kernel-fxtec-pro1x/arch/x86_64/kernel/hpet.c
Ravikiran G Thirumalai c9c57929d2 failsafe mechanism to HPET clock calibration
Provide a failsafe mechanism to avoid kernel spinning forever at
read_hpet_tsc during early kernel bootup.

This failsafe mechanism was originally introduced in commit
2f7a2a79c3, but looks like the hpet split
from time.c lost it again.

This reintroduces the failsafe mechanism

Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-04-14 21:44:03 -07:00

493 lines
11 KiB
C

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/hpet.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
#include <asm/timex.h>
#include <asm/hpet.h>
#define HPET_MASK 0xFFFFFFFF
#define HPET_SHIFT 22
/* FSEC = 10^-15 NSEC = 10^-9 */
#define FSEC_PER_NSEC 1000000
int nohpet __initdata;
unsigned long hpet_address;
unsigned long hpet_period; /* fsecs / HPET clock */
unsigned long hpet_tick; /* HPET clocks / interrupt */
int hpet_use_timer; /* Use counter of hpet for time keeping,
* otherwise PIT
*/
#ifdef CONFIG_HPET
static __init int late_hpet_init(void)
{
struct hpet_data hd;
unsigned int ntimer;
if (!hpet_address)
return 0;
memset(&hd, 0, sizeof(hd));
ntimer = hpet_readl(HPET_ID);
ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
ntimer++;
/*
* Register with driver.
* Timer0 and Timer1 is used by platform.
*/
hd.hd_phys_address = hpet_address;
hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
hd.hd_nirqs = ntimer;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;
if (ntimer > 2) {
struct hpet *hpet;
struct hpet_timer *timer;
int i;
hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
timer = &hpet->hpet_timers[2];
for (i = 2; i < ntimer; timer++, i++)
hd.hd_irq[i] = (timer->hpet_config &
Tn_INT_ROUTE_CNF_MASK) >>
Tn_INT_ROUTE_CNF_SHIFT;
}
hpet_alloc(&hd);
return 0;
}
fs_initcall(late_hpet_init);
#endif
int hpet_timer_stop_set_go(unsigned long tick)
{
unsigned int cfg;
/*
* Stop the timers and reset the main counter.
*/
cfg = hpet_readl(HPET_CFG);
cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
hpet_writel(cfg, HPET_CFG);
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
/*
* Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
* and period also hpet_tick.
*/
if (hpet_use_timer) {
hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
HPET_TN_32BIT, HPET_T0_CFG);
hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
cfg |= HPET_CFG_LEGACY;
}
/*
* Go!
*/
cfg |= HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
return 0;
}
static cycle_t read_hpet(void)
{
return (cycle_t)hpet_readl(HPET_COUNTER);
}
static cycle_t __vsyscall_fn vread_hpet(void)
{
return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = (cycle_t)HPET_MASK,
.mult = 0, /* set below */
.shift = HPET_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.vread = vread_hpet,
};
int hpet_arch_init(void)
{
unsigned int id;
u64 tmp;
if (!hpet_address)
return -1;
set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
/*
* Read the period, compute tick and quotient.
*/
id = hpet_readl(HPET_ID);
if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
return -1;
hpet_period = hpet_readl(HPET_PERIOD);
if (hpet_period < 100000 || hpet_period > 100000000)
return -1;
hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
hpet_use_timer = (id & HPET_ID_LEGSUP);
/*
* hpet period is in femto seconds per cycle
* so we need to convert this to ns/cyc units
* aproximated by mult/2^shift
*
* fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
* fsec/cyc * 1ns/1000000fsec * 2^shift = mult
* fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
* (fsec/cyc << shift)/1000000 = mult
* (hpet_period << shift)/FSEC_PER_NSEC = mult
*/
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
clocksource_register(&clocksource_hpet);
return hpet_timer_stop_set_go(hpet_tick);
}
int hpet_reenable(void)
{
return hpet_timer_stop_set_go(hpet_tick);
}
/*
* calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
* it to the HPET timer of known frequency.
*/
#define TICK_COUNT 100000000
#define TICK_MIN 5000
#define MAX_TRIES 5
/*
* Some platforms take periodic SMI interrupts with 5ms duration. Make sure none
* occurs between the reads of the hpet & TSC.
*/
static void __init read_hpet_tsc(int *hpet, int *tsc)
{
int tsc1, tsc2, hpet1, i;
for (i = 0; i < MAX_TRIES; i++) {
tsc1 = get_cycles_sync();
hpet1 = hpet_readl(HPET_COUNTER);
tsc2 = get_cycles_sync();
if (tsc2 - tsc1 > TICK_MIN)
break;
}
*hpet = hpet1;
*tsc = tsc2;
}
unsigned int __init hpet_calibrate_tsc(void)
{
int tsc_start, hpet_start;
int tsc_now, hpet_now;
unsigned long flags;
local_irq_save(flags);
read_hpet_tsc(&hpet_start, &tsc_start);
do {
local_irq_disable();
read_hpet_tsc(&hpet_now, &tsc_now);
local_irq_restore(flags);
} while ((tsc_now - tsc_start) < TICK_COUNT &&
(hpet_now - hpet_start) < TICK_COUNT);
return (tsc_now - tsc_start) * 1000000000L
/ ((hpet_now - hpet_start) * hpet_period / 1000);
}
#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
* is enabled, we support RTC interrupt functionality in software.
* RTC has 3 kinds of interrupts:
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
* is updated
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
* (1) and (2) above are implemented using polling at a frequency of
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
* overhead. (DEFAULT_RTC_INT_FREQ)
* For (3), we use interrupts at 64Hz or user specified periodic
* frequency, whichever is higher.
*/
#include <linux/rtc.h>
#define DEFAULT_RTC_INT_FREQ 64
#define RTC_NUM_INTS 1
static unsigned long UIE_on;
static unsigned long prev_update_sec;
static unsigned long AIE_on;
static struct rtc_time alarm_time;
static unsigned long PIE_on;
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
static unsigned long PIE_count;
static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
static unsigned int hpet_t1_cmp; /* cached comparator register */
int is_hpet_enabled(void)
{
return hpet_address != 0;
}
/*
* Timer 1 for RTC, we do not use periodic interrupt feature,
* even if HPET supports periodic interrupts on Timer 1.
* The reason being, to set up a periodic interrupt in HPET, we need to
* stop the main counter. And if we do that everytime someone diables/enables
* RTC, we will have adverse effect on main kernel timer running on Timer 0.
* So, for the time being, simulate the periodic interrupt in software.
*
* hpet_rtc_timer_init() is called for the first time and during subsequent
* interuppts reinit happens through hpet_rtc_timer_reinit().
*/
int hpet_rtc_timer_init(void)
{
unsigned int cfg, cnt;
unsigned long flags;
if (!is_hpet_enabled())
return 0;
/*
* Set the counter 1 and enable the interrupts.
*/
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
local_irq_save(flags);
cnt = hpet_readl(HPET_COUNTER);
cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
hpet_writel(cnt, HPET_T1_CMP);
hpet_t1_cmp = cnt;
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
local_irq_restore(flags);
return 1;
}
static void hpet_rtc_timer_reinit(void)
{
unsigned int cfg, cnt, ticks_per_int, lost_ints;
if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_T1_CFG);
return;
}
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
/* It is more accurate to use the comparator value than current count.*/
ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
hpet_t1_cmp += ticks_per_int;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
/*
* If the interrupt handler was delayed too long, the write above tries
* to schedule the next interrupt in the past and the hardware would
* not interrupt until the counter had wrapped around.
* So we have to check that the comparator wasn't set to a past time.
*/
cnt = hpet_readl(HPET_COUNTER);
if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
/* Make sure that, even with the time needed to execute
* this code, the next scheduled interrupt has been moved
* back to the future: */
lost_ints++;
hpet_t1_cmp += lost_ints * ticks_per_int;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
if (PIE_on)
PIE_count += lost_ints;
if (printk_ratelimit())
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
hpet_rtc_int_freq);
}
}
/*
* The functions below are called from rtc driver.
* Return 0 if HPET is not being used.
* Otherwise do the necessary changes and return 1.
*/
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
if (!is_hpet_enabled())
return 0;
if (bit_mask & RTC_UIE)
UIE_on = 0;
if (bit_mask & RTC_PIE)
PIE_on = 0;
if (bit_mask & RTC_AIE)
AIE_on = 0;
return 1;
}
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
int timer_init_reqd = 0;
if (!is_hpet_enabled())
return 0;
if (!(PIE_on | AIE_on | UIE_on))
timer_init_reqd = 1;
if (bit_mask & RTC_UIE) {
UIE_on = 1;
}
if (bit_mask & RTC_PIE) {
PIE_on = 1;
PIE_count = 0;
}
if (bit_mask & RTC_AIE) {
AIE_on = 1;
}
if (timer_init_reqd)
hpet_rtc_timer_init();
return 1;
}
int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
if (!is_hpet_enabled())
return 0;
alarm_time.tm_hour = hrs;
alarm_time.tm_min = min;
alarm_time.tm_sec = sec;
return 1;
}
int hpet_set_periodic_freq(unsigned long freq)
{
if (!is_hpet_enabled())
return 0;
PIE_freq = freq;
PIE_count = 0;
return 1;
}
int hpet_rtc_dropped_irq(void)
{
if (!is_hpet_enabled())
return 0;
return 1;
}
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct rtc_time curr_time;
unsigned long rtc_int_flag = 0;
int call_rtc_interrupt = 0;
hpet_rtc_timer_reinit();
if (UIE_on | AIE_on) {
rtc_get_rtc_time(&curr_time);
}
if (UIE_on) {
if (curr_time.tm_sec != prev_update_sec) {
/* Set update int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag = RTC_UF;
prev_update_sec = curr_time.tm_sec;
}
}
if (PIE_on) {
PIE_count++;
if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
/* Set periodic int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_PF;
PIE_count = 0;
}
}
if (AIE_on) {
if ((curr_time.tm_sec == alarm_time.tm_sec) &&
(curr_time.tm_min == alarm_time.tm_min) &&
(curr_time.tm_hour == alarm_time.tm_hour)) {
/* Set alarm int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_AF;
}
}
if (call_rtc_interrupt) {
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
rtc_interrupt(rtc_int_flag, dev_id);
}
return IRQ_HANDLED;
}
#endif
static int __init nohpet_setup(char *s)
{
nohpet = 1;
return 1;
}
__setup("nohpet", nohpet_setup);