kernel-fxtec-pro1x/arch/x86/mm/init_64.c
Andi Kleen ef9257668e x86: do kernel direct mapping at boot using GB pages
The AMD Fam10h CPUs support new Gigabyte page table entry for
mapping 1GB at a time. Use this for the kernel direct mapping.

Only done for 64bit because i386 does not support GB page tables.

This only applies to the data portion of the direct mapping; the
kernel text mapping stays with 2MB pages because the AMD Fam10h
microarchitecture does not support GB ITLBs and AMD recommends
against using GB mappings for code.

Can be disabled with disable_gbpages on the kernel command line

[ tglx@linutronix.de: simplify enable code ]
[ Yinghai Lu <yinghai.lu@sun.com>: boot fix on 256 GB RAM ]

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-17 17:40:45 +02:00

848 lines
20 KiB
C

/*
* linux/arch/x86_64/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/nmi.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/numa.h>
#include <asm/cacheflush.h>
const struct dma_mapping_ops *dma_ops;
EXPORT_SYMBOL(dma_ops);
static unsigned long dma_reserve __initdata;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
int direct_gbpages __meminitdata
#ifdef CONFIG_DIRECT_GBPAGES
= 1
#endif
;
static int __init parse_direct_gbpages_off(char *arg)
{
direct_gbpages = 0;
return 0;
}
early_param("nogbpages", parse_direct_gbpages_off);
static int __init parse_direct_gbpages_on(char *arg)
{
direct_gbpages = 1;
return 0;
}
early_param("gbpages", parse_direct_gbpages_on);
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
void show_mem(void)
{
long i, total = 0, reserved = 0;
long shared = 0, cached = 0;
struct page *page;
pg_data_t *pgdat;
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
printk(KERN_INFO "Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
for_each_online_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
/*
* This loop can take a while with 256 GB and
* 4k pages so defer the NMI watchdog:
*/
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
touch_nmi_watchdog();
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
page = pfn_to_page(pgdat->node_start_pfn + i);
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk(KERN_INFO "%lu pages of RAM\n", total);
printk(KERN_INFO "%lu reserved pages\n", reserved);
printk(KERN_INFO "%lu pages shared\n", shared);
printk(KERN_INFO "%lu pages swap cached\n", cached);
}
int after_bootmem;
static __init void *spp_getpage(void)
{
void *ptr;
if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
panic("set_pte_phys: cannot allocate page data %s\n",
after_bootmem ? "after bootmem" : "");
}
pr_debug("spp_getpage %p\n", ptr);
return ptr;
}
static __init void
set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte, new_pte;
pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
pgd = pgd_offset_k(vaddr);
if (pgd_none(*pgd)) {
printk(KERN_ERR
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
return;
}
pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
if (pmd != pmd_offset(pud, 0)) {
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
pmd, pmd_offset(pud, 0));
return;
}
}
pmd = pmd_offset(pud, vaddr);
if (pmd_none(*pmd)) {
pte = (pte_t *) spp_getpage();
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
if (pte != pte_offset_kernel(pmd, 0)) {
printk(KERN_ERR "PAGETABLE BUG #02!\n");
return;
}
}
new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
pte = pte_offset_kernel(pmd, vaddr);
if (!pte_none(*pte) &&
pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
pte_ERROR(*pte);
set_pte(pte, new_pte);
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
/*
* The head.S code sets up the kernel high mapping:
*
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
*
* phys_addr holds the negative offset to the kernel, which is added
* to the compile time generated pmds. This results in invalid pmds up
* to the point where we hit the physaddr 0 mapping.
*
* We limit the mappings to the region from _text to _end. _end is
* rounded up to the 2MB boundary. This catches the invalid pmds as
* well, as they are located before _text:
*/
void __init cleanup_highmap(void)
{
unsigned long vaddr = __START_KERNEL_map;
unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_kernel_pgt;
pmd_t *last_pmd = pmd + PTRS_PER_PMD;
for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (!pmd_present(*pmd))
continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));
}
}
/* NOTE: this is meant to be run only at boot */
void __init
__set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
printk(KERN_ERR "Invalid __set_fixmap\n");
return;
}
set_pte_phys(address, phys, prot);
}
static unsigned long __initdata table_start;
static unsigned long __meminitdata table_end;
static __meminit void *alloc_low_page(unsigned long *phys)
{
unsigned long pfn = table_end++;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr);
return adr;
}
if (pfn >= end_pfn)
panic("alloc_low_page: ran out of memory");
adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
memset(adr, 0, PAGE_SIZE);
*phys = pfn * PAGE_SIZE;
return adr;
}
static __meminit void unmap_low_page(void *adr)
{
if (after_bootmem)
return;
early_iounmap(adr, PAGE_SIZE);
}
/* Must run before zap_low_mappings */
__meminit void *early_ioremap(unsigned long addr, unsigned long size)
{
pmd_t *pmd, *last_pmd;
unsigned long vaddr;
int i, pmds;
pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
vaddr = __START_KERNEL_map;
pmd = level2_kernel_pgt;
last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
for (i = 0; i < pmds; i++) {
if (pmd_present(pmd[i]))
goto continue_outer_loop;
}
vaddr += addr & ~PMD_MASK;
addr &= PMD_MASK;
for (i = 0; i < pmds; i++, addr += PMD_SIZE)
set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
__flush_tlb_all();
return (void *)vaddr;
continue_outer_loop:
;
}
printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
return NULL;
}
/*
* To avoid virtual aliases later:
*/
__meminit void early_iounmap(void *addr, unsigned long size)
{
unsigned long vaddr;
pmd_t *pmd;
int i, pmds;
vaddr = (unsigned long)addr;
pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
pmd = level2_kernel_pgt + pmd_index(vaddr);
for (i = 0; i < pmds; i++)
pmd_clear(pmd + i);
__flush_tlb_all();
}
static void __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
{
int i = pmd_index(address);
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
pmd_t *pmd = pmd_page + pmd_index(address);
if (address >= end) {
if (!after_bootmem) {
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
}
break;
}
if (pmd_val(*pmd))
continue;
set_pte((pte_t *)pmd,
pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
}
}
static void __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
{
pmd_t *pmd = pmd_offset(pud, 0);
spin_lock(&init_mm.page_table_lock);
phys_pmd_init(pmd, address, end);
spin_unlock(&init_mm.page_table_lock);
__flush_tlb_all();
}
static void __meminit
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
{
int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
if (addr >= end)
break;
if (!after_bootmem &&
!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
set_pud(pud, __pud(0));
continue;
}
if (pud_val(*pud)) {
if (!pud_large(*pud))
phys_pmd_update(pud, addr, end);
continue;
}
if (direct_gbpages) {
set_pte((pte_t *)pud,
pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
continue;
}
pmd = alloc_low_page(&pmd_phys);
spin_lock(&init_mm.page_table_lock);
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
phys_pmd_init(pmd, addr, end);
spin_unlock(&init_mm.page_table_lock);
unmap_low_page(pmd);
}
__flush_tlb_all();
}
static void __init find_early_table_space(unsigned long end)
{
unsigned long puds, pmds, tables, start;
puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
if (!direct_gbpages) {
pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
}
/*
* RED-PEN putting page tables only on node 0 could
* cause a hotspot and fill up ZONE_DMA. The page tables
* need roughly 0.5KB per GB.
*/
start = 0x8000;
table_start = find_e820_area(start, end, tables, PAGE_SIZE);
if (table_start == -1UL)
panic("Cannot find space for the kernel page tables");
table_start >>= PAGE_SHIFT;
table_end = table_start;
early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
end, table_start << PAGE_SHIFT,
(table_start << PAGE_SHIFT) + tables);
}
static void __init init_gbpages(void)
{
if (direct_gbpages && cpu_has_gbpages)
printk(KERN_INFO "Using GB pages for direct mapping\n");
else
direct_gbpages = 0;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
{
unsigned long next;
pr_debug("init_memory_mapping\n");
/*
* Find space for the kernel direct mapping tables.
*
* Later we should allocate these tables in the local node of the
* memory mapped. Unfortunately this is done currently before the
* nodes are discovered.
*/
if (!after_bootmem) {
init_gbpages();
find_early_table_space(end);
}
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
for (; start < end; start = next) {
pgd_t *pgd = pgd_offset_k(start);
unsigned long pud_phys;
pud_t *pud;
if (after_bootmem)
pud = pud_offset(pgd, start & PGDIR_MASK);
else
pud = alloc_low_page(&pud_phys);
next = start + PGDIR_SIZE;
if (next > end)
next = end;
phys_pud_init(pud, __pa(start), __pa(next));
if (!after_bootmem)
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
unmap_low_page(pud);
}
if (!after_bootmem)
mmu_cr4_features = read_cr4();
__flush_tlb_all();
if (!after_bootmem)
reserve_early(table_start << PAGE_SHIFT,
table_end << PAGE_SHIFT, "PGTABLE");
}
#ifndef CONFIG_NUMA
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;
memory_present(0, 0, end_pfn);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
#endif
/*
* Memory hotplug specific functions
*/
void online_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
totalram_pages++;
num_physpages++;
}
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Memory is added always to NORMAL zone. This means you will never get
* additional DMA/DMA32 memory.
*/
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdat = NODE_DATA(nid);
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
init_memory_mapping(start, start + size-1);
ret = __add_pages(zone, start_pfn, nr_pages);
WARN_ON(1);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
kcore_modules, kcore_vsyscall;
void __init mem_init(void)
{
long codesize, reservedpages, datasize, initsize;
pci_iommu_alloc();
/* clear_bss() already clear the empty_zero_page */
reservedpages = 0;
/* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
totalram_pages = numa_free_all_bootmem();
#else
totalram_pages = free_all_bootmem();
#endif
reservedpages = end_pfn - totalram_pages -
absent_pages_in_range(0, end_pfn);
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START);
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
"%ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
end_pfn << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
cpa_init();
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr = begin;
if (addr >= end)
return;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
#ifdef CONFIG_DEBUG_PAGEALLOC
printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
begin, PAGE_ALIGN(end));
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)(addr & ~(PAGE_SIZE-1)),
POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
#endif
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_DEBUG_RODATA
const int rodata_test_data = 0xC3;
EXPORT_SYMBOL_GPL(rodata_test_data);
void mark_rodata_ro(void)
{
unsigned long start = (unsigned long)_stext, end;
#ifdef CONFIG_HOTPLUG_CPU
/* It must still be possible to apply SMP alternatives. */
if (num_possible_cpus() > 1)
start = (unsigned long)_etext;
#endif
#ifdef CONFIG_KPROBES
start = (unsigned long)__start_rodata;
#endif
end = (unsigned long)__end_rodata;
start = (start + PAGE_SIZE - 1) & PAGE_MASK;
end &= PAGE_MASK;
if (end <= start)
return;
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(end - start) >> 10);
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
/*
* The rodata section (but not the kernel text!) should also be
* not-executable.
*/
start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
set_memory_nx(start, (end - start) >> PAGE_SHIFT);
rodata_test();
#ifdef CONFIG_CPA_DEBUG
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
printk(KERN_INFO "Testing CPA: again\n");
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
#endif
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif
void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
{
#ifdef CONFIG_NUMA
int nid = phys_to_nid(phys);
#endif
unsigned long pfn = phys >> PAGE_SHIFT;
if (pfn >= end_pfn) {
/*
* This can happen with kdump kernels when accessing
* firmware tables:
*/
if (pfn < end_pfn_map)
return;
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
phys, len);
return;
}
/* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
#else
reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
#endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE;
set_dma_reserve(dma_reserve);
}
}
int kern_addr_valid(unsigned long addr)
{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (above != 0 && above != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
/*
* A pseudo VMA to allow ptrace access for the vsyscall page. This only
* covers the 64bit vsyscall page now. 32bit has a real VMA now and does
* not need special handling anymore:
*/
static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
.vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(tsk, TIF_IA32))
return NULL;
#endif
return &gate_vma;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
if (!vma)
return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
/*
* Use this when you have no reliable task/vma, typically from interrupt
* context. It is less reliable than using the task's vma and may give
* false positives:
*/
int in_gate_area_no_task(unsigned long addr)
{
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}
const char *arch_vma_name(struct vm_area_struct *vma)
{
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
return "[vdso]";
if (vma == &gate_vma)
return "[vsyscall]";
return NULL;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
int __meminit
vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
for (; addr < end; addr = next) {
next = pmd_addr_end(addr, end);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t entry;
void *p;
p = vmemmap_alloc_block(PMD_SIZE, node);
if (!p)
return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry)));
printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
addr, addr + PMD_SIZE - 1, p, node);
} else {
vmemmap_verify((pte_t *)pmd, node, addr, next);
}
}
return 0;
}
#endif