kernel-fxtec-pro1x/arch/arm/mach-mx2/clock_imx27.c
Sascha Hauer edfcea80eb [ARM] MX27 Clock rework
This changes MX27 to use common clkdev. It also cleans up MX27 clock
support to be more readable.

Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
2009-03-13 10:33:51 +01:00

755 lines
22 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Juergen Beisert, kernel@pengutronix.de
* Copyright 2008 Martin Fuzzey, mfuzzey@gmail.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <asm/clkdev.h>
#include <asm/div64.h>
#include <mach/clock.h>
#include <mach/common.h>
#include <mach/hardware.h>
/* Register offsets */
#define CCM_CSCR (IO_ADDRESS(CCM_BASE_ADDR) + 0x0)
#define CCM_MPCTL0 (IO_ADDRESS(CCM_BASE_ADDR) + 0x4)
#define CCM_MPCTL1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x8)
#define CCM_SPCTL0 (IO_ADDRESS(CCM_BASE_ADDR) + 0xC)
#define CCM_SPCTL1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x10)
#define CCM_OSC26MCTL (IO_ADDRESS(CCM_BASE_ADDR) + 0x14)
#define CCM_PCDR0 (IO_ADDRESS(CCM_BASE_ADDR) + 0x18)
#define CCM_PCDR1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x1c)
#define CCM_PCCR0 (IO_ADDRESS(CCM_BASE_ADDR) + 0x20)
#define CCM_PCCR1 (IO_ADDRESS(CCM_BASE_ADDR) + 0x24)
#define CCM_CCSR (IO_ADDRESS(CCM_BASE_ADDR) + 0x28)
#define CCM_PMCTL (IO_ADDRESS(CCM_BASE_ADDR) + 0x2c)
#define CCM_PMCOUNT (IO_ADDRESS(CCM_BASE_ADDR) + 0x30)
#define CCM_WKGDCTL (IO_ADDRESS(CCM_BASE_ADDR) + 0x34)
#define CCM_CSCR_UPDATE_DIS (1 << 31)
#define CCM_CSCR_SSI2 (1 << 23)
#define CCM_CSCR_SSI1 (1 << 22)
#define CCM_CSCR_VPU (1 << 21)
#define CCM_CSCR_MSHC (1 << 20)
#define CCM_CSCR_SPLLRES (1 << 19)
#define CCM_CSCR_MPLLRES (1 << 18)
#define CCM_CSCR_SP (1 << 17)
#define CCM_CSCR_MCU (1 << 16)
#define CCM_CSCR_OSC26MDIV (1 << 4)
#define CCM_CSCR_OSC26M (1 << 3)
#define CCM_CSCR_FPM (1 << 2)
#define CCM_CSCR_SPEN (1 << 1)
#define CCM_CSCR_MPEN (1 << 0)
/* i.MX27 TO 2+ */
#define CCM_CSCR_ARM_SRC (1 << 15)
#define CCM_SPCTL1_LF (1 << 15)
#define CCM_SPCTL1_BRMO (1 << 6)
static struct clk mpll_main1_clk, mpll_main2_clk;
static int clk_pccr_enable(struct clk *clk)
{
unsigned long reg;
if (!clk->enable_reg)
return 0;
reg = __raw_readl(clk->enable_reg);
reg |= 1 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void clk_pccr_disable(struct clk *clk)
{
unsigned long reg;
if (!clk->enable_reg)
return;
reg = __raw_readl(clk->enable_reg);
reg &= ~(1 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
static int clk_spll_enable(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(CCM_CSCR);
reg |= CCM_CSCR_SPEN;
__raw_writel(reg, CCM_CSCR);
while (!(__raw_readl(CCM_SPCTL1) & CCM_SPCTL1_LF));
return 0;
}
static void clk_spll_disable(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(CCM_CSCR);
reg &= ~CCM_CSCR_SPEN;
__raw_writel(reg, CCM_CSCR);
}
static int clk_cpu_set_parent(struct clk *clk, struct clk *parent)
{
int cscr = __raw_readl(CCM_CSCR);
if (clk->parent == parent)
return 0;
if (mx27_revision() >= CHIP_REV_2_0) {
if (parent == &mpll_main1_clk) {
cscr |= CCM_CSCR_ARM_SRC;
} else {
if (parent == &mpll_main2_clk)
cscr &= ~CCM_CSCR_ARM_SRC;
else
return -EINVAL;
}
__raw_writel(cscr, CCM_CSCR);
clk->parent = parent;
return 0;
}
return -ENODEV;
}
static unsigned long round_rate_cpu(struct clk *clk, unsigned long rate)
{
int div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (parent_rate % rate)
div++;
if (div > 4)
div = 4;
return parent_rate / div;
}
static int set_rate_cpu(struct clk *clk, unsigned long rate)
{
unsigned int div;
uint32_t reg;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 4 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_CSCR);
if (mx27_revision() >= CHIP_REV_2_0) {
reg &= ~(3 << 12);
reg |= div << 12;
reg &= ~(CCM_CSCR_FPM | CCM_CSCR_SPEN);
__raw_writel(reg | CCM_CSCR_UPDATE_DIS, CCM_CSCR);
} else {
printk(KERN_ERR "Can't set CPU frequency!\n");
}
return 0;
}
static unsigned long round_rate_per(struct clk *clk, unsigned long rate)
{
u32 div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (parent_rate % rate)
div++;
if (div > 64)
div = 64;
return parent_rate / div;
}
static int set_rate_per(struct clk *clk, unsigned long rate)
{
u32 reg;
u32 div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (clk->id < 0 || clk->id > 3)
return -EINVAL;
div = parent_rate / rate;
if (div > 64 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
div--;
reg = __raw_readl(CCM_PCDR1) & ~(0x3f << (clk->id << 3));
reg |= div << (clk->id << 3);
__raw_writel(reg, CCM_PCDR1);
return 0;
}
static unsigned long get_rate_usb(struct clk *clk)
{
unsigned long usb_pdf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
usb_pdf = (__raw_readl(CCM_CSCR) >> 28) & 0x7;
return parent_rate / (usb_pdf + 1U);
}
static unsigned long get_rate_ssix(struct clk *clk, unsigned long pdf)
{
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (mx27_revision() >= CHIP_REV_2_0)
pdf += 4; /* MX27 TO2+ */
else
pdf = (pdf < 2) ? 124UL : pdf; /* MX21 & MX27 TO1 */
return 2UL * parent_rate / pdf;
}
static unsigned long get_rate_ssi1(struct clk *clk)
{
return get_rate_ssix(clk, (__raw_readl(CCM_PCDR0) >> 16) & 0x3f);
}
static unsigned long get_rate_ssi2(struct clk *clk)
{
return get_rate_ssix(clk, (__raw_readl(CCM_PCDR0) >> 26) & 0x3f);
}
static unsigned long get_rate_nfc(struct clk *clk)
{
unsigned long nfc_pdf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (mx27_revision() >= CHIP_REV_2_0)
nfc_pdf = (__raw_readl(CCM_PCDR0) >> 6) & 0xf;
else
nfc_pdf = (__raw_readl(CCM_PCDR0) >> 12) & 0xf;
return parent_rate / (nfc_pdf + 1);
}
static unsigned long get_rate_vpu(struct clk *clk)
{
unsigned long vpu_pdf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (mx27_revision() >= CHIP_REV_2_0) {
vpu_pdf = (__raw_readl(CCM_PCDR0) >> 10) & 0x3f;
vpu_pdf += 4;
} else {
vpu_pdf = (__raw_readl(CCM_PCDR0) >> 8) & 0xf;
vpu_pdf = (vpu_pdf < 2) ? 124 : vpu_pdf;
}
return 2UL * parent_rate / vpu_pdf;
}
static unsigned long round_rate_parent(struct clk *clk, unsigned long rate)
{
return clk->parent->round_rate(clk->parent, rate);
}
static unsigned long get_rate_parent(struct clk *clk)
{
return clk_get_rate(clk->parent);
}
static int set_rate_parent(struct clk *clk, unsigned long rate)
{
return clk->parent->set_rate(clk->parent, rate);
}
/* in Hz */
static unsigned long external_high_reference = 26000000;
static unsigned long get_rate_high_reference(struct clk *clk)
{
return external_high_reference;
}
/* in Hz */
static unsigned long external_low_reference = 32768;
static unsigned long get_rate_low_reference(struct clk *clk)
{
return external_low_reference;
}
static unsigned long get_rate_fpm(struct clk *clk)
{
return clk_get_rate(clk->parent) * 1024;
}
static unsigned long get_rate_mpll(struct clk *clk)
{
return mxc_decode_pll(__raw_readl(CCM_MPCTL0),
clk_get_rate(clk->parent));
}
static unsigned long get_rate_mpll_main(struct clk *clk)
{
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
/* i.MX27 TO2:
* clk->id == 0: arm clock source path 1 which is from 2 * MPLL / 2
* clk->id == 1: arm clock source path 2 which is from 2 * MPLL / 3
*/
if (mx27_revision() >= CHIP_REV_2_0 && clk->id == 1)
return 2UL * parent_rate / 3UL;
return parent_rate;
}
static unsigned long get_rate_spll(struct clk *clk)
{
uint32_t reg;
unsigned long rate;
rate = clk_get_rate(clk->parent);
reg = __raw_readl(CCM_SPCTL0);
/* On TO2 we have to write the value back. Otherwise we
* read 0 from this register the next time.
*/
if (mx27_revision() >= CHIP_REV_2_0)
__raw_writel(reg, CCM_SPCTL0);
return mxc_decode_pll(reg, rate);
}
static unsigned long get_rate_cpu(struct clk *clk)
{
u32 div;
unsigned long rate;
if (mx27_revision() >= CHIP_REV_2_0)
div = (__raw_readl(CCM_CSCR) >> 12) & 0x3;
else
div = (__raw_readl(CCM_CSCR) >> 13) & 0x7;
rate = clk_get_rate(clk->parent);
return rate / (div + 1);
}
static unsigned long get_rate_ahb(struct clk *clk)
{
unsigned long rate, bclk_pdf;
if (mx27_revision() >= CHIP_REV_2_0)
bclk_pdf = (__raw_readl(CCM_CSCR) >> 8) & 0x3;
else
bclk_pdf = (__raw_readl(CCM_CSCR) >> 9) & 0xf;
rate = clk_get_rate(clk->parent);
return rate / (bclk_pdf + 1);
}
static unsigned long get_rate_ipg(struct clk *clk)
{
unsigned long rate, ipg_pdf;
if (mx27_revision() >= CHIP_REV_2_0)
return clk_get_rate(clk->parent);
else
ipg_pdf = (__raw_readl(CCM_CSCR) >> 8) & 1;
rate = clk_get_rate(clk->parent);
return rate / (ipg_pdf + 1);
}
static unsigned long get_rate_per(struct clk *clk)
{
unsigned long perclk_pdf, parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (clk->id < 0 || clk->id > 3)
return 0;
perclk_pdf = (__raw_readl(CCM_PCDR1) >> (clk->id << 3)) & 0x3f;
return parent_rate / (perclk_pdf + 1);
}
/*
* the high frequency external clock reference
* Default case is 26MHz. Could be changed at runtime
* with a call to change_external_high_reference()
*/
static struct clk ckih_clk = {
.get_rate = get_rate_high_reference,
};
static struct clk mpll_clk = {
.parent = &ckih_clk,
.get_rate = get_rate_mpll,
};
/* For i.MX27 TO2, it is the MPLL path 1 of ARM core
* It provides the clock source whose rate is same as MPLL
*/
static struct clk mpll_main1_clk = {
.id = 0,
.parent = &mpll_clk,
.get_rate = get_rate_mpll_main,
};
/* For i.MX27 TO2, it is the MPLL path 2 of ARM core
* It provides the clock source whose rate is same MPLL * 2 / 3
*/
static struct clk mpll_main2_clk = {
.id = 1,
.parent = &mpll_clk,
.get_rate = get_rate_mpll_main,
};
static struct clk ahb_clk = {
.parent = &mpll_main2_clk,
.get_rate = get_rate_ahb,
};
static struct clk ipg_clk = {
.parent = &ahb_clk,
.get_rate = get_rate_ipg,
};
static struct clk cpu_clk = {
.parent = &mpll_main2_clk,
.set_parent = clk_cpu_set_parent,
.round_rate = round_rate_cpu,
.get_rate = get_rate_cpu,
.set_rate = set_rate_cpu,
};
static struct clk spll_clk = {
.parent = &ckih_clk,
.get_rate = get_rate_spll,
.enable = clk_spll_enable,
.disable = clk_spll_disable,
};
/*
* the low frequency external clock reference
* Default case is 32.768kHz.
*/
static struct clk ckil_clk = {
.get_rate = get_rate_low_reference,
};
/* Output of frequency pre multiplier */
static struct clk fpm_clk = {
.parent = &ckil_clk,
.get_rate = get_rate_fpm,
};
#define PCCR0 CCM_PCCR0
#define PCCR1 CCM_PCCR1
#define DEFINE_CLOCK(name, i, er, es, gr, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = gr, \
.enable = clk_pccr_enable, \
.disable = clk_pccr_disable, \
.secondary = s, \
.parent = p, \
}
#define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = get_rate_##getsetround, \
.set_rate = set_rate_##getsetround, \
.round_rate = round_rate_##getsetround, \
.enable = clk_pccr_enable, \
.disable = clk_pccr_disable, \
.secondary = s, \
.parent = p, \
}
/* Forward declaration to keep the following list in order */
static struct clk slcdc_clk1, sahara2_clk1, rtic_clk1, fec_clk1, emma_clk1,
dma_clk1, lcdc_clk2, vpu_clk1;
/* All clocks we can gate through PCCRx in the order of PCCRx bits */
DEFINE_CLOCK(ssi2_clk1, 1, PCCR0, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ssi1_clk1, 0, PCCR0, 1, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(slcdc_clk, 0, PCCR0, 2, NULL, &slcdc_clk1, &ahb_clk);
DEFINE_CLOCK(sdhc3_clk1, 0, PCCR0, 3, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdhc2_clk1, 0, PCCR0, 4, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdhc1_clk1, 0, PCCR0, 5, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(scc_clk, 0, PCCR0, 6, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sahara2_clk, 0, PCCR0, 7, NULL, &sahara2_clk1, &ahb_clk);
DEFINE_CLOCK(rtic_clk, 0, PCCR0, 8, NULL, &rtic_clk1, &ahb_clk);
DEFINE_CLOCK(rtc_clk, 0, PCCR0, 9, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(pwm_clk1, 0, PCCR0, 11, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(owire_clk, 0, PCCR0, 12, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(mstick_clk1, 0, PCCR0, 13, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(lcdc_clk1, 0, PCCR0, 14, NULL, &lcdc_clk2, &ipg_clk);
DEFINE_CLOCK(kpp_clk, 0, PCCR0, 15, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(iim_clk, 0, PCCR0, 16, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(i2c2_clk, 1, PCCR0, 17, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(i2c1_clk, 0, PCCR0, 18, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt6_clk1, 0, PCCR0, 29, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt5_clk1, 0, PCCR0, 20, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt4_clk1, 0, PCCR0, 21, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt3_clk1, 0, PCCR0, 22, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt2_clk1, 0, PCCR0, 23, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpt1_clk1, 0, PCCR0, 24, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(gpio_clk, 0, PCCR0, 25, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(fec_clk, 0, PCCR0, 26, NULL, &fec_clk1, &ahb_clk);
DEFINE_CLOCK(emma_clk, 0, PCCR0, 27, NULL, &emma_clk1, &ahb_clk);
DEFINE_CLOCK(dma_clk, 0, PCCR0, 28, NULL, &dma_clk1, &ahb_clk);
DEFINE_CLOCK(cspi13_clk1, 0, PCCR0, 29, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(cspi2_clk1, 0, PCCR0, 30, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(cspi1_clk1, 0, PCCR0, 31, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(mstick_clk, 0, PCCR1, 2, NULL, &mstick_clk1, &ipg_clk);
DEFINE_CLOCK(nfc_clk, 0, PCCR1, 3, get_rate_nfc, NULL, &cpu_clk);
DEFINE_CLOCK(ssi2_clk, 1, PCCR1, 4, get_rate_ssi2, &ssi2_clk1, &mpll_main2_clk);
DEFINE_CLOCK(ssi1_clk, 0, PCCR1, 5, get_rate_ssi1, &ssi1_clk1, &mpll_main2_clk);
DEFINE_CLOCK(vpu_clk, 0, PCCR1, 6, get_rate_vpu, &vpu_clk1, &mpll_main2_clk);
DEFINE_CLOCK1(per4_clk, 3, PCCR1, 7, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK1(per3_clk, 2, PCCR1, 8, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK1(per2_clk, 1, PCCR1, 9, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK1(per1_clk, 0, PCCR1, 10, per, NULL, &mpll_main2_clk);
DEFINE_CLOCK(usb_clk1, 0, PCCR1, 11, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(slcdc_clk1, 0, PCCR1, 12, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(sahara2_clk1, 0, PCCR1, 13, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(rtic_clk1, 0, PCCR1, 14, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(lcdc_clk2, 0, PCCR1, 15, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(vpu_clk1, 0, PCCR1, 16, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(fec_clk1, 0, PCCR1, 17, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(emma_clk1, 0, PCCR1, 18, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(emi_clk, 0, PCCR1, 19, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(dma_clk1, 0, PCCR1, 20, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(csi_clk1, 0, PCCR1, 21, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(brom_clk, 0, PCCR1, 22, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(ata_clk, 0, PCCR1, 23, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(wdog_clk, 0, PCCR1, 24, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(usb_clk, 0, PCCR1, 25, get_rate_usb, &usb_clk1, &spll_clk);
DEFINE_CLOCK(uart6_clk1, 0, PCCR1, 26, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart5_clk1, 0, PCCR1, 27, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart4_clk1, 0, PCCR1, 28, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart3_clk1, 0, PCCR1, 29, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart2_clk1, 0, PCCR1, 30, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart1_clk1, 0, PCCR1, 31, NULL, NULL, &ipg_clk);
/* Clocks we cannot directly gate, but drivers need their rates */
DEFINE_CLOCK(cspi1_clk, 0, 0, 0, NULL, &cspi1_clk1, &per2_clk);
DEFINE_CLOCK(cspi2_clk, 1, 0, 0, NULL, &cspi2_clk1, &per2_clk);
DEFINE_CLOCK(cspi3_clk, 2, 0, 0, NULL, &cspi13_clk1, &per2_clk);
DEFINE_CLOCK(sdhc1_clk, 0, 0, 0, NULL, &sdhc1_clk1, &per2_clk);
DEFINE_CLOCK(sdhc2_clk, 1, 0, 0, NULL, &sdhc2_clk1, &per2_clk);
DEFINE_CLOCK(sdhc3_clk, 2, 0, 0, NULL, &sdhc3_clk1, &per2_clk);
DEFINE_CLOCK(pwm_clk, 0, 0, 0, NULL, &pwm_clk1, &per1_clk);
DEFINE_CLOCK(gpt1_clk, 0, 0, 0, NULL, &gpt1_clk1, &per1_clk);
DEFINE_CLOCK(gpt2_clk, 1, 0, 0, NULL, &gpt2_clk1, &per1_clk);
DEFINE_CLOCK(gpt3_clk, 2, 0, 0, NULL, &gpt3_clk1, &per1_clk);
DEFINE_CLOCK(gpt4_clk, 3, 0, 0, NULL, &gpt4_clk1, &per1_clk);
DEFINE_CLOCK(gpt5_clk, 4, 0, 0, NULL, &gpt5_clk1, &per1_clk);
DEFINE_CLOCK(gpt6_clk, 5, 0, 0, NULL, &gpt6_clk1, &per1_clk);
DEFINE_CLOCK(uart1_clk, 0, 0, 0, NULL, &uart1_clk1, &per1_clk);
DEFINE_CLOCK(uart2_clk, 1, 0, 0, NULL, &uart2_clk1, &per1_clk);
DEFINE_CLOCK(uart3_clk, 2, 0, 0, NULL, &uart3_clk1, &per1_clk);
DEFINE_CLOCK(uart4_clk, 3, 0, 0, NULL, &uart4_clk1, &per1_clk);
DEFINE_CLOCK(uart5_clk, 4, 0, 0, NULL, &uart5_clk1, &per1_clk);
DEFINE_CLOCK(uart6_clk, 5, 0, 0, NULL, &uart6_clk1, &per1_clk);
DEFINE_CLOCK1(lcdc_clk, 0, 0, 0, parent, &lcdc_clk1, &per3_clk);
DEFINE_CLOCK1(csi_clk, 0, 0, 0, parent, &csi_clk1, &per4_clk);
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] __initdata = {
_REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK("imx-uart.3", NULL, uart4_clk)
_REGISTER_CLOCK("imx-uart.4", NULL, uart5_clk)
_REGISTER_CLOCK("imx-uart.5", NULL, uart6_clk)
_REGISTER_CLOCK(NULL, "gpt1", gpt1_clk)
_REGISTER_CLOCK(NULL, "gpt2", gpt2_clk)
_REGISTER_CLOCK(NULL, "gpt3", gpt3_clk)
_REGISTER_CLOCK(NULL, "gpt4", gpt4_clk)
_REGISTER_CLOCK(NULL, "gpt5", gpt5_clk)
_REGISTER_CLOCK(NULL, "gpt6", gpt6_clk)
_REGISTER_CLOCK("mxc_pwm.0", NULL, pwm_clk)
_REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk)
_REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk)
_REGISTER_CLOCK("mxc-mmc.2", NULL, sdhc3_clk)
_REGISTER_CLOCK(NULL, "cspi1", cspi1_clk)
_REGISTER_CLOCK(NULL, "cspi2", cspi2_clk)
_REGISTER_CLOCK(NULL, "cspi3", cspi3_clk)
_REGISTER_CLOCK("imx-fb.0", NULL, lcdc_clk)
_REGISTER_CLOCK(NULL, "csi", csi_clk)
_REGISTER_CLOCK(NULL, "usb", usb_clk)
_REGISTER_CLOCK(NULL, "ssi1", ssi1_clk)
_REGISTER_CLOCK(NULL, "ssi2", ssi2_clk)
_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
_REGISTER_CLOCK(NULL, "vpu", vpu_clk)
_REGISTER_CLOCK(NULL, "dma", dma_clk)
_REGISTER_CLOCK(NULL, "rtic", rtic_clk)
_REGISTER_CLOCK(NULL, "brom", brom_clk)
_REGISTER_CLOCK(NULL, "emma", emma_clk)
_REGISTER_CLOCK(NULL, "slcdc", slcdc_clk)
_REGISTER_CLOCK("fec.0", NULL, fec_clk)
_REGISTER_CLOCK(NULL, "emi", emi_clk)
_REGISTER_CLOCK(NULL, "sahara2", sahara2_clk)
_REGISTER_CLOCK(NULL, "ata", ata_clk)
_REGISTER_CLOCK(NULL, "mstick", mstick_clk)
_REGISTER_CLOCK(NULL, "wdog", wdog_clk)
_REGISTER_CLOCK(NULL, "gpio", gpio_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK(NULL, "iim", iim_clk)
_REGISTER_CLOCK(NULL, "kpp", kpp_clk)
_REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk)
_REGISTER_CLOCK(NULL, "rtc", rtc_clk)
_REGISTER_CLOCK(NULL, "scc", scc_clk)
};
/* Adjust the clock path for TO2 and later */
static void __init to2_adjust_clocks(void)
{
unsigned long cscr = __raw_readl(CCM_CSCR);
if (mx27_revision() >= CHIP_REV_2_0) {
if (cscr & CCM_CSCR_ARM_SRC)
cpu_clk.parent = &mpll_main1_clk;
if (!(cscr & CCM_CSCR_SSI2))
ssi1_clk.parent = &spll_clk;
if (!(cscr & CCM_CSCR_SSI1))
ssi1_clk.parent = &spll_clk;
if (!(cscr & CCM_CSCR_VPU))
vpu_clk.parent = &spll_clk;
} else {
cpu_clk.parent = &mpll_clk;
cpu_clk.set_parent = NULL;
cpu_clk.round_rate = NULL;
cpu_clk.set_rate = NULL;
ahb_clk.parent = &mpll_clk;
per1_clk.parent = &mpll_clk;
per2_clk.parent = &mpll_clk;
per3_clk.parent = &mpll_clk;
per4_clk.parent = &mpll_clk;
ssi1_clk.parent = &mpll_clk;
ssi2_clk.parent = &mpll_clk;
vpu_clk.parent = &mpll_clk;
}
}
/*
* must be called very early to get information about the
* available clock rate when the timer framework starts
*/
int __init mx27_clocks_init(unsigned long fref)
{
u32 cscr = __raw_readl(CCM_CSCR);
int i;
external_high_reference = fref;
/* detect clock reference for both system PLLs */
if (cscr & CCM_CSCR_MCU)
mpll_clk.parent = &ckih_clk;
else
mpll_clk.parent = &fpm_clk;
if (cscr & CCM_CSCR_SP)
spll_clk.parent = &ckih_clk;
else
spll_clk.parent = &fpm_clk;
to2_adjust_clocks();
for (i = 0; i < ARRAY_SIZE(lookups); i++)
clkdev_add(&lookups[i]);
/* Turn off all clocks we do not need */
__raw_writel(0, CCM_PCCR0);
__raw_writel((1 << 10) | (1 << 19), CCM_PCCR1);
spll_clk.disable(&spll_clk);
/* enable basic clocks */
clk_enable(&per1_clk);
clk_enable(&gpio_clk);
clk_enable(&emi_clk);
clk_enable(&iim_clk);
#ifdef CONFIG_DEBUG_LL_CONSOLE
clk_enable(&uart1_clk);
#endif
mxc_timer_init(&gpt1_clk);
return 0;
}