1beb6a7d6c
This adds some very basic support for the new machines, including the Quad G5 (tested), and other new dual core based machines and iMac G5 iSight (untested). This is still experimental ! There is no thermal control yet, there is no proper handing of MSIs, etc.. but it boots, I have all 4 cores up on my machine. Compared to the previous version of this patch, this one adds DART IOMMU support for the U4 chipset and thus should work fine on setups with more than 2Gb of RAM. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2199 lines
58 KiB
C
2199 lines
58 KiB
C
/*
|
|
* linux/drivers/ide/ide-pmac.c
|
|
*
|
|
* Support for IDE interfaces on PowerMacs.
|
|
* These IDE interfaces are memory-mapped and have a DBDMA channel
|
|
* for doing DMA.
|
|
*
|
|
* Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Some code taken from drivers/ide/ide-dma.c:
|
|
*
|
|
* Copyright (c) 1995-1998 Mark Lord
|
|
*
|
|
* TODO: - Use pre-calculated (kauai) timing tables all the time and
|
|
* get rid of the "rounded" tables used previously, so we have the
|
|
* same table format for all controllers and can then just have one
|
|
* big table
|
|
*
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/adb.h>
|
|
#include <linux/pmu.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/dbdma.h>
|
|
#include <asm/ide.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/pmac_feature.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/irq.h>
|
|
|
|
#ifndef CONFIG_PPC64
|
|
#include <asm/mediabay.h>
|
|
#endif
|
|
|
|
#include "ide-timing.h"
|
|
|
|
#undef IDE_PMAC_DEBUG
|
|
|
|
#define DMA_WAIT_TIMEOUT 50
|
|
|
|
typedef struct pmac_ide_hwif {
|
|
unsigned long regbase;
|
|
int irq;
|
|
int kind;
|
|
int aapl_bus_id;
|
|
unsigned cable_80 : 1;
|
|
unsigned mediabay : 1;
|
|
unsigned broken_dma : 1;
|
|
unsigned broken_dma_warn : 1;
|
|
struct device_node* node;
|
|
struct macio_dev *mdev;
|
|
u32 timings[4];
|
|
volatile u32 __iomem * *kauai_fcr;
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
/* Those fields are duplicating what is in hwif. We currently
|
|
* can't use the hwif ones because of some assumptions that are
|
|
* beeing done by the generic code about the kind of dma controller
|
|
* and format of the dma table. This will have to be fixed though.
|
|
*/
|
|
volatile struct dbdma_regs __iomem * dma_regs;
|
|
struct dbdma_cmd* dma_table_cpu;
|
|
#endif
|
|
|
|
} pmac_ide_hwif_t;
|
|
|
|
static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
|
|
static int pmac_ide_count;
|
|
|
|
enum {
|
|
controller_ohare, /* OHare based */
|
|
controller_heathrow, /* Heathrow/Paddington */
|
|
controller_kl_ata3, /* KeyLargo ATA-3 */
|
|
controller_kl_ata4, /* KeyLargo ATA-4 */
|
|
controller_un_ata6, /* UniNorth2 ATA-6 */
|
|
controller_k2_ata6, /* K2 ATA-6 */
|
|
controller_sh_ata6, /* Shasta ATA-6 */
|
|
};
|
|
|
|
static const char* model_name[] = {
|
|
"OHare ATA", /* OHare based */
|
|
"Heathrow ATA", /* Heathrow/Paddington */
|
|
"KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
|
|
"KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
|
|
"UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
|
|
"K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
|
|
"Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
|
|
};
|
|
|
|
/*
|
|
* Extra registers, both 32-bit little-endian
|
|
*/
|
|
#define IDE_TIMING_CONFIG 0x200
|
|
#define IDE_INTERRUPT 0x300
|
|
|
|
/* Kauai (U2) ATA has different register setup */
|
|
#define IDE_KAUAI_PIO_CONFIG 0x200
|
|
#define IDE_KAUAI_ULTRA_CONFIG 0x210
|
|
#define IDE_KAUAI_POLL_CONFIG 0x220
|
|
|
|
/*
|
|
* Timing configuration register definitions
|
|
*/
|
|
|
|
/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
|
|
#define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
|
|
#define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
|
|
#define IDE_SYSCLK_NS 30 /* 33Mhz cell */
|
|
#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
|
|
|
|
/* 133Mhz cell, found in shasta.
|
|
* See comments about 100 Mhz Uninorth 2...
|
|
* Note that PIO_MASK and MDMA_MASK seem to overlap
|
|
*/
|
|
#define TR_133_PIOREG_PIO_MASK 0xff000fff
|
|
#define TR_133_PIOREG_MDMA_MASK 0x00fff800
|
|
#define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
|
|
#define TR_133_UDMAREG_UDMA_EN 0x00000001
|
|
|
|
/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
|
|
* this one yet, it appears as a pci device (106b/0033) on uninorth
|
|
* internal PCI bus and it's clock is controlled like gem or fw. It
|
|
* appears to be an evolution of keylargo ATA4 with a timing register
|
|
* extended to 2 32bits registers and a similar DBDMA channel. Other
|
|
* registers seem to exist but I can't tell much about them.
|
|
*
|
|
* So far, I'm using pre-calculated tables for this extracted from
|
|
* the values used by the MacOS X driver.
|
|
*
|
|
* The "PIO" register controls PIO and MDMA timings, the "ULTRA"
|
|
* register controls the UDMA timings. At least, it seems bit 0
|
|
* of this one enables UDMA vs. MDMA, and bits 4..7 are the
|
|
* cycle time in units of 10ns. Bits 8..15 are used by I don't
|
|
* know their meaning yet
|
|
*/
|
|
#define TR_100_PIOREG_PIO_MASK 0xff000fff
|
|
#define TR_100_PIOREG_MDMA_MASK 0x00fff000
|
|
#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
|
|
#define TR_100_UDMAREG_UDMA_EN 0x00000001
|
|
|
|
|
|
/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
|
|
* 40 connector cable and to 4 on 80 connector one.
|
|
* Clock unit is 15ns (66Mhz)
|
|
*
|
|
* 3 Values can be programmed:
|
|
* - Write data setup, which appears to match the cycle time. They
|
|
* also call it DIOW setup.
|
|
* - Ready to pause time (from spec)
|
|
* - Address setup. That one is weird. I don't see where exactly
|
|
* it fits in UDMA cycles, I got it's name from an obscure piece
|
|
* of commented out code in Darwin. They leave it to 0, we do as
|
|
* well, despite a comment that would lead to think it has a
|
|
* min value of 45ns.
|
|
* Apple also add 60ns to the write data setup (or cycle time ?) on
|
|
* reads.
|
|
*/
|
|
#define TR_66_UDMA_MASK 0xfff00000
|
|
#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
|
|
#define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
|
|
#define TR_66_UDMA_ADDRSETUP_SHIFT 29
|
|
#define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
|
|
#define TR_66_UDMA_RDY2PAUS_SHIFT 25
|
|
#define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
|
|
#define TR_66_UDMA_WRDATASETUP_SHIFT 21
|
|
#define TR_66_MDMA_MASK 0x000ffc00
|
|
#define TR_66_MDMA_RECOVERY_MASK 0x000f8000
|
|
#define TR_66_MDMA_RECOVERY_SHIFT 15
|
|
#define TR_66_MDMA_ACCESS_MASK 0x00007c00
|
|
#define TR_66_MDMA_ACCESS_SHIFT 10
|
|
#define TR_66_PIO_MASK 0x000003ff
|
|
#define TR_66_PIO_RECOVERY_MASK 0x000003e0
|
|
#define TR_66_PIO_RECOVERY_SHIFT 5
|
|
#define TR_66_PIO_ACCESS_MASK 0x0000001f
|
|
#define TR_66_PIO_ACCESS_SHIFT 0
|
|
|
|
/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
|
|
* Can do pio & mdma modes, clock unit is 30ns (33Mhz)
|
|
*
|
|
* The access time and recovery time can be programmed. Some older
|
|
* Darwin code base limit OHare to 150ns cycle time. I decided to do
|
|
* the same here fore safety against broken old hardware ;)
|
|
* The HalfTick bit, when set, adds half a clock (15ns) to the access
|
|
* time and removes one from recovery. It's not supported on KeyLargo
|
|
* implementation afaik. The E bit appears to be set for PIO mode 0 and
|
|
* is used to reach long timings used in this mode.
|
|
*/
|
|
#define TR_33_MDMA_MASK 0x003ff800
|
|
#define TR_33_MDMA_RECOVERY_MASK 0x001f0000
|
|
#define TR_33_MDMA_RECOVERY_SHIFT 16
|
|
#define TR_33_MDMA_ACCESS_MASK 0x0000f800
|
|
#define TR_33_MDMA_ACCESS_SHIFT 11
|
|
#define TR_33_MDMA_HALFTICK 0x00200000
|
|
#define TR_33_PIO_MASK 0x000007ff
|
|
#define TR_33_PIO_E 0x00000400
|
|
#define TR_33_PIO_RECOVERY_MASK 0x000003e0
|
|
#define TR_33_PIO_RECOVERY_SHIFT 5
|
|
#define TR_33_PIO_ACCESS_MASK 0x0000001f
|
|
#define TR_33_PIO_ACCESS_SHIFT 0
|
|
|
|
/*
|
|
* Interrupt register definitions
|
|
*/
|
|
#define IDE_INTR_DMA 0x80000000
|
|
#define IDE_INTR_DEVICE 0x40000000
|
|
|
|
/*
|
|
* FCR Register on Kauai. Not sure what bit 0x4 is ...
|
|
*/
|
|
#define KAUAI_FCR_UATA_MAGIC 0x00000004
|
|
#define KAUAI_FCR_UATA_RESET_N 0x00000002
|
|
#define KAUAI_FCR_UATA_ENABLE 0x00000001
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
|
|
/* Rounded Multiword DMA timings
|
|
*
|
|
* I gave up finding a generic formula for all controller
|
|
* types and instead, built tables based on timing values
|
|
* used by Apple in Darwin's implementation.
|
|
*/
|
|
struct mdma_timings_t {
|
|
int accessTime;
|
|
int recoveryTime;
|
|
int cycleTime;
|
|
};
|
|
|
|
struct mdma_timings_t mdma_timings_33[] =
|
|
{
|
|
{ 240, 240, 480 },
|
|
{ 180, 180, 360 },
|
|
{ 135, 135, 270 },
|
|
{ 120, 120, 240 },
|
|
{ 105, 105, 210 },
|
|
{ 90, 90, 180 },
|
|
{ 75, 75, 150 },
|
|
{ 75, 45, 120 },
|
|
{ 0, 0, 0 }
|
|
};
|
|
|
|
struct mdma_timings_t mdma_timings_33k[] =
|
|
{
|
|
{ 240, 240, 480 },
|
|
{ 180, 180, 360 },
|
|
{ 150, 150, 300 },
|
|
{ 120, 120, 240 },
|
|
{ 90, 120, 210 },
|
|
{ 90, 90, 180 },
|
|
{ 90, 60, 150 },
|
|
{ 90, 30, 120 },
|
|
{ 0, 0, 0 }
|
|
};
|
|
|
|
struct mdma_timings_t mdma_timings_66[] =
|
|
{
|
|
{ 240, 240, 480 },
|
|
{ 180, 180, 360 },
|
|
{ 135, 135, 270 },
|
|
{ 120, 120, 240 },
|
|
{ 105, 105, 210 },
|
|
{ 90, 90, 180 },
|
|
{ 90, 75, 165 },
|
|
{ 75, 45, 120 },
|
|
{ 0, 0, 0 }
|
|
};
|
|
|
|
/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
|
|
struct {
|
|
int addrSetup; /* ??? */
|
|
int rdy2pause;
|
|
int wrDataSetup;
|
|
} kl66_udma_timings[] =
|
|
{
|
|
{ 0, 180, 120 }, /* Mode 0 */
|
|
{ 0, 150, 90 }, /* 1 */
|
|
{ 0, 120, 60 }, /* 2 */
|
|
{ 0, 90, 45 }, /* 3 */
|
|
{ 0, 90, 30 } /* 4 */
|
|
};
|
|
|
|
/* UniNorth 2 ATA/100 timings */
|
|
struct kauai_timing {
|
|
int cycle_time;
|
|
u32 timing_reg;
|
|
};
|
|
|
|
static struct kauai_timing kauai_pio_timings[] =
|
|
{
|
|
{ 930 , 0x08000fff },
|
|
{ 600 , 0x08000a92 },
|
|
{ 383 , 0x0800060f },
|
|
{ 360 , 0x08000492 },
|
|
{ 330 , 0x0800048f },
|
|
{ 300 , 0x080003cf },
|
|
{ 270 , 0x080003cc },
|
|
{ 240 , 0x0800038b },
|
|
{ 239 , 0x0800030c },
|
|
{ 180 , 0x05000249 },
|
|
{ 120 , 0x04000148 }
|
|
};
|
|
|
|
static struct kauai_timing kauai_mdma_timings[] =
|
|
{
|
|
{ 1260 , 0x00fff000 },
|
|
{ 480 , 0x00618000 },
|
|
{ 360 , 0x00492000 },
|
|
{ 270 , 0x0038e000 },
|
|
{ 240 , 0x0030c000 },
|
|
{ 210 , 0x002cb000 },
|
|
{ 180 , 0x00249000 },
|
|
{ 150 , 0x00209000 },
|
|
{ 120 , 0x00148000 },
|
|
{ 0 , 0 },
|
|
};
|
|
|
|
static struct kauai_timing kauai_udma_timings[] =
|
|
{
|
|
{ 120 , 0x000070c0 },
|
|
{ 90 , 0x00005d80 },
|
|
{ 60 , 0x00004a60 },
|
|
{ 45 , 0x00003a50 },
|
|
{ 30 , 0x00002a30 },
|
|
{ 20 , 0x00002921 },
|
|
{ 0 , 0 },
|
|
};
|
|
|
|
static struct kauai_timing shasta_pio_timings[] =
|
|
{
|
|
{ 930 , 0x08000fff },
|
|
{ 600 , 0x0A000c97 },
|
|
{ 383 , 0x07000712 },
|
|
{ 360 , 0x040003cd },
|
|
{ 330 , 0x040003cd },
|
|
{ 300 , 0x040003cd },
|
|
{ 270 , 0x040003cd },
|
|
{ 240 , 0x040003cd },
|
|
{ 239 , 0x040003cd },
|
|
{ 180 , 0x0400028b },
|
|
{ 120 , 0x0400010a }
|
|
};
|
|
|
|
static struct kauai_timing shasta_mdma_timings[] =
|
|
{
|
|
{ 1260 , 0x00fff000 },
|
|
{ 480 , 0x00820800 },
|
|
{ 360 , 0x00820800 },
|
|
{ 270 , 0x00820800 },
|
|
{ 240 , 0x00820800 },
|
|
{ 210 , 0x00820800 },
|
|
{ 180 , 0x00820800 },
|
|
{ 150 , 0x0028b000 },
|
|
{ 120 , 0x001ca000 },
|
|
{ 0 , 0 },
|
|
};
|
|
|
|
static struct kauai_timing shasta_udma133_timings[] =
|
|
{
|
|
{ 120 , 0x00035901, },
|
|
{ 90 , 0x000348b1, },
|
|
{ 60 , 0x00033881, },
|
|
{ 45 , 0x00033861, },
|
|
{ 30 , 0x00033841, },
|
|
{ 20 , 0x00033031, },
|
|
{ 15 , 0x00033021, },
|
|
{ 0 , 0 },
|
|
};
|
|
|
|
|
|
static inline u32
|
|
kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; table[i].cycle_time; i++)
|
|
if (cycle_time > table[i+1].cycle_time)
|
|
return table[i].timing_reg;
|
|
return 0;
|
|
}
|
|
|
|
/* allow up to 256 DBDMA commands per xfer */
|
|
#define MAX_DCMDS 256
|
|
|
|
/*
|
|
* Wait 1s for disk to answer on IDE bus after a hard reset
|
|
* of the device (via GPIO/FCR).
|
|
*
|
|
* Some devices seem to "pollute" the bus even after dropping
|
|
* the BSY bit (typically some combo drives slave on the UDMA
|
|
* bus) after a hard reset. Since we hard reset all drives on
|
|
* KeyLargo ATA66, we have to keep that delay around. I may end
|
|
* up not hard resetting anymore on these and keep the delay only
|
|
* for older interfaces instead (we have to reset when coming
|
|
* from MacOS...) --BenH.
|
|
*/
|
|
#define IDE_WAKEUP_DELAY (1*HZ)
|
|
|
|
static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
|
|
static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
|
|
static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
|
|
static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
|
|
static void pmac_ide_selectproc(ide_drive_t *drive);
|
|
static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
|
|
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
|
|
|
|
/*
|
|
* Below is the code for blinking the laptop LED along with hard
|
|
* disk activity.
|
|
*/
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
|
|
|
|
/* Set to 50ms minimum led-on time (also used to limit frequency
|
|
* of requests sent to the PMU
|
|
*/
|
|
#define PMU_HD_BLINK_TIME (HZ/50)
|
|
|
|
static struct adb_request pmu_blink_on, pmu_blink_off;
|
|
static spinlock_t pmu_blink_lock;
|
|
static unsigned long pmu_blink_stoptime;
|
|
static int pmu_blink_ledstate;
|
|
static struct timer_list pmu_blink_timer;
|
|
static int pmu_ide_blink_enabled;
|
|
|
|
|
|
static void
|
|
pmu_hd_blink_timeout(unsigned long data)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pmu_blink_lock, flags);
|
|
|
|
/* We may have been triggered again in a racy way, check
|
|
* that we really want to switch it off
|
|
*/
|
|
if (time_after(pmu_blink_stoptime, jiffies))
|
|
goto done;
|
|
|
|
/* Previous req. not complete, try 100ms more */
|
|
if (pmu_blink_off.complete == 0)
|
|
mod_timer(&pmu_blink_timer, jiffies + PMU_HD_BLINK_TIME);
|
|
else if (pmu_blink_ledstate) {
|
|
pmu_request(&pmu_blink_off, NULL, 4, 0xee, 4, 0, 0);
|
|
pmu_blink_ledstate = 0;
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&pmu_blink_lock, flags);
|
|
}
|
|
|
|
static void
|
|
pmu_hd_kick_blink(void *data, int rw)
|
|
{
|
|
unsigned long flags;
|
|
|
|
pmu_blink_stoptime = jiffies + PMU_HD_BLINK_TIME;
|
|
wmb();
|
|
mod_timer(&pmu_blink_timer, pmu_blink_stoptime);
|
|
/* Fast path when LED is already ON */
|
|
if (pmu_blink_ledstate == 1)
|
|
return;
|
|
spin_lock_irqsave(&pmu_blink_lock, flags);
|
|
if (pmu_blink_on.complete && !pmu_blink_ledstate) {
|
|
pmu_request(&pmu_blink_on, NULL, 4, 0xee, 4, 0, 1);
|
|
pmu_blink_ledstate = 1;
|
|
}
|
|
spin_unlock_irqrestore(&pmu_blink_lock, flags);
|
|
}
|
|
|
|
static int
|
|
pmu_hd_blink_init(void)
|
|
{
|
|
struct device_node *dt;
|
|
const char *model;
|
|
|
|
/* Currently, I only enable this feature on KeyLargo based laptops,
|
|
* older laptops may support it (at least heathrow/paddington) but
|
|
* I don't feel like loading those venerable old machines with so
|
|
* much additional interrupt & PMU activity...
|
|
*/
|
|
if (pmu_get_model() != PMU_KEYLARGO_BASED)
|
|
return 0;
|
|
|
|
dt = of_find_node_by_path("/");
|
|
if (dt == NULL)
|
|
return 0;
|
|
model = (const char *)get_property(dt, "model", NULL);
|
|
if (model == NULL)
|
|
return 0;
|
|
if (strncmp(model, "PowerBook", strlen("PowerBook")) != 0 &&
|
|
strncmp(model, "iBook", strlen("iBook")) != 0) {
|
|
of_node_put(dt);
|
|
return 0;
|
|
}
|
|
of_node_put(dt);
|
|
|
|
pmu_blink_on.complete = 1;
|
|
pmu_blink_off.complete = 1;
|
|
spin_lock_init(&pmu_blink_lock);
|
|
init_timer(&pmu_blink_timer);
|
|
pmu_blink_timer.function = pmu_hd_blink_timeout;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
|
|
|
|
/*
|
|
* N.B. this can't be an initfunc, because the media-bay task can
|
|
* call ide_[un]register at any time.
|
|
*/
|
|
void
|
|
pmac_ide_init_hwif_ports(hw_regs_t *hw,
|
|
unsigned long data_port, unsigned long ctrl_port,
|
|
int *irq)
|
|
{
|
|
int i, ix;
|
|
|
|
if (data_port == 0)
|
|
return;
|
|
|
|
for (ix = 0; ix < MAX_HWIFS; ++ix)
|
|
if (data_port == pmac_ide[ix].regbase)
|
|
break;
|
|
|
|
if (ix >= MAX_HWIFS) {
|
|
/* Probably a PCI interface... */
|
|
for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
|
|
hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
|
|
hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
hw->io_ports[i] = data_port + i * 0x10;
|
|
hw->io_ports[8] = data_port + 0x160;
|
|
|
|
if (irq != NULL)
|
|
*irq = pmac_ide[ix].irq;
|
|
}
|
|
|
|
#define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
|
|
|
|
/*
|
|
* Apply the timings of the proper unit (master/slave) to the shared
|
|
* timing register when selecting that unit. This version is for
|
|
* ASICs with a single timing register
|
|
*/
|
|
static void
|
|
pmac_ide_selectproc(ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
|
|
if (pmif == NULL)
|
|
return;
|
|
|
|
if (drive->select.b.unit & 0x01)
|
|
writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
|
|
else
|
|
writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
|
|
(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
|
|
}
|
|
|
|
/*
|
|
* Apply the timings of the proper unit (master/slave) to the shared
|
|
* timing register when selecting that unit. This version is for
|
|
* ASICs with a dual timing register (Kauai)
|
|
*/
|
|
static void
|
|
pmac_ide_kauai_selectproc(ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
|
|
if (pmif == NULL)
|
|
return;
|
|
|
|
if (drive->select.b.unit & 0x01) {
|
|
writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
|
|
writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
|
|
} else {
|
|
writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
|
|
writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
|
|
}
|
|
(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
|
|
}
|
|
|
|
/*
|
|
* Force an update of controller timing values for a given drive
|
|
*/
|
|
static void
|
|
pmac_ide_do_update_timings(ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
|
|
if (pmif == NULL)
|
|
return;
|
|
|
|
if (pmif->kind == controller_sh_ata6 ||
|
|
pmif->kind == controller_un_ata6 ||
|
|
pmif->kind == controller_k2_ata6)
|
|
pmac_ide_kauai_selectproc(drive);
|
|
else
|
|
pmac_ide_selectproc(drive);
|
|
}
|
|
|
|
static void
|
|
pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
|
|
{
|
|
u32 tmp;
|
|
|
|
writeb(value, (void __iomem *) port);
|
|
tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
|
|
}
|
|
|
|
/*
|
|
* Send the SET_FEATURE IDE command to the drive and update drive->id with
|
|
* the new state. We currently don't use the generic routine as it used to
|
|
* cause various trouble, especially with older mediabays.
|
|
* This code is sometimes triggering a spurrious interrupt though, I need
|
|
* to sort that out sooner or later and see if I can finally get the
|
|
* common version to work properly in all cases
|
|
*/
|
|
static int
|
|
pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
int result = 1;
|
|
|
|
disable_irq_nosync(hwif->irq);
|
|
udelay(1);
|
|
SELECT_DRIVE(drive);
|
|
SELECT_MASK(drive, 0);
|
|
udelay(1);
|
|
/* Get rid of pending error state */
|
|
(void) hwif->INB(IDE_STATUS_REG);
|
|
/* Timeout bumped for some powerbooks */
|
|
if (wait_for_ready(drive, 2000)) {
|
|
/* Timeout bumped for some powerbooks */
|
|
printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
|
|
"before SET_FEATURE!\n", drive->name);
|
|
goto out;
|
|
}
|
|
udelay(10);
|
|
hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
|
|
hwif->OUTB(command, IDE_NSECTOR_REG);
|
|
hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
|
|
hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
|
|
udelay(1);
|
|
/* Timeout bumped for some powerbooks */
|
|
result = wait_for_ready(drive, 2000);
|
|
hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
|
|
if (result)
|
|
printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
|
|
"after SET_FEATURE !\n", drive->name);
|
|
out:
|
|
SELECT_MASK(drive, 0);
|
|
if (result == 0) {
|
|
drive->id->dma_ultra &= ~0xFF00;
|
|
drive->id->dma_mword &= ~0x0F00;
|
|
drive->id->dma_1word &= ~0x0F00;
|
|
switch(command) {
|
|
case XFER_UDMA_7:
|
|
drive->id->dma_ultra |= 0x8080; break;
|
|
case XFER_UDMA_6:
|
|
drive->id->dma_ultra |= 0x4040; break;
|
|
case XFER_UDMA_5:
|
|
drive->id->dma_ultra |= 0x2020; break;
|
|
case XFER_UDMA_4:
|
|
drive->id->dma_ultra |= 0x1010; break;
|
|
case XFER_UDMA_3:
|
|
drive->id->dma_ultra |= 0x0808; break;
|
|
case XFER_UDMA_2:
|
|
drive->id->dma_ultra |= 0x0404; break;
|
|
case XFER_UDMA_1:
|
|
drive->id->dma_ultra |= 0x0202; break;
|
|
case XFER_UDMA_0:
|
|
drive->id->dma_ultra |= 0x0101; break;
|
|
case XFER_MW_DMA_2:
|
|
drive->id->dma_mword |= 0x0404; break;
|
|
case XFER_MW_DMA_1:
|
|
drive->id->dma_mword |= 0x0202; break;
|
|
case XFER_MW_DMA_0:
|
|
drive->id->dma_mword |= 0x0101; break;
|
|
case XFER_SW_DMA_2:
|
|
drive->id->dma_1word |= 0x0404; break;
|
|
case XFER_SW_DMA_1:
|
|
drive->id->dma_1word |= 0x0202; break;
|
|
case XFER_SW_DMA_0:
|
|
drive->id->dma_1word |= 0x0101; break;
|
|
default: break;
|
|
}
|
|
}
|
|
enable_irq(hwif->irq);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Old tuning functions (called on hdparm -p), sets up drive PIO timings
|
|
*/
|
|
static void
|
|
pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
|
|
{
|
|
ide_pio_data_t d;
|
|
u32 *timings;
|
|
unsigned accessTicks, recTicks;
|
|
unsigned accessTime, recTime;
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
|
|
if (pmif == NULL)
|
|
return;
|
|
|
|
/* which drive is it ? */
|
|
timings = &pmif->timings[drive->select.b.unit & 0x01];
|
|
|
|
pio = ide_get_best_pio_mode(drive, pio, 4, &d);
|
|
|
|
switch (pmif->kind) {
|
|
case controller_sh_ata6: {
|
|
/* 133Mhz cell */
|
|
u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time);
|
|
if (tr == 0)
|
|
return;
|
|
*timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
|
|
break;
|
|
}
|
|
case controller_un_ata6:
|
|
case controller_k2_ata6: {
|
|
/* 100Mhz cell */
|
|
u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
|
|
if (tr == 0)
|
|
return;
|
|
*timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
|
|
break;
|
|
}
|
|
case controller_kl_ata4:
|
|
/* 66Mhz cell */
|
|
recTime = d.cycle_time - ide_pio_timings[pio].active_time
|
|
- ide_pio_timings[pio].setup_time;
|
|
recTime = max(recTime, 150U);
|
|
accessTime = ide_pio_timings[pio].active_time;
|
|
accessTime = max(accessTime, 150U);
|
|
accessTicks = SYSCLK_TICKS_66(accessTime);
|
|
accessTicks = min(accessTicks, 0x1fU);
|
|
recTicks = SYSCLK_TICKS_66(recTime);
|
|
recTicks = min(recTicks, 0x1fU);
|
|
*timings = ((*timings) & ~TR_66_PIO_MASK) |
|
|
(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
|
|
(recTicks << TR_66_PIO_RECOVERY_SHIFT);
|
|
break;
|
|
default: {
|
|
/* 33Mhz cell */
|
|
int ebit = 0;
|
|
recTime = d.cycle_time - ide_pio_timings[pio].active_time
|
|
- ide_pio_timings[pio].setup_time;
|
|
recTime = max(recTime, 150U);
|
|
accessTime = ide_pio_timings[pio].active_time;
|
|
accessTime = max(accessTime, 150U);
|
|
accessTicks = SYSCLK_TICKS(accessTime);
|
|
accessTicks = min(accessTicks, 0x1fU);
|
|
accessTicks = max(accessTicks, 4U);
|
|
recTicks = SYSCLK_TICKS(recTime);
|
|
recTicks = min(recTicks, 0x1fU);
|
|
recTicks = max(recTicks, 5U) - 4;
|
|
if (recTicks > 9) {
|
|
recTicks--; /* guess, but it's only for PIO0, so... */
|
|
ebit = 1;
|
|
}
|
|
*timings = ((*timings) & ~TR_33_PIO_MASK) |
|
|
(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
|
|
(recTicks << TR_33_PIO_RECOVERY_SHIFT);
|
|
if (ebit)
|
|
*timings |= TR_33_PIO_E;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef IDE_PMAC_DEBUG
|
|
printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
|
|
drive->name, pio, *timings);
|
|
#endif
|
|
|
|
if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
|
|
pmac_ide_do_update_timings(drive);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
|
|
/*
|
|
* Calculate KeyLargo ATA/66 UDMA timings
|
|
*/
|
|
static int
|
|
set_timings_udma_ata4(u32 *timings, u8 speed)
|
|
{
|
|
unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
|
|
|
|
if (speed > XFER_UDMA_4)
|
|
return 1;
|
|
|
|
rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
|
|
wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
|
|
addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
|
|
|
|
*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
|
|
(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
|
|
(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
|
|
(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
|
|
TR_66_UDMA_EN;
|
|
#ifdef IDE_PMAC_DEBUG
|
|
printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
|
|
speed & 0xf, *timings);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate Kauai ATA/100 UDMA timings
|
|
*/
|
|
static int
|
|
set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
|
|
{
|
|
struct ide_timing *t = ide_timing_find_mode(speed);
|
|
u32 tr;
|
|
|
|
if (speed > XFER_UDMA_5 || t == NULL)
|
|
return 1;
|
|
tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
|
|
if (tr == 0)
|
|
return 1;
|
|
*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
|
|
*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate Shasta ATA/133 UDMA timings
|
|
*/
|
|
static int
|
|
set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
|
|
{
|
|
struct ide_timing *t = ide_timing_find_mode(speed);
|
|
u32 tr;
|
|
|
|
if (speed > XFER_UDMA_6 || t == NULL)
|
|
return 1;
|
|
tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
|
|
if (tr == 0)
|
|
return 1;
|
|
*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
|
|
*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate MDMA timings for all cells
|
|
*/
|
|
static int
|
|
set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
|
|
u8 speed, int drive_cycle_time)
|
|
{
|
|
int cycleTime, accessTime = 0, recTime = 0;
|
|
unsigned accessTicks, recTicks;
|
|
struct mdma_timings_t* tm = NULL;
|
|
int i;
|
|
|
|
/* Get default cycle time for mode */
|
|
switch(speed & 0xf) {
|
|
case 0: cycleTime = 480; break;
|
|
case 1: cycleTime = 150; break;
|
|
case 2: cycleTime = 120; break;
|
|
default:
|
|
return 1;
|
|
}
|
|
/* Adjust for drive */
|
|
if (drive_cycle_time && drive_cycle_time > cycleTime)
|
|
cycleTime = drive_cycle_time;
|
|
/* OHare limits according to some old Apple sources */
|
|
if ((intf_type == controller_ohare) && (cycleTime < 150))
|
|
cycleTime = 150;
|
|
/* Get the proper timing array for this controller */
|
|
switch(intf_type) {
|
|
case controller_sh_ata6:
|
|
case controller_un_ata6:
|
|
case controller_k2_ata6:
|
|
break;
|
|
case controller_kl_ata4:
|
|
tm = mdma_timings_66;
|
|
break;
|
|
case controller_kl_ata3:
|
|
tm = mdma_timings_33k;
|
|
break;
|
|
default:
|
|
tm = mdma_timings_33;
|
|
break;
|
|
}
|
|
if (tm != NULL) {
|
|
/* Lookup matching access & recovery times */
|
|
i = -1;
|
|
for (;;) {
|
|
if (tm[i+1].cycleTime < cycleTime)
|
|
break;
|
|
i++;
|
|
}
|
|
if (i < 0)
|
|
return 1;
|
|
cycleTime = tm[i].cycleTime;
|
|
accessTime = tm[i].accessTime;
|
|
recTime = tm[i].recoveryTime;
|
|
|
|
#ifdef IDE_PMAC_DEBUG
|
|
printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
|
|
drive->name, cycleTime, accessTime, recTime);
|
|
#endif
|
|
}
|
|
switch(intf_type) {
|
|
case controller_sh_ata6: {
|
|
/* 133Mhz cell */
|
|
u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
|
|
if (tr == 0)
|
|
return 1;
|
|
*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
|
|
*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
|
|
}
|
|
case controller_un_ata6:
|
|
case controller_k2_ata6: {
|
|
/* 100Mhz cell */
|
|
u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
|
|
if (tr == 0)
|
|
return 1;
|
|
*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
|
|
*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
|
|
}
|
|
break;
|
|
case controller_kl_ata4:
|
|
/* 66Mhz cell */
|
|
accessTicks = SYSCLK_TICKS_66(accessTime);
|
|
accessTicks = min(accessTicks, 0x1fU);
|
|
accessTicks = max(accessTicks, 0x1U);
|
|
recTicks = SYSCLK_TICKS_66(recTime);
|
|
recTicks = min(recTicks, 0x1fU);
|
|
recTicks = max(recTicks, 0x3U);
|
|
/* Clear out mdma bits and disable udma */
|
|
*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
|
|
(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
|
|
(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
|
|
break;
|
|
case controller_kl_ata3:
|
|
/* 33Mhz cell on KeyLargo */
|
|
accessTicks = SYSCLK_TICKS(accessTime);
|
|
accessTicks = max(accessTicks, 1U);
|
|
accessTicks = min(accessTicks, 0x1fU);
|
|
accessTime = accessTicks * IDE_SYSCLK_NS;
|
|
recTicks = SYSCLK_TICKS(recTime);
|
|
recTicks = max(recTicks, 1U);
|
|
recTicks = min(recTicks, 0x1fU);
|
|
*timings = ((*timings) & ~TR_33_MDMA_MASK) |
|
|
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
|
|
(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
|
|
break;
|
|
default: {
|
|
/* 33Mhz cell on others */
|
|
int halfTick = 0;
|
|
int origAccessTime = accessTime;
|
|
int origRecTime = recTime;
|
|
|
|
accessTicks = SYSCLK_TICKS(accessTime);
|
|
accessTicks = max(accessTicks, 1U);
|
|
accessTicks = min(accessTicks, 0x1fU);
|
|
accessTime = accessTicks * IDE_SYSCLK_NS;
|
|
recTicks = SYSCLK_TICKS(recTime);
|
|
recTicks = max(recTicks, 2U) - 1;
|
|
recTicks = min(recTicks, 0x1fU);
|
|
recTime = (recTicks + 1) * IDE_SYSCLK_NS;
|
|
if ((accessTicks > 1) &&
|
|
((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
|
|
((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
|
|
halfTick = 1;
|
|
accessTicks--;
|
|
}
|
|
*timings = ((*timings) & ~TR_33_MDMA_MASK) |
|
|
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
|
|
(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
|
|
if (halfTick)
|
|
*timings |= TR_33_MDMA_HALFTICK;
|
|
}
|
|
}
|
|
#ifdef IDE_PMAC_DEBUG
|
|
printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
|
|
drive->name, speed & 0xf, *timings);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
|
|
|
|
/*
|
|
* Speedproc. This function is called by the core to set any of the standard
|
|
* timing (PIO, MDMA or UDMA) to both the drive and the controller.
|
|
* You may notice we don't use this function on normal "dma check" operation,
|
|
* our dedicated function is more precise as it uses the drive provided
|
|
* cycle time value. We should probably fix this one to deal with that too...
|
|
*/
|
|
static int
|
|
pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
|
|
{
|
|
int unit = (drive->select.b.unit & 0x01);
|
|
int ret = 0;
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
u32 *timings, *timings2;
|
|
|
|
if (pmif == NULL)
|
|
return 1;
|
|
|
|
timings = &pmif->timings[unit];
|
|
timings2 = &pmif->timings[unit+2];
|
|
|
|
switch(speed) {
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
case XFER_UDMA_6:
|
|
if (pmif->kind != controller_sh_ata6)
|
|
return 1;
|
|
case XFER_UDMA_5:
|
|
if (pmif->kind != controller_un_ata6 &&
|
|
pmif->kind != controller_k2_ata6 &&
|
|
pmif->kind != controller_sh_ata6)
|
|
return 1;
|
|
case XFER_UDMA_4:
|
|
case XFER_UDMA_3:
|
|
if (HWIF(drive)->udma_four == 0)
|
|
return 1;
|
|
case XFER_UDMA_2:
|
|
case XFER_UDMA_1:
|
|
case XFER_UDMA_0:
|
|
if (pmif->kind == controller_kl_ata4)
|
|
ret = set_timings_udma_ata4(timings, speed);
|
|
else if (pmif->kind == controller_un_ata6
|
|
|| pmif->kind == controller_k2_ata6)
|
|
ret = set_timings_udma_ata6(timings, timings2, speed);
|
|
else if (pmif->kind == controller_sh_ata6)
|
|
ret = set_timings_udma_shasta(timings, timings2, speed);
|
|
else
|
|
ret = 1;
|
|
break;
|
|
case XFER_MW_DMA_2:
|
|
case XFER_MW_DMA_1:
|
|
case XFER_MW_DMA_0:
|
|
ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
|
|
break;
|
|
case XFER_SW_DMA_2:
|
|
case XFER_SW_DMA_1:
|
|
case XFER_SW_DMA_0:
|
|
return 1;
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
|
|
case XFER_PIO_4:
|
|
case XFER_PIO_3:
|
|
case XFER_PIO_2:
|
|
case XFER_PIO_1:
|
|
case XFER_PIO_0:
|
|
pmac_ide_tuneproc(drive, speed & 0x07);
|
|
break;
|
|
default:
|
|
ret = 1;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pmac_ide_do_setfeature(drive, speed);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pmac_ide_do_update_timings(drive);
|
|
drive->current_speed = speed;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Blast some well known "safe" values to the timing registers at init or
|
|
* wakeup from sleep time, before we do real calculation
|
|
*/
|
|
static void
|
|
sanitize_timings(pmac_ide_hwif_t *pmif)
|
|
{
|
|
unsigned int value, value2 = 0;
|
|
|
|
switch(pmif->kind) {
|
|
case controller_sh_ata6:
|
|
value = 0x0a820c97;
|
|
value2 = 0x00033031;
|
|
break;
|
|
case controller_un_ata6:
|
|
case controller_k2_ata6:
|
|
value = 0x08618a92;
|
|
value2 = 0x00002921;
|
|
break;
|
|
case controller_kl_ata4:
|
|
value = 0x0008438c;
|
|
break;
|
|
case controller_kl_ata3:
|
|
value = 0x00084526;
|
|
break;
|
|
case controller_heathrow:
|
|
case controller_ohare:
|
|
default:
|
|
value = 0x00074526;
|
|
break;
|
|
}
|
|
pmif->timings[0] = pmif->timings[1] = value;
|
|
pmif->timings[2] = pmif->timings[3] = value2;
|
|
}
|
|
|
|
unsigned long
|
|
pmac_ide_get_base(int index)
|
|
{
|
|
return pmac_ide[index].regbase;
|
|
}
|
|
|
|
int
|
|
pmac_ide_check_base(unsigned long base)
|
|
{
|
|
int ix;
|
|
|
|
for (ix = 0; ix < MAX_HWIFS; ++ix)
|
|
if (base == pmac_ide[ix].regbase)
|
|
return ix;
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
pmac_ide_get_irq(unsigned long base)
|
|
{
|
|
int ix;
|
|
|
|
for (ix = 0; ix < MAX_HWIFS; ++ix)
|
|
if (base == pmac_ide[ix].regbase)
|
|
return pmac_ide[ix].irq;
|
|
return 0;
|
|
}
|
|
|
|
static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
|
|
|
|
dev_t __init
|
|
pmac_find_ide_boot(char *bootdevice, int n)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Look through the list of IDE interfaces for this one.
|
|
*/
|
|
for (i = 0; i < pmac_ide_count; ++i) {
|
|
char *name;
|
|
if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
|
|
continue;
|
|
name = pmac_ide[i].node->full_name;
|
|
if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
|
|
/* XXX should cope with the 2nd drive as well... */
|
|
return MKDEV(ide_majors[i], 0);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Suspend call back, should be called after the child devices
|
|
* have actually been suspended
|
|
*/
|
|
static int
|
|
pmac_ide_do_suspend(ide_hwif_t *hwif)
|
|
{
|
|
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
|
|
/* We clear the timings */
|
|
pmif->timings[0] = 0;
|
|
pmif->timings[1] = 0;
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
|
|
/* Note: This code will be called for every hwif, thus we'll
|
|
* try several time to stop the LED blinker timer, but that
|
|
* should be harmless
|
|
*/
|
|
if (pmu_ide_blink_enabled) {
|
|
unsigned long flags;
|
|
|
|
/* Make sure we don't hit the PMU blink */
|
|
spin_lock_irqsave(&pmu_blink_lock, flags);
|
|
if (pmu_blink_ledstate)
|
|
del_timer(&pmu_blink_timer);
|
|
pmu_blink_ledstate = 0;
|
|
spin_unlock_irqrestore(&pmu_blink_lock, flags);
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
|
|
|
|
disable_irq(pmif->irq);
|
|
|
|
/* The media bay will handle itself just fine */
|
|
if (pmif->mediabay)
|
|
return 0;
|
|
|
|
/* Kauai has bus control FCRs directly here */
|
|
if (pmif->kauai_fcr) {
|
|
u32 fcr = readl(pmif->kauai_fcr);
|
|
fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
|
|
writel(fcr, pmif->kauai_fcr);
|
|
}
|
|
|
|
/* Disable the bus on older machines and the cell on kauai */
|
|
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
|
|
0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Resume call back, should be called before the child devices
|
|
* are resumed
|
|
*/
|
|
static int
|
|
pmac_ide_do_resume(ide_hwif_t *hwif)
|
|
{
|
|
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
|
|
/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
|
|
if (!pmif->mediabay) {
|
|
ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
|
|
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
|
|
msleep(10);
|
|
ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
|
|
|
|
/* Kauai has it different */
|
|
if (pmif->kauai_fcr) {
|
|
u32 fcr = readl(pmif->kauai_fcr);
|
|
fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
|
|
writel(fcr, pmif->kauai_fcr);
|
|
}
|
|
|
|
msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
|
|
}
|
|
|
|
/* Sanitize drive timings */
|
|
sanitize_timings(pmif);
|
|
|
|
enable_irq(pmif->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Setup, register & probe an IDE channel driven by this driver, this is
|
|
* called by one of the 2 probe functions (macio or PCI). Note that a channel
|
|
* that ends up beeing free of any device is not kept around by this driver
|
|
* (it is kept in 2.4). This introduce an interface numbering change on some
|
|
* rare machines unfortunately, but it's better this way.
|
|
*/
|
|
static int
|
|
pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
|
|
{
|
|
struct device_node *np = pmif->node;
|
|
int *bidp;
|
|
|
|
pmif->cable_80 = 0;
|
|
pmif->broken_dma = pmif->broken_dma_warn = 0;
|
|
if (device_is_compatible(np, "shasta-ata"))
|
|
pmif->kind = controller_sh_ata6;
|
|
else if (device_is_compatible(np, "kauai-ata"))
|
|
pmif->kind = controller_un_ata6;
|
|
else if (device_is_compatible(np, "K2-UATA"))
|
|
pmif->kind = controller_k2_ata6;
|
|
else if (device_is_compatible(np, "keylargo-ata")) {
|
|
if (strcmp(np->name, "ata-4") == 0)
|
|
pmif->kind = controller_kl_ata4;
|
|
else
|
|
pmif->kind = controller_kl_ata3;
|
|
} else if (device_is_compatible(np, "heathrow-ata"))
|
|
pmif->kind = controller_heathrow;
|
|
else {
|
|
pmif->kind = controller_ohare;
|
|
pmif->broken_dma = 1;
|
|
}
|
|
|
|
bidp = (int *)get_property(np, "AAPL,bus-id", NULL);
|
|
pmif->aapl_bus_id = bidp ? *bidp : 0;
|
|
|
|
/* Get cable type from device-tree */
|
|
if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
|
|
|| pmif->kind == controller_k2_ata6
|
|
|| pmif->kind == controller_sh_ata6) {
|
|
char* cable = get_property(np, "cable-type", NULL);
|
|
if (cable && !strncmp(cable, "80-", 3))
|
|
pmif->cable_80 = 1;
|
|
}
|
|
/* G5's seem to have incorrect cable type in device-tree. Let's assume
|
|
* they have a 80 conductor cable, this seem to be always the case unless
|
|
* the user mucked around
|
|
*/
|
|
if (device_is_compatible(np, "K2-UATA") ||
|
|
device_is_compatible(np, "shasta-ata"))
|
|
pmif->cable_80 = 1;
|
|
|
|
/* On Kauai-type controllers, we make sure the FCR is correct */
|
|
if (pmif->kauai_fcr)
|
|
writel(KAUAI_FCR_UATA_MAGIC |
|
|
KAUAI_FCR_UATA_RESET_N |
|
|
KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
|
|
|
|
pmif->mediabay = 0;
|
|
|
|
/* Make sure we have sane timings */
|
|
sanitize_timings(pmif);
|
|
|
|
#ifndef CONFIG_PPC64
|
|
/* XXX FIXME: Media bay stuff need re-organizing */
|
|
if (np->parent && np->parent->name
|
|
&& strcasecmp(np->parent->name, "media-bay") == 0) {
|
|
#ifdef CONFIG_PMAC_MEDIABAY
|
|
media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
|
|
#endif /* CONFIG_PMAC_MEDIABAY */
|
|
pmif->mediabay = 1;
|
|
if (!bidp)
|
|
pmif->aapl_bus_id = 1;
|
|
} else if (pmif->kind == controller_ohare) {
|
|
/* The code below is having trouble on some ohare machines
|
|
* (timing related ?). Until I can put my hand on one of these
|
|
* units, I keep the old way
|
|
*/
|
|
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
|
|
} else
|
|
#endif
|
|
{
|
|
/* This is necessary to enable IDE when net-booting */
|
|
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
|
|
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
|
|
msleep(10);
|
|
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
|
|
msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
|
|
}
|
|
|
|
/* Setup MMIO ops */
|
|
default_hwif_mmiops(hwif);
|
|
hwif->OUTBSYNC = pmac_outbsync;
|
|
|
|
/* Tell common code _not_ to mess with resources */
|
|
hwif->mmio = 2;
|
|
hwif->hwif_data = pmif;
|
|
pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
|
|
memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
|
|
hwif->chipset = ide_pmac;
|
|
hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
|
|
hwif->hold = pmif->mediabay;
|
|
hwif->udma_four = pmif->cable_80;
|
|
hwif->drives[0].unmask = 1;
|
|
hwif->drives[1].unmask = 1;
|
|
hwif->tuneproc = pmac_ide_tuneproc;
|
|
if (pmif->kind == controller_un_ata6
|
|
|| pmif->kind == controller_k2_ata6
|
|
|| pmif->kind == controller_sh_ata6)
|
|
hwif->selectproc = pmac_ide_kauai_selectproc;
|
|
else
|
|
hwif->selectproc = pmac_ide_selectproc;
|
|
hwif->speedproc = pmac_ide_tune_chipset;
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
|
|
pmu_ide_blink_enabled = pmu_hd_blink_init();
|
|
|
|
if (pmu_ide_blink_enabled)
|
|
hwif->led_act = pmu_hd_kick_blink;
|
|
#endif
|
|
|
|
printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
|
|
hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
|
|
pmif->mediabay ? " (mediabay)" : "", hwif->irq);
|
|
|
|
#ifdef CONFIG_PMAC_MEDIABAY
|
|
if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
|
|
hwif->noprobe = 0;
|
|
#endif /* CONFIG_PMAC_MEDIABAY */
|
|
|
|
hwif->sg_max_nents = MAX_DCMDS;
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
/* has a DBDMA controller channel */
|
|
if (pmif->dma_regs)
|
|
pmac_ide_setup_dma(pmif, hwif);
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
|
|
|
|
/* We probe the hwif now */
|
|
probe_hwif_init(hwif);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Attach to a macio probed interface
|
|
*/
|
|
static int __devinit
|
|
pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
|
|
{
|
|
void __iomem *base;
|
|
unsigned long regbase;
|
|
int irq;
|
|
ide_hwif_t *hwif;
|
|
pmac_ide_hwif_t *pmif;
|
|
int i, rc;
|
|
|
|
i = 0;
|
|
while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
|
|
|| pmac_ide[i].node != NULL))
|
|
++i;
|
|
if (i >= MAX_HWIFS) {
|
|
printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
|
|
printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
pmif = &pmac_ide[i];
|
|
hwif = &ide_hwifs[i];
|
|
|
|
if (macio_resource_count(mdev) == 0) {
|
|
printk(KERN_WARNING "ide%d: no address for %s\n",
|
|
i, mdev->ofdev.node->full_name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Request memory resource for IO ports */
|
|
if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
|
|
printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* XXX This is bogus. Should be fixed in the registry by checking
|
|
* the kind of host interrupt controller, a bit like gatwick
|
|
* fixes in irq.c. That works well enough for the single case
|
|
* where that happens though...
|
|
*/
|
|
if (macio_irq_count(mdev) == 0) {
|
|
printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
|
|
i, mdev->ofdev.node->full_name);
|
|
irq = 13;
|
|
} else
|
|
irq = macio_irq(mdev, 0);
|
|
|
|
base = ioremap(macio_resource_start(mdev, 0), 0x400);
|
|
regbase = (unsigned long) base;
|
|
|
|
hwif->pci_dev = mdev->bus->pdev;
|
|
hwif->gendev.parent = &mdev->ofdev.dev;
|
|
|
|
pmif->mdev = mdev;
|
|
pmif->node = mdev->ofdev.node;
|
|
pmif->regbase = regbase;
|
|
pmif->irq = irq;
|
|
pmif->kauai_fcr = NULL;
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
if (macio_resource_count(mdev) >= 2) {
|
|
if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
|
|
printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
|
|
else
|
|
pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
|
|
} else
|
|
pmif->dma_regs = NULL;
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
|
|
dev_set_drvdata(&mdev->ofdev.dev, hwif);
|
|
|
|
rc = pmac_ide_setup_device(pmif, hwif);
|
|
if (rc != 0) {
|
|
/* The inteface is released to the common IDE layer */
|
|
dev_set_drvdata(&mdev->ofdev.dev, NULL);
|
|
iounmap(base);
|
|
if (pmif->dma_regs)
|
|
iounmap(pmif->dma_regs);
|
|
memset(pmif, 0, sizeof(*pmif));
|
|
macio_release_resource(mdev, 0);
|
|
if (pmif->dma_regs)
|
|
macio_release_resource(mdev, 1);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t state)
|
|
{
|
|
ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
|
|
int rc = 0;
|
|
|
|
if (state.event != mdev->ofdev.dev.power.power_state.event && state.event >= PM_EVENT_SUSPEND) {
|
|
rc = pmac_ide_do_suspend(hwif);
|
|
if (rc == 0)
|
|
mdev->ofdev.dev.power.power_state = state;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_macio_resume(struct macio_dev *mdev)
|
|
{
|
|
ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
|
|
int rc = 0;
|
|
|
|
if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
|
|
rc = pmac_ide_do_resume(hwif);
|
|
if (rc == 0)
|
|
mdev->ofdev.dev.power.power_state = PMSG_ON;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Attach to a PCI probed interface
|
|
*/
|
|
static int __devinit
|
|
pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
ide_hwif_t *hwif;
|
|
struct device_node *np;
|
|
pmac_ide_hwif_t *pmif;
|
|
void __iomem *base;
|
|
unsigned long rbase, rlen;
|
|
int i, rc;
|
|
|
|
np = pci_device_to_OF_node(pdev);
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
|
|
return -ENODEV;
|
|
}
|
|
i = 0;
|
|
while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
|
|
|| pmac_ide[i].node != NULL))
|
|
++i;
|
|
if (i >= MAX_HWIFS) {
|
|
printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
|
|
printk(KERN_ERR " %s\n", np->full_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
pmif = &pmac_ide[i];
|
|
hwif = &ide_hwifs[i];
|
|
|
|
if (pci_enable_device(pdev)) {
|
|
printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
|
|
i, np->full_name);
|
|
return -ENXIO;
|
|
}
|
|
pci_set_master(pdev);
|
|
|
|
if (pci_request_regions(pdev, "Kauai ATA")) {
|
|
printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
|
|
i, np->full_name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
hwif->pci_dev = pdev;
|
|
hwif->gendev.parent = &pdev->dev;
|
|
pmif->mdev = NULL;
|
|
pmif->node = np;
|
|
|
|
rbase = pci_resource_start(pdev, 0);
|
|
rlen = pci_resource_len(pdev, 0);
|
|
|
|
base = ioremap(rbase, rlen);
|
|
pmif->regbase = (unsigned long) base + 0x2000;
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
pmif->dma_regs = base + 0x1000;
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
|
|
pmif->kauai_fcr = base;
|
|
pmif->irq = pdev->irq;
|
|
|
|
pci_set_drvdata(pdev, hwif);
|
|
|
|
rc = pmac_ide_setup_device(pmif, hwif);
|
|
if (rc != 0) {
|
|
/* The inteface is released to the common IDE layer */
|
|
pci_set_drvdata(pdev, NULL);
|
|
iounmap(base);
|
|
memset(pmif, 0, sizeof(*pmif));
|
|
pci_release_regions(pdev);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
|
|
int rc = 0;
|
|
|
|
if (state.event != pdev->dev.power.power_state.event && state.event >= 2) {
|
|
rc = pmac_ide_do_suspend(hwif);
|
|
if (rc == 0)
|
|
pdev->dev.power.power_state = state;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_pci_resume(struct pci_dev *pdev)
|
|
{
|
|
ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
|
|
int rc = 0;
|
|
|
|
if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
|
|
rc = pmac_ide_do_resume(hwif);
|
|
if (rc == 0)
|
|
pdev->dev.power.power_state = PMSG_ON;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct of_device_id pmac_ide_macio_match[] =
|
|
{
|
|
{
|
|
.name = "IDE",
|
|
},
|
|
{
|
|
.name = "ATA",
|
|
},
|
|
{
|
|
.type = "ide",
|
|
},
|
|
{
|
|
.type = "ata",
|
|
},
|
|
{},
|
|
};
|
|
|
|
static struct macio_driver pmac_ide_macio_driver =
|
|
{
|
|
.name = "ide-pmac",
|
|
.match_table = pmac_ide_macio_match,
|
|
.probe = pmac_ide_macio_attach,
|
|
.suspend = pmac_ide_macio_suspend,
|
|
.resume = pmac_ide_macio_resume,
|
|
};
|
|
|
|
static struct pci_device_id pmac_ide_pci_match[] = {
|
|
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
|
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
|
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
|
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
|
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
|
|
};
|
|
|
|
static struct pci_driver pmac_ide_pci_driver = {
|
|
.name = "ide-pmac",
|
|
.id_table = pmac_ide_pci_match,
|
|
.probe = pmac_ide_pci_attach,
|
|
.suspend = pmac_ide_pci_suspend,
|
|
.resume = pmac_ide_pci_resume,
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
|
|
|
|
void __init
|
|
pmac_ide_probe(void)
|
|
{
|
|
if (_machine != _MACH_Pmac)
|
|
return;
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
|
|
pci_register_driver(&pmac_ide_pci_driver);
|
|
macio_register_driver(&pmac_ide_macio_driver);
|
|
#else
|
|
macio_register_driver(&pmac_ide_macio_driver);
|
|
pci_register_driver(&pmac_ide_pci_driver);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
|
|
|
|
/*
|
|
* pmac_ide_build_dmatable builds the DBDMA command list
|
|
* for a transfer and sets the DBDMA channel to point to it.
|
|
*/
|
|
static int
|
|
pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
|
|
{
|
|
struct dbdma_cmd *table;
|
|
int i, count = 0;
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
|
|
struct scatterlist *sg;
|
|
int wr = (rq_data_dir(rq) == WRITE);
|
|
|
|
/* DMA table is already aligned */
|
|
table = (struct dbdma_cmd *) pmif->dma_table_cpu;
|
|
|
|
/* Make sure DMA controller is stopped (necessary ?) */
|
|
writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
|
|
while (readl(&dma->status) & RUN)
|
|
udelay(1);
|
|
|
|
hwif->sg_nents = i = ide_build_sglist(drive, rq);
|
|
|
|
if (!i)
|
|
return 0;
|
|
|
|
/* Build DBDMA commands list */
|
|
sg = hwif->sg_table;
|
|
while (i && sg_dma_len(sg)) {
|
|
u32 cur_addr;
|
|
u32 cur_len;
|
|
|
|
cur_addr = sg_dma_address(sg);
|
|
cur_len = sg_dma_len(sg);
|
|
|
|
if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
|
|
if (pmif->broken_dma_warn == 0) {
|
|
printk(KERN_WARNING "%s: DMA on non aligned address,"
|
|
"switching to PIO on Ohare chipset\n", drive->name);
|
|
pmif->broken_dma_warn = 1;
|
|
}
|
|
goto use_pio_instead;
|
|
}
|
|
while (cur_len) {
|
|
unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
|
|
|
|
if (count++ >= MAX_DCMDS) {
|
|
printk(KERN_WARNING "%s: DMA table too small\n",
|
|
drive->name);
|
|
goto use_pio_instead;
|
|
}
|
|
st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
|
|
st_le16(&table->req_count, tc);
|
|
st_le32(&table->phy_addr, cur_addr);
|
|
table->cmd_dep = 0;
|
|
table->xfer_status = 0;
|
|
table->res_count = 0;
|
|
cur_addr += tc;
|
|
cur_len -= tc;
|
|
++table;
|
|
}
|
|
sg++;
|
|
i--;
|
|
}
|
|
|
|
/* convert the last command to an input/output last command */
|
|
if (count) {
|
|
st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
|
|
/* add the stop command to the end of the list */
|
|
memset(table, 0, sizeof(struct dbdma_cmd));
|
|
st_le16(&table->command, DBDMA_STOP);
|
|
mb();
|
|
writel(hwif->dmatable_dma, &dma->cmdptr);
|
|
return 1;
|
|
}
|
|
|
|
printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
|
|
use_pio_instead:
|
|
pci_unmap_sg(hwif->pci_dev,
|
|
hwif->sg_table,
|
|
hwif->sg_nents,
|
|
hwif->sg_dma_direction);
|
|
return 0; /* revert to PIO for this request */
|
|
}
|
|
|
|
/* Teardown mappings after DMA has completed. */
|
|
static void
|
|
pmac_ide_destroy_dmatable (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct pci_dev *dev = HWIF(drive)->pci_dev;
|
|
struct scatterlist *sg = hwif->sg_table;
|
|
int nents = hwif->sg_nents;
|
|
|
|
if (nents) {
|
|
pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
|
|
hwif->sg_nents = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pick up best MDMA timing for the drive and apply it
|
|
*/
|
|
static int
|
|
pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
int drive_cycle_time;
|
|
struct hd_driveid *id = drive->id;
|
|
u32 *timings, *timings2;
|
|
u32 timing_local[2];
|
|
int ret;
|
|
|
|
/* which drive is it ? */
|
|
timings = &pmif->timings[drive->select.b.unit & 0x01];
|
|
timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
|
|
|
|
/* Check if drive provide explicit cycle time */
|
|
if ((id->field_valid & 2) && (id->eide_dma_time))
|
|
drive_cycle_time = id->eide_dma_time;
|
|
else
|
|
drive_cycle_time = 0;
|
|
|
|
/* Copy timings to local image */
|
|
timing_local[0] = *timings;
|
|
timing_local[1] = *timings2;
|
|
|
|
/* Calculate controller timings */
|
|
ret = set_timings_mdma( drive, pmif->kind,
|
|
&timing_local[0],
|
|
&timing_local[1],
|
|
mode,
|
|
drive_cycle_time);
|
|
if (ret)
|
|
return 0;
|
|
|
|
/* Set feature on drive */
|
|
printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
|
|
ret = pmac_ide_do_setfeature(drive, mode);
|
|
if (ret) {
|
|
printk(KERN_WARNING "%s: Failed !\n", drive->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Apply timings to controller */
|
|
*timings = timing_local[0];
|
|
*timings2 = timing_local[1];
|
|
|
|
/* Set speed info in drive */
|
|
drive->current_speed = mode;
|
|
if (!drive->init_speed)
|
|
drive->init_speed = mode;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Pick up best UDMA timing for the drive and apply it
|
|
*/
|
|
static int
|
|
pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
u32 *timings, *timings2;
|
|
u32 timing_local[2];
|
|
int ret;
|
|
|
|
/* which drive is it ? */
|
|
timings = &pmif->timings[drive->select.b.unit & 0x01];
|
|
timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
|
|
|
|
/* Copy timings to local image */
|
|
timing_local[0] = *timings;
|
|
timing_local[1] = *timings2;
|
|
|
|
/* Calculate timings for interface */
|
|
if (pmif->kind == controller_un_ata6
|
|
|| pmif->kind == controller_k2_ata6)
|
|
ret = set_timings_udma_ata6( &timing_local[0],
|
|
&timing_local[1],
|
|
mode);
|
|
else if (pmif->kind == controller_sh_ata6)
|
|
ret = set_timings_udma_shasta( &timing_local[0],
|
|
&timing_local[1],
|
|
mode);
|
|
else
|
|
ret = set_timings_udma_ata4(&timing_local[0], mode);
|
|
if (ret)
|
|
return 0;
|
|
|
|
/* Set feature on drive */
|
|
printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
|
|
ret = pmac_ide_do_setfeature(drive, mode);
|
|
if (ret) {
|
|
printk(KERN_WARNING "%s: Failed !\n", drive->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Apply timings to controller */
|
|
*timings = timing_local[0];
|
|
*timings2 = timing_local[1];
|
|
|
|
/* Set speed info in drive */
|
|
drive->current_speed = mode;
|
|
if (!drive->init_speed)
|
|
drive->init_speed = mode;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check what is the best DMA timing setting for the drive and
|
|
* call appropriate functions to apply it.
|
|
*/
|
|
static int
|
|
pmac_ide_dma_check(ide_drive_t *drive)
|
|
{
|
|
struct hd_driveid *id = drive->id;
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
int enable = 1;
|
|
int map;
|
|
drive->using_dma = 0;
|
|
|
|
if (drive->media == ide_floppy)
|
|
enable = 0;
|
|
if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
|
|
enable = 0;
|
|
if (__ide_dma_bad_drive(drive))
|
|
enable = 0;
|
|
|
|
if (enable) {
|
|
short mode;
|
|
|
|
map = XFER_MWDMA;
|
|
if (pmif->kind == controller_kl_ata4
|
|
|| pmif->kind == controller_un_ata6
|
|
|| pmif->kind == controller_k2_ata6
|
|
|| pmif->kind == controller_sh_ata6) {
|
|
map |= XFER_UDMA;
|
|
if (pmif->cable_80) {
|
|
map |= XFER_UDMA_66;
|
|
if (pmif->kind == controller_un_ata6 ||
|
|
pmif->kind == controller_k2_ata6 ||
|
|
pmif->kind == controller_sh_ata6)
|
|
map |= XFER_UDMA_100;
|
|
if (pmif->kind == controller_sh_ata6)
|
|
map |= XFER_UDMA_133;
|
|
}
|
|
}
|
|
mode = ide_find_best_mode(drive, map);
|
|
if (mode & XFER_UDMA)
|
|
drive->using_dma = pmac_ide_udma_enable(drive, mode);
|
|
else if (mode & XFER_MWDMA)
|
|
drive->using_dma = pmac_ide_mdma_enable(drive, mode);
|
|
hwif->OUTB(0, IDE_CONTROL_REG);
|
|
/* Apply settings to controller */
|
|
pmac_ide_do_update_timings(drive);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prepare a DMA transfer. We build the DMA table, adjust the timings for
|
|
* a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
|
|
*/
|
|
static int
|
|
pmac_ide_dma_setup(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
|
|
struct request *rq = HWGROUP(drive)->rq;
|
|
u8 unit = (drive->select.b.unit & 0x01);
|
|
u8 ata4;
|
|
|
|
if (pmif == NULL)
|
|
return 1;
|
|
ata4 = (pmif->kind == controller_kl_ata4);
|
|
|
|
if (!pmac_ide_build_dmatable(drive, rq)) {
|
|
ide_map_sg(drive, rq);
|
|
return 1;
|
|
}
|
|
|
|
/* Apple adds 60ns to wrDataSetup on reads */
|
|
if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
|
|
writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
|
|
PMAC_IDE_REG(IDE_TIMING_CONFIG));
|
|
(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
|
|
}
|
|
|
|
drive->waiting_for_dma = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
|
|
{
|
|
/* issue cmd to drive */
|
|
ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
|
|
}
|
|
|
|
/*
|
|
* Kick the DMA controller into life after the DMA command has been issued
|
|
* to the drive.
|
|
*/
|
|
static void
|
|
pmac_ide_dma_start(ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
volatile struct dbdma_regs __iomem *dma;
|
|
|
|
dma = pmif->dma_regs;
|
|
|
|
writel((RUN << 16) | RUN, &dma->control);
|
|
/* Make sure it gets to the controller right now */
|
|
(void)readl(&dma->control);
|
|
}
|
|
|
|
/*
|
|
* After a DMA transfer, make sure the controller is stopped
|
|
*/
|
|
static int
|
|
pmac_ide_dma_end (ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
volatile struct dbdma_regs __iomem *dma;
|
|
u32 dstat;
|
|
|
|
if (pmif == NULL)
|
|
return 0;
|
|
dma = pmif->dma_regs;
|
|
|
|
drive->waiting_for_dma = 0;
|
|
dstat = readl(&dma->status);
|
|
writel(((RUN|WAKE|DEAD) << 16), &dma->control);
|
|
pmac_ide_destroy_dmatable(drive);
|
|
/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
|
|
* in theory, but with ATAPI decices doing buffer underruns, that would
|
|
* cause us to disable DMA, which isn't what we want
|
|
*/
|
|
return (dstat & (RUN|DEAD)) != RUN;
|
|
}
|
|
|
|
/*
|
|
* Check out that the interrupt we got was for us. We can't always know this
|
|
* for sure with those Apple interfaces (well, we could on the recent ones but
|
|
* that's not implemented yet), on the other hand, we don't have shared interrupts
|
|
* so it's not really a problem
|
|
*/
|
|
static int
|
|
pmac_ide_dma_test_irq (ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
volatile struct dbdma_regs __iomem *dma;
|
|
unsigned long status, timeout;
|
|
|
|
if (pmif == NULL)
|
|
return 0;
|
|
dma = pmif->dma_regs;
|
|
|
|
/* We have to things to deal with here:
|
|
*
|
|
* - The dbdma won't stop if the command was started
|
|
* but completed with an error without transferring all
|
|
* datas. This happens when bad blocks are met during
|
|
* a multi-block transfer.
|
|
*
|
|
* - The dbdma fifo hasn't yet finished flushing to
|
|
* to system memory when the disk interrupt occurs.
|
|
*
|
|
*/
|
|
|
|
/* If ACTIVE is cleared, the STOP command have passed and
|
|
* transfer is complete.
|
|
*/
|
|
status = readl(&dma->status);
|
|
if (!(status & ACTIVE))
|
|
return 1;
|
|
if (!drive->waiting_for_dma)
|
|
printk(KERN_WARNING "ide%d, ide_dma_test_irq \
|
|
called while not waiting\n", HWIF(drive)->index);
|
|
|
|
/* If dbdma didn't execute the STOP command yet, the
|
|
* active bit is still set. We consider that we aren't
|
|
* sharing interrupts (which is hopefully the case with
|
|
* those controllers) and so we just try to flush the
|
|
* channel for pending data in the fifo
|
|
*/
|
|
udelay(1);
|
|
writel((FLUSH << 16) | FLUSH, &dma->control);
|
|
timeout = 0;
|
|
for (;;) {
|
|
udelay(1);
|
|
status = readl(&dma->status);
|
|
if ((status & FLUSH) == 0)
|
|
break;
|
|
if (++timeout > 100) {
|
|
printk(KERN_WARNING "ide%d, ide_dma_test_irq \
|
|
timeout flushing channel\n", HWIF(drive)->index);
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_dma_host_off (ide_drive_t *drive)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_dma_host_on (ide_drive_t *drive)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pmac_ide_dma_lostirq (ide_drive_t *drive)
|
|
{
|
|
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
|
|
volatile struct dbdma_regs __iomem *dma;
|
|
unsigned long status;
|
|
|
|
if (pmif == NULL)
|
|
return 0;
|
|
dma = pmif->dma_regs;
|
|
|
|
status = readl(&dma->status);
|
|
printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate the data structures needed for using DMA with an interface
|
|
* and fill the proper list of functions pointers
|
|
*/
|
|
static void __init
|
|
pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
|
|
{
|
|
/* We won't need pci_dev if we switch to generic consistent
|
|
* DMA routines ...
|
|
*/
|
|
if (hwif->pci_dev == NULL)
|
|
return;
|
|
/*
|
|
* Allocate space for the DBDMA commands.
|
|
* The +2 is +1 for the stop command and +1 to allow for
|
|
* aligning the start address to a multiple of 16 bytes.
|
|
*/
|
|
pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
|
|
hwif->pci_dev,
|
|
(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
|
|
&hwif->dmatable_dma);
|
|
if (pmif->dma_table_cpu == NULL) {
|
|
printk(KERN_ERR "%s: unable to allocate DMA command list\n",
|
|
hwif->name);
|
|
return;
|
|
}
|
|
|
|
hwif->ide_dma_off_quietly = &__ide_dma_off_quietly;
|
|
hwif->ide_dma_on = &__ide_dma_on;
|
|
hwif->ide_dma_check = &pmac_ide_dma_check;
|
|
hwif->dma_setup = &pmac_ide_dma_setup;
|
|
hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
|
|
hwif->dma_start = &pmac_ide_dma_start;
|
|
hwif->ide_dma_end = &pmac_ide_dma_end;
|
|
hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
|
|
hwif->ide_dma_host_off = &pmac_ide_dma_host_off;
|
|
hwif->ide_dma_host_on = &pmac_ide_dma_host_on;
|
|
hwif->ide_dma_timeout = &__ide_dma_timeout;
|
|
hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq;
|
|
|
|
hwif->atapi_dma = 1;
|
|
switch(pmif->kind) {
|
|
case controller_sh_ata6:
|
|
hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
|
|
hwif->mwdma_mask = 0x07;
|
|
hwif->swdma_mask = 0x00;
|
|
break;
|
|
case controller_un_ata6:
|
|
case controller_k2_ata6:
|
|
hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
|
|
hwif->mwdma_mask = 0x07;
|
|
hwif->swdma_mask = 0x00;
|
|
break;
|
|
case controller_kl_ata4:
|
|
hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
|
|
hwif->mwdma_mask = 0x07;
|
|
hwif->swdma_mask = 0x00;
|
|
break;
|
|
default:
|
|
hwif->ultra_mask = 0x00;
|
|
hwif->mwdma_mask = 0x07;
|
|
hwif->swdma_mask = 0x00;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
|