kernel-fxtec-pro1x/fs/eventfd.c
Davide Libenzi d48eb23315 eventfd use waitqueue lock ...
The eventfd was using the unlocked waitqueue operations, but it was
using a different lock, so poll_wait() would race with it.

This makes eventfd directly use the waitqueue lock.

Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-18 13:09:34 -07:00

226 lines
5.1 KiB
C

/*
* fs/eventfd.c
*
* Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
*
*/
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/anon_inodes.h>
#include <linux/eventfd.h>
struct eventfd_ctx {
wait_queue_head_t wqh;
/*
* Every time that a write(2) is performed on an eventfd, the
* value of the __u64 being written is added to "count" and a
* wakeup is performed on "wqh". A read(2) will return the "count"
* value to userspace, and will reset "count" to zero. The kernel
* size eventfd_signal() also, adds to the "count" counter and
* issue a wakeup.
*/
__u64 count;
};
/*
* Adds "n" to the eventfd counter "count". Returns "n" in case of
* success, or a value lower then "n" in case of coutner overflow.
* This function is supposed to be called by the kernel in paths
* that do not allow sleeping. In this function we allow the counter
* to reach the ULLONG_MAX value, and we signal this as overflow
* condition by returining a POLLERR to poll(2).
*/
int eventfd_signal(struct file *file, int n)
{
struct eventfd_ctx *ctx = file->private_data;
unsigned long flags;
if (n < 0)
return -EINVAL;
spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ULLONG_MAX - ctx->count < n)
n = (int) (ULLONG_MAX - ctx->count);
ctx->count += n;
if (waitqueue_active(&ctx->wqh))
wake_up_locked(&ctx->wqh);
spin_unlock_irqrestore(&ctx->wqh.lock, flags);
return n;
}
static int eventfd_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static unsigned int eventfd_poll(struct file *file, poll_table *wait)
{
struct eventfd_ctx *ctx = file->private_data;
unsigned int events = 0;
unsigned long flags;
poll_wait(file, &ctx->wqh, wait);
spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ctx->count > 0)
events |= POLLIN;
if (ctx->count == ULLONG_MAX)
events |= POLLERR;
if (ULLONG_MAX - 1 > ctx->count)
events |= POLLOUT;
spin_unlock_irqrestore(&ctx->wqh.lock, flags);
return events;
}
static ssize_t eventfd_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
struct eventfd_ctx *ctx = file->private_data;
ssize_t res;
__u64 ucnt;
DECLARE_WAITQUEUE(wait, current);
if (count < sizeof(ucnt))
return -EINVAL;
spin_lock_irq(&ctx->wqh.lock);
res = -EAGAIN;
ucnt = ctx->count;
if (ucnt > 0)
res = sizeof(ucnt);
else if (!(file->f_flags & O_NONBLOCK)) {
__add_wait_queue(&ctx->wqh, &wait);
for (res = 0;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (ctx->count > 0) {
ucnt = ctx->count;
res = sizeof(ucnt);
break;
}
if (signal_pending(current)) {
res = -ERESTARTSYS;
break;
}
spin_unlock_irq(&ctx->wqh.lock);
schedule();
spin_lock_irq(&ctx->wqh.lock);
}
__remove_wait_queue(&ctx->wqh, &wait);
__set_current_state(TASK_RUNNING);
}
if (res > 0) {
ctx->count = 0;
if (waitqueue_active(&ctx->wqh))
wake_up_locked(&ctx->wqh);
}
spin_unlock_irq(&ctx->wqh.lock);
if (res > 0 && put_user(ucnt, (__u64 __user *) buf))
return -EFAULT;
return res;
}
static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count,
loff_t *ppos)
{
struct eventfd_ctx *ctx = file->private_data;
ssize_t res;
__u64 ucnt;
DECLARE_WAITQUEUE(wait, current);
if (count < sizeof(ucnt))
return -EINVAL;
if (copy_from_user(&ucnt, buf, sizeof(ucnt)))
return -EFAULT;
if (ucnt == ULLONG_MAX)
return -EINVAL;
spin_lock_irq(&ctx->wqh.lock);
res = -EAGAIN;
if (ULLONG_MAX - ctx->count > ucnt)
res = sizeof(ucnt);
else if (!(file->f_flags & O_NONBLOCK)) {
__add_wait_queue(&ctx->wqh, &wait);
for (res = 0;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (ULLONG_MAX - ctx->count > ucnt) {
res = sizeof(ucnt);
break;
}
if (signal_pending(current)) {
res = -ERESTARTSYS;
break;
}
spin_unlock_irq(&ctx->wqh.lock);
schedule();
spin_lock_irq(&ctx->wqh.lock);
}
__remove_wait_queue(&ctx->wqh, &wait);
__set_current_state(TASK_RUNNING);
}
if (res > 0) {
ctx->count += ucnt;
if (waitqueue_active(&ctx->wqh))
wake_up_locked(&ctx->wqh);
}
spin_unlock_irq(&ctx->wqh.lock);
return res;
}
static const struct file_operations eventfd_fops = {
.release = eventfd_release,
.poll = eventfd_poll,
.read = eventfd_read,
.write = eventfd_write,
};
struct file *eventfd_fget(int fd)
{
struct file *file;
file = fget(fd);
if (!file)
return ERR_PTR(-EBADF);
if (file->f_op != &eventfd_fops) {
fput(file);
return ERR_PTR(-EINVAL);
}
return file;
}
asmlinkage long sys_eventfd(unsigned int count)
{
int error, fd;
struct eventfd_ctx *ctx;
struct file *file;
struct inode *inode;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
init_waitqueue_head(&ctx->wqh);
ctx->count = count;
/*
* When we call this, the initialization must be complete, since
* anon_inode_getfd() will install the fd.
*/
error = anon_inode_getfd(&fd, &inode, &file, "[eventfd]",
&eventfd_fops, ctx);
if (!error)
return fd;
kfree(ctx);
return error;
}