vma->vm_end - vma->vm_start + off) > len)
return -EINVAL;
off += start;
vma->vm_pgoff = off >> PAGE_SHIFT;
vma->vm_flags |= VM_IO | VM_RESERVED;
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
vma->vm_ops = &mmap_user_ops;
vma->vm_private_data = (void *)plane->idx;
if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
/* vm_ops.open won't be called for mmap itself. */
atomic_inc(&dispc.map_count[plane->idx]);
return 0;
}
static void unmap_kern(struct omapfb_mem_region *region)
{
vunmap(region->vaddr);
}
static int alloc_palette_ram(void)
{
dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
if (dispc.palette_vaddr == NULL) {
dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
return -ENOMEM;
}
return 0;
}
static void free_palette_ram(void)
{
dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
dispc.palette_vaddr, dispc.palette_paddr);
}
static int alloc_fbmem(struct omapfb_mem_region *region)
{
region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
region->size, &region->paddr, GFP_KERNEL);
if (region->vaddr == NULL) {
dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
return -ENOMEM;
}
return 0;
}
static void free_fbmem(struct omapfb_mem_region *region)
{
dma_free_writecombine(dispc.fbdev->dev, region->size,
region->vaddr, region->paddr);
}
static struct resmap *init_resmap(unsigned long start, size_t size)
{
unsigned page_cnt;
struct resmap *res_map;
page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
res_map =
kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
if (res_map == NULL)
return NULL;
res_map->start = start;
res_map->page_cnt = page_cnt;
res_map->map = (unsigned long *)(res_map + 1);
return res_map;
}
static void cleanup_resmap(struct resmap *res_map)
{
kfree(res_map);
}
static inline int resmap_mem_type(unsigned long start)
{
if (start >= OMAP2_SRAM_START &&
start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
return OMAPFB_MEMTYPE_SRAM;
else
return OMAPFB_MEMTYPE_SDRAM;
}
static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
{
return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
}
static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
{
BUG_ON(resmap_page_reserved(res_map, page_nr));
*RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
}
static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
{
BUG_ON(!resmap_page_reserved(res_map, page_nr));
*RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
}
static void resmap_reserve_region(unsigned long start, size_t size)
{
struct resmap *res_map;
unsigned start_page;
unsigned end_page;
int mtype;
unsigned i;
mtype = resmap_mem_type(start);
res_map = dispc.res_map[mtype];
dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
mtype, start, size);
start_page = (start - res_map->start) / PAGE_SIZE;
end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
for (i = start_page; i < end_page; i++)
resmap_reserve_page(res_map, i);
}
static void resmap_free_region(unsigned long start, size_t size)
{
struct resmap *res_map;
unsigned start_page;
unsigned end_page;
unsigned i;
int mtype;
mtype = resmap_mem_type(start);
res_map = dispc.res_map[mtype];
dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
mtype, start, size);
start_page = (start - res_map->start) / PAGE_SIZE;
end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
for (i = start_page; i < end_page; i++)
resmap_free_page(res_map, i);
}
static unsigned long resmap_alloc_region(int mtype, size_t size)
{
unsigned i;
unsigned total;
unsigned start_page;
unsigned long start;
struct resmap *res_map = dispc.res_map[mtype];
BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
size = PAGE_ALIGN(size) / PAGE_SIZE;
start_page = 0;
total = 0;
for (i = 0; i < res_map->page_cnt; i++) {
if (resmap_page_reserved(res_map, i)) {
start_page = i + 1;
total = 0;
} else if (++total == size)
break;
}
if (total < size)
return 0;
start = res_map->start + start_page * PAGE_SIZE;
resmap_reserve_region(start, size * PAGE_SIZE);
return start;
}
/* Note that this will only work for user mappings, we don't deal with
* kernel mappings here, so fbcon will keep using the old region.
*/
static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
unsigned long *paddr)
{
struct omapfb_mem_region *rg;
unsigned long new_addr = 0;
if ((unsigned)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
if (mem_type >= DISPC_MEMTYPE_NUM)
return -EINVAL;
if (dispc.res_map[mem_type] == NULL)
return -ENOMEM;
rg = &dispc.mem_desc.region[plane];
if (size == rg->size && mem_type == rg->type)
return 0;
if (atomic_read(&dispc.map_count[plane]))
return -EBUSY;
if (rg->size != 0)
resmap_free_region(rg->paddr, rg->size);
if (size != 0) {
new_addr = resmap_alloc_region(mem_type, size);
if (!new_addr) {
/* Reallocate old region. */
resmap_reserve_region(rg->paddr, rg->size);
return -ENOMEM;
}
}
rg->paddr = new_addr;
rg->size = size;
rg->type = mem_type;
*paddr = new_addr;
return 0;
}
static int setup_fbmem(struct omapfb_mem_desc *req_md)
{
struct omapfb_mem_region *rg;
int i;
int r;
unsigned long mem_start[DISPC_MEMTYPE_NUM];
unsigned long mem_end[DISPC_MEMTYPE_NUM];
if (!req_md->region_cnt) {
dev_err(dispc.fbdev->dev, "no memory regions defined\n");
return -ENOENT;
}
rg = &req_md->region[0];
memset(mem_start, 0xff, sizeof(mem_start));
memset(mem_end, 0, sizeof(mem_end));
for (i = 0; i < req_md->region_cnt; i++, rg++) {
int mtype;
if (rg->paddr) {
rg->alloc = 0;
if (rg->vaddr == NULL) {
rg->map = 1;
if ((r = mmap_kern(rg)) < 0)
return r;
}
} else {
if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
dev_err(dispc.fbdev->dev,
"unsupported memory type\n");
return -EINVAL;
}
rg->alloc = rg->map = 1;
if ((r = alloc_fbmem(rg)) < 0)
return r;
}
mtype = rg->type;
if (rg->paddr < mem_start[mtype])
mem_start[mtype] = rg->paddr;
if (rg->paddr + rg->size > mem_end[mtype])
mem_end[mtype] = rg->paddr + rg->size;
}
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
unsigned long start;
size_t size;
if (mem_end[i] == 0)
continue;
start = mem_start[i];
size = mem_end[i] - start;
dispc.res_map[i] = init_resmap(start, size);
r = -ENOMEM;
if (dispc.res_map[i] == NULL)
goto fail;
/* Initial state is that everything is reserved. This
* includes possible holes as well, which will never be
* freed.
*/
resmap_reserve_region(start, size);
}
dispc.mem_desc = *req_md;
return 0;
fail:
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
if (dispc.res_map[i] != NULL)
cleanup_resmap(dispc.res_map[i]);
}
return r;
}
static void cleanup_fbmem(void)
{
struct omapfb_mem_region *rg;
int i;
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
if (dispc.res_map[i] != NULL)
cleanup_resmap(dispc.res_map[i]);
}
rg = &dispc.mem_desc.region[0];
for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
if (rg->alloc)
free_fbmem(rg);
else {
if (rg->map)
unmap_kern(rg);
}
}
}
static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
struct omapfb_mem_desc *req_vram)
{
int r;
u32 l;
struct lcd_panel *panel = fbdev->panel;
void __iomem *ram_fw_base;
int tmo = 10000;
int skip_init = 0;
int i;
memset(&dispc, 0, sizeof(dispc));
dispc.base = ioremap(DISPC_BASE, SZ_1K);
if (!dispc.base) {
dev_err(fbdev->dev, "can't ioremap DISPC\n");
return -ENOMEM;
}
dispc.fbdev = fbdev;
dispc.ext_mode = ext_mode;
init_completion(&dispc.frame_done);
if ((r = get_dss_clocks()) < 0)
goto fail0;
enable_lcd_clocks(1);
#ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
l = dispc_read_reg(DISPC_CONTROL);
/* LCD enabled ? */
if (l & 1) {
pr_info("omapfb: skipping hardware initialization\n");
skip_init = 1;
}
#endif
if (!skip_init) {
/* Reset monitoring works only w/ the 54M clk */
enable_digit_clocks(1);
/* Soft reset */
MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
if (!--tmo) {
dev_err(dispc.fbdev->dev, "soft reset failed\n");
r = -ENODEV;
enable_digit_clocks(0);
goto fail1;
}
}
enable_digit_clocks(0);
}
/* Enable smart standby/idle, autoidle and wakeup */
l = dispc_read_reg(DISPC_SYSCONFIG);
l &= ~((3 << 12) | (3 << 3));
l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
dispc_write_reg(DISPC_SYSCONFIG, l);
omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
/* Set functional clock autogating */
l = dispc_read_reg(DISPC_CONFIG);
l |= 1 << 9;
dispc_write_reg(DISPC_CONFIG, l);
l = dispc_read_reg(DISPC_IRQSTATUS);
dispc_write_reg(DISPC_IRQSTATUS, l);
recalc_irq_mask();
if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
0, MODULE_NAME, fbdev)) < 0) {
dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
goto fail1;
}
/* L3 firewall setting: enable access to OCM RAM */
ram_fw_base = ioremap(0x68005000, SZ_1K);
if (!ram_fw_base) {
dev_err(dispc.fbdev->dev, "Cannot ioremap to enable OCM RAM\n");
goto fail1;
}
__raw_writel(0x402000b0, ram_fw_base + 0xa0);
iounmap(ram_fw_base);
if ((r = alloc_palette_ram()) < 0)
goto fail2;
if ((r = setup_fbmem(req_vram)) < 0)
goto fail3;
if (!skip_init) {
for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
memset(dispc.mem_desc.region[i].vaddr, 0,
dispc.mem_desc.region[i].size);
}
/* Set logic clock to fck, pixel clock to fck/2 for now */
MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
setup_plane_fifo(0, ext_mode);
setup_plane_fifo(1, ext_mode);
setup_plane_fifo(2, ext_mode);
setup_color_conv_coef();
set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
set_load_mode(DISPC_LOAD_FRAME_ONLY);
if (!ext_mode) {
set_lcd_data_lines(panel->data_lines);
omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
set_lcd_timings();
} else
set_lcd_data_lines(panel->bpp);
enable_rfbi_mode(ext_mode);
}
l = dispc_read_reg(DISPC_REVISION);
pr_info("omapfb: DISPC version %d.%d initialized\n",
l >> 4 & 0x0f, l & 0x0f);
enable_lcd_clocks(0);
return 0;
fail3:
free_palette_ram();
fail2:
free_irq(INT_24XX_DSS_IRQ, fbdev);
fail1:
enable_lcd_clocks(0);
put_dss_clocks();
fail0:
iounmap(dispc.base);
return r;
}
static void omap_dispc_cleanup(void)
{
int i;
omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
/* This will also disable clocks that are on */
for (i = 0; i < dispc.mem_desc.region_cnt; i++)
omap_dispc_enable_plane(i, 0);
cleanup_fbmem();
free_palette_ram();
free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
put_dss_clocks();
iounmap(dispc.base);
}
const struct lcd_ctrl omap2_int_ctrl = {
.name = "internal",
.init = omap_dispc_init,
.cleanup = omap_dispc_cleanup,
.get_caps = omap_dispc_get_caps,
.set_update_mode = omap_dispc_set_update_mode,
.get_update_mode = omap_dispc_get_update_mode,
.update_window = omap_dispc_update_window,
.suspend = omap_dispc_suspend,
.resume = omap_dispc_resume,
.setup_plane = omap_dispc_setup_plane,
.setup_mem = omap_dispc_setup_mem,
.set_scale = omap_dispc_set_scale,
.enable_plane = omap_dispc_enable_plane,
.set_color_key = omap_dispc_set_color_key,
.get_color_key = omap_dispc_get_color_key,
.mmap = omap_dispc_mmap_user,
};