6a63209fc0
This is a step in the direction of better -ENOSPC handling. Instead of checking the global bytes counter we check the space_info bytes counters to make sure we have enough space. If we don't we go ahead and try to allocate a new chunk, and then if that fails we return -ENOSPC. This patch adds two counters to btrfs_space_info, bytes_delalloc and bytes_may_use. bytes_delalloc account for extents we've actually setup for delalloc and will be allocated at some point down the line. bytes_may_use is to keep track of how many bytes we may use for delalloc at some point. When we actually set the extent_bit for the delalloc bytes we subtract the reserved bytes from the bytes_may_use counter. This keeps us from not actually being able to allocate space for any delalloc bytes. Signed-off-by: Josef Bacik <jbacik@redhat.com>
139 lines
3.6 KiB
C
139 lines
3.6 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#ifndef __BTRFS_I__
|
|
#define __BTRFS_I__
|
|
|
|
#include "extent_map.h"
|
|
#include "extent_io.h"
|
|
#include "ordered-data.h"
|
|
|
|
/* in memory btrfs inode */
|
|
struct btrfs_inode {
|
|
/* which subvolume this inode belongs to */
|
|
struct btrfs_root *root;
|
|
|
|
/* key used to find this inode on disk. This is used by the code
|
|
* to read in roots of subvolumes
|
|
*/
|
|
struct btrfs_key location;
|
|
|
|
/* the extent_tree has caches of all the extent mappings to disk */
|
|
struct extent_map_tree extent_tree;
|
|
|
|
/* the io_tree does range state (DIRTY, LOCKED etc) */
|
|
struct extent_io_tree io_tree;
|
|
|
|
/* special utility tree used to record which mirrors have already been
|
|
* tried when checksums fail for a given block
|
|
*/
|
|
struct extent_io_tree io_failure_tree;
|
|
|
|
/* held while inesrting or deleting extents from files */
|
|
struct mutex extent_mutex;
|
|
|
|
/* held while logging the inode in tree-log.c */
|
|
struct mutex log_mutex;
|
|
|
|
/* used to order data wrt metadata */
|
|
struct btrfs_ordered_inode_tree ordered_tree;
|
|
|
|
/* standard acl pointers */
|
|
struct posix_acl *i_acl;
|
|
struct posix_acl *i_default_acl;
|
|
|
|
/* for keeping track of orphaned inodes */
|
|
struct list_head i_orphan;
|
|
|
|
/* list of all the delalloc inodes in the FS. There are times we need
|
|
* to write all the delalloc pages to disk, and this list is used
|
|
* to walk them all.
|
|
*/
|
|
struct list_head delalloc_inodes;
|
|
|
|
/* the space_info for where this inode's data allocations are done */
|
|
struct btrfs_space_info *space_info;
|
|
|
|
/* full 64 bit generation number, struct vfs_inode doesn't have a big
|
|
* enough field for this.
|
|
*/
|
|
u64 generation;
|
|
|
|
/* sequence number for NFS changes */
|
|
u64 sequence;
|
|
|
|
/*
|
|
* transid of the trans_handle that last modified this inode
|
|
*/
|
|
u64 last_trans;
|
|
/*
|
|
* transid that last logged this inode
|
|
*/
|
|
u64 logged_trans;
|
|
|
|
/*
|
|
* trans that last made a change that should be fully fsync'd. This
|
|
* gets reset to zero each time the inode is logged
|
|
*/
|
|
u64 log_dirty_trans;
|
|
|
|
/* total number of bytes pending delalloc, used by stat to calc the
|
|
* real block usage of the file
|
|
*/
|
|
u64 delalloc_bytes;
|
|
|
|
/* total number of bytes that may be used for this inode for
|
|
* delalloc
|
|
*/
|
|
u64 reserved_bytes;
|
|
|
|
/*
|
|
* the size of the file stored in the metadata on disk. data=ordered
|
|
* means the in-memory i_size might be larger than the size on disk
|
|
* because not all the blocks are written yet.
|
|
*/
|
|
u64 disk_i_size;
|
|
|
|
/* flags field from the on disk inode */
|
|
u32 flags;
|
|
|
|
/*
|
|
* if this is a directory then index_cnt is the counter for the index
|
|
* number for new files that are created
|
|
*/
|
|
u64 index_cnt;
|
|
|
|
/* the start of block group preferred for allocations. */
|
|
u64 block_group;
|
|
|
|
struct inode vfs_inode;
|
|
};
|
|
|
|
static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
|
|
{
|
|
return container_of(inode, struct btrfs_inode, vfs_inode);
|
|
}
|
|
|
|
static inline void btrfs_i_size_write(struct inode *inode, u64 size)
|
|
{
|
|
inode->i_size = size;
|
|
BTRFS_I(inode)->disk_i_size = size;
|
|
}
|
|
|
|
|
|
#endif
|