kernel-fxtec-pro1x/drivers/net/niu.c
Jesper Dangaard Brouer b8a606b871 NIU: Implement discard counters
Implementing discard counters for the NIU driver turned out to be more
complicated than first assumed.

The discard counters for the NIU neptune chip are only 16-bit (even
though this is a 64-bit chip).  These 16-bit counters can overflow
quickly, especially considering this is a 10Gbit/s ethernet card.

The overflow indication bit is, unfortunatly, not usable as the
counter value does not wrap, but remains at max value 0xFFFF.
Resulting in lost counts until the counter is reset.

The read and reset scheme also poses a problem. Both in theory and in
practice counters can be lost in between reading nr64() and clearing
the counter nw64().  For this reason, the number of counter clearings
nw64() is limited/reduced.  On the fast-path the counters are only
syncronized once it exceeds 0x7FFF.  When read by userspace, its
syncronized fully.

Signed-off-by: Jesper Dangaard Brouer <hawk@comx.dk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-12-18 22:27:40 -08:00

9529 lines
212 KiB
C

/* niu.c: Neptune ethernet driver.
*
* Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/mii.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/log2.h>
#include <linux/jiffies.h>
#include <linux/crc32.h>
#include <linux/io.h>
#ifdef CONFIG_SPARC64
#include <linux/of_device.h>
#endif
#include "niu.h"
#define DRV_MODULE_NAME "niu"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.0"
#define DRV_MODULE_RELDATE "Nov 14, 2008"
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_DESCRIPTION("NIU ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
#ifndef DMA_44BIT_MASK
#define DMA_44BIT_MASK 0x00000fffffffffffULL
#endif
#ifndef readq
static u64 readq(void __iomem *reg)
{
return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
}
static void writeq(u64 val, void __iomem *reg)
{
writel(val & 0xffffffff, reg);
writel(val >> 32, reg + 0x4UL);
}
#endif
static struct pci_device_id niu_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
{}
};
MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
#define NIU_TX_TIMEOUT (5 * HZ)
#define nr64(reg) readq(np->regs + (reg))
#define nw64(reg, val) writeq((val), np->regs + (reg))
#define nr64_mac(reg) readq(np->mac_regs + (reg))
#define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
#define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
#define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
#define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
#define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
#define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
#define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
#define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
static int niu_debug;
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "NIU debug level");
#define niudbg(TYPE, f, a...) \
do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
printk(KERN_DEBUG PFX f, ## a); \
} while (0)
#define niuinfo(TYPE, f, a...) \
do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
printk(KERN_INFO PFX f, ## a); \
} while (0)
#define niuwarn(TYPE, f, a...) \
do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
printk(KERN_WARNING PFX f, ## a); \
} while (0)
#define niu_lock_parent(np, flags) \
spin_lock_irqsave(&np->parent->lock, flags)
#define niu_unlock_parent(np, flags) \
spin_unlock_irqrestore(&np->parent->lock, flags)
static int serdes_init_10g_serdes(struct niu *np);
static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay)
{
while (--limit >= 0) {
u64 val = nr64_mac(reg);
if (!(val & bits))
break;
udelay(delay);
}
if (limit < 0)
return -ENODEV;
return 0;
}
static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay,
const char *reg_name)
{
int err;
nw64_mac(reg, bits);
err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
if (err)
dev_err(np->device, PFX "%s: bits (%llx) of register %s "
"would not clear, val[%llx]\n",
np->dev->name, (unsigned long long) bits, reg_name,
(unsigned long long) nr64_mac(reg));
return err;
}
#define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
})
static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay)
{
while (--limit >= 0) {
u64 val = nr64_ipp(reg);
if (!(val & bits))
break;
udelay(delay);
}
if (limit < 0)
return -ENODEV;
return 0;
}
static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay,
const char *reg_name)
{
int err;
u64 val;
val = nr64_ipp(reg);
val |= bits;
nw64_ipp(reg, val);
err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
if (err)
dev_err(np->device, PFX "%s: bits (%llx) of register %s "
"would not clear, val[%llx]\n",
np->dev->name, (unsigned long long) bits, reg_name,
(unsigned long long) nr64_ipp(reg));
return err;
}
#define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
})
static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay)
{
while (--limit >= 0) {
u64 val = nr64(reg);
if (!(val & bits))
break;
udelay(delay);
}
if (limit < 0)
return -ENODEV;
return 0;
}
#define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
})
static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay,
const char *reg_name)
{
int err;
nw64(reg, bits);
err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
if (err)
dev_err(np->device, PFX "%s: bits (%llx) of register %s "
"would not clear, val[%llx]\n",
np->dev->name, (unsigned long long) bits, reg_name,
(unsigned long long) nr64(reg));
return err;
}
#define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
})
static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
{
u64 val = (u64) lp->timer;
if (on)
val |= LDG_IMGMT_ARM;
nw64(LDG_IMGMT(lp->ldg_num), val);
}
static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
{
unsigned long mask_reg, bits;
u64 val;
if (ldn < 0 || ldn > LDN_MAX)
return -EINVAL;
if (ldn < 64) {
mask_reg = LD_IM0(ldn);
bits = LD_IM0_MASK;
} else {
mask_reg = LD_IM1(ldn - 64);
bits = LD_IM1_MASK;
}
val = nr64(mask_reg);
if (on)
val &= ~bits;
else
val |= bits;
nw64(mask_reg, val);
return 0;
}
static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
{
struct niu_parent *parent = np->parent;
int i;
for (i = 0; i <= LDN_MAX; i++) {
int err;
if (parent->ldg_map[i] != lp->ldg_num)
continue;
err = niu_ldn_irq_enable(np, i, on);
if (err)
return err;
}
return 0;
}
static int niu_enable_interrupts(struct niu *np, int on)
{
int i;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
int err;
err = niu_enable_ldn_in_ldg(np, lp, on);
if (err)
return err;
}
for (i = 0; i < np->num_ldg; i++)
niu_ldg_rearm(np, &np->ldg[i], on);
return 0;
}
static u32 phy_encode(u32 type, int port)
{
return (type << (port * 2));
}
static u32 phy_decode(u32 val, int port)
{
return (val >> (port * 2)) & PORT_TYPE_MASK;
}
static int mdio_wait(struct niu *np)
{
int limit = 1000;
u64 val;
while (--limit > 0) {
val = nr64(MIF_FRAME_OUTPUT);
if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
return val & MIF_FRAME_OUTPUT_DATA;
udelay(10);
}
return -ENODEV;
}
static int mdio_read(struct niu *np, int port, int dev, int reg)
{
int err;
nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
err = mdio_wait(np);
if (err < 0)
return err;
nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
return mdio_wait(np);
}
static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
{
int err;
nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
err = mdio_wait(np);
if (err < 0)
return err;
nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
err = mdio_wait(np);
if (err < 0)
return err;
return 0;
}
static int mii_read(struct niu *np, int port, int reg)
{
nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
return mdio_wait(np);
}
static int mii_write(struct niu *np, int port, int reg, int data)
{
int err;
nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
err = mdio_wait(np);
if (err < 0)
return err;
return 0;
}
static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TX_CFG_L(channel),
val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TX_CFG_H(channel),
val >> 16);
return err;
}
static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_RX_CFG_L(channel),
val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_RX_CFG_H(channel),
val >> 16);
return err;
}
/* Mode is always 10G fiber. */
static int serdes_init_niu_10g_fiber(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u32 tx_cfg, rx_cfg;
unsigned long i;
tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
PLL_RX_CFG_EQ_LP_ADAPTIVE);
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TEST_CFG_L, test_cfg);
tx_cfg |= PLL_TX_CFG_ENTEST;
rx_cfg |= PLL_RX_CFG_ENTEST;
}
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
int err = esr2_set_tx_cfg(np, i, tx_cfg);
if (err)
return err;
}
for (i = 0; i < 4; i++) {
int err = esr2_set_rx_cfg(np, i, rx_cfg);
if (err)
return err;
}
return 0;
}
static int serdes_init_niu_1g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u16 pll_cfg, pll_sts;
int max_retry = 100;
u64 uninitialized_var(sig), mask, val;
u32 tx_cfg, rx_cfg;
unsigned long i;
int err;
tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
PLL_TX_CFG_RATE_HALF);
rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
PLL_RX_CFG_RATE_HALF);
if (np->port == 0)
rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TEST_CFG_L, test_cfg);
tx_cfg |= PLL_TX_CFG_ENTEST;
rx_cfg |= PLL_RX_CFG_ENTEST;
}
/* Initialize PLL for 1G */
pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_CFG_L, pll_cfg);
if (err) {
dev_err(np->device, PFX "NIU Port %d "
"serdes_init_niu_1g_serdes: "
"mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
return err;
}
pll_sts = PLL_CFG_ENPLL;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_STS_L, pll_sts);
if (err) {
dev_err(np->device, PFX "NIU Port %d "
"serdes_init_niu_1g_serdes: "
"mdio write to ESR2_TI_PLL_STS_L failed", np->port);
return err;
}
udelay(200);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
err = esr2_set_tx_cfg(np, i, tx_cfg);
if (err)
return err;
}
for (i = 0; i < 4; i++) {
err = esr2_set_rx_cfg(np, i, rx_cfg);
if (err)
return err;
}
switch (np->port) {
case 0:
val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
mask = val;
break;
case 1:
val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
mask = val;
break;
default:
return -EINVAL;
}
while (max_retry--) {
sig = nr64(ESR_INT_SIGNALS);
if ((sig & mask) == val)
break;
mdelay(500);
}
if ((sig & mask) != val) {
dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
"[%08x]\n", np->port, (int) (sig & mask), (int) val);
return -ENODEV;
}
return 0;
}
static int serdes_init_niu_10g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
int max_retry = 100;
u64 uninitialized_var(sig), mask, val;
unsigned long i;
int err;
tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
PLL_RX_CFG_EQ_LP_ADAPTIVE);
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TEST_CFG_L, test_cfg);
tx_cfg |= PLL_TX_CFG_ENTEST;
rx_cfg |= PLL_RX_CFG_ENTEST;
}
/* Initialize PLL for 10G */
pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
if (err) {
dev_err(np->device, PFX "NIU Port %d "
"serdes_init_niu_10g_serdes: "
"mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
return err;
}
pll_sts = PLL_CFG_ENPLL;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
if (err) {
dev_err(np->device, PFX "NIU Port %d "
"serdes_init_niu_10g_serdes: "
"mdio write to ESR2_TI_PLL_STS_L failed", np->port);
return err;
}
udelay(200);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
err = esr2_set_tx_cfg(np, i, tx_cfg);
if (err)
return err;
}
for (i = 0; i < 4; i++) {
err = esr2_set_rx_cfg(np, i, rx_cfg);
if (err)
return err;
}
/* check if serdes is ready */
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return -EINVAL;
}
while (max_retry--) {
sig = nr64(ESR_INT_SIGNALS);
if ((sig & mask) == val)
break;
mdelay(500);
}
if ((sig & mask) != val) {
pr_info(PFX "NIU Port %u signal bits [%08x] are not "
"[%08x] for 10G...trying 1G\n",
np->port, (int) (sig & mask), (int) val);
/* 10G failed, try initializing at 1G */
err = serdes_init_niu_1g_serdes(np);
if (!err) {
np->flags &= ~NIU_FLAGS_10G;
np->mac_xcvr = MAC_XCVR_PCS;
} else {
dev_err(np->device, PFX "Port %u 10G/1G SERDES "
"Link Failed \n", np->port);
return -ENODEV;
}
}
return 0;
}
static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
{
int err;
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
if (err >= 0) {
*val = (err & 0xffff);
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_CTRL_H(chan));
if (err >= 0)
*val |= ((err & 0xffff) << 16);
err = 0;
}
return err;
}
static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
{
int err;
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_L(chan));
if (err >= 0) {
*val = (err & 0xffff);
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_H(chan));
if (err >= 0) {
*val |= ((err & 0xffff) << 16);
err = 0;
}
}
return err;
}
static int esr_read_reset(struct niu *np, u32 *val)
{
int err;
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_L);
if (err >= 0) {
*val = (err & 0xffff);
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_H);
if (err >= 0) {
*val |= ((err & 0xffff) << 16);
err = 0;
}
}
return err;
}
static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_CTRL_L(chan), val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_CTRL_H(chan), (val >> 16));
return err;
}
static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_L(chan), val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_H(chan), (val >> 16));
return err;
}
static int esr_reset(struct niu *np)
{
u32 uninitialized_var(reset);
int err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_L, 0x0000);
if (err)
return err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_H, 0xffff);
if (err)
return err;
udelay(200);
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_L, 0xffff);
if (err)
return err;
udelay(200);
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_H, 0x0000);
if (err)
return err;
udelay(200);
err = esr_read_reset(np, &reset);
if (err)
return err;
if (reset != 0) {
dev_err(np->device, PFX "Port %u ESR_RESET "
"did not clear [%08x]\n",
np->port, reset);
return -ENODEV;
}
return 0;
}
static int serdes_init_10g(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
unsigned long ctrl_reg, test_cfg_reg, i;
u64 ctrl_val, test_cfg_val, sig, mask, val;
int err;
switch (np->port) {
case 0:
ctrl_reg = ENET_SERDES_0_CTRL_CFG;
test_cfg_reg = ENET_SERDES_0_TEST_CFG;
break;
case 1:
ctrl_reg = ENET_SERDES_1_CTRL_CFG;
test_cfg_reg = ENET_SERDES_1_TEST_CFG;
break;
default:
return -EINVAL;
}
ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
ENET_SERDES_CTRL_SDET_1 |
ENET_SERDES_CTRL_SDET_2 |
ENET_SERDES_CTRL_SDET_3 |
(0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
test_cfg_val = 0;
if (lp->loopback_mode == LOOPBACK_PHY) {
test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_0_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_1_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_2_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_3_SHIFT));
}
nw64(ctrl_reg, ctrl_val);
nw64(test_cfg_reg, test_cfg_val);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
u32 rxtx_ctrl, glue0;
err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
if (err)
return err;
err = esr_read_glue0(np, i, &glue0);
if (err)
return err;
rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
(2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
ESR_GLUE_CTRL0_THCNT |
ESR_GLUE_CTRL0_BLTIME);
glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
(0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
(0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
(BLTIME_300_CYCLES <<
ESR_GLUE_CTRL0_BLTIME_SHIFT));
err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
if (err)
return err;
err = esr_write_glue0(np, i, glue0);
if (err)
return err;
}
err = esr_reset(np);
if (err)
return err;
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return -EINVAL;
}
if ((sig & mask) != val) {
if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
return 0;
}
dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
"[%08x]\n", np->port, (int) (sig & mask), (int) val);
return -ENODEV;
}
if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
return 0;
}
static int serdes_init_1g(struct niu *np)
{
u64 val;
val = nr64(ENET_SERDES_1_PLL_CFG);
val &= ~ENET_SERDES_PLL_FBDIV2;
switch (np->port) {
case 0:
val |= ENET_SERDES_PLL_HRATE0;
break;
case 1:
val |= ENET_SERDES_PLL_HRATE1;
break;
case 2:
val |= ENET_SERDES_PLL_HRATE2;
break;
case 3:
val |= ENET_SERDES_PLL_HRATE3;
break;
default:
return -EINVAL;
}
nw64(ENET_SERDES_1_PLL_CFG, val);
return 0;
}
static int serdes_init_1g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
u64 ctrl_val, test_cfg_val, sig, mask, val;
int err;
u64 reset_val, val_rd;
val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
ENET_SERDES_PLL_FBDIV0;
switch (np->port) {
case 0:
reset_val = ENET_SERDES_RESET_0;
ctrl_reg = ENET_SERDES_0_CTRL_CFG;
test_cfg_reg = ENET_SERDES_0_TEST_CFG;
pll_cfg = ENET_SERDES_0_PLL_CFG;
break;
case 1:
reset_val = ENET_SERDES_RESET_1;
ctrl_reg = ENET_SERDES_1_CTRL_CFG;
test_cfg_reg = ENET_SERDES_1_TEST_CFG;
pll_cfg = ENET_SERDES_1_PLL_CFG;
break;
default:
return -EINVAL;
}
ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
ENET_SERDES_CTRL_SDET_1 |
ENET_SERDES_CTRL_SDET_2 |
ENET_SERDES_CTRL_SDET_3 |
(0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
test_cfg_val = 0;
if (lp->loopback_mode == LOOPBACK_PHY) {
test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_0_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_1_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_2_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_3_SHIFT));
}
nw64(ENET_SERDES_RESET, reset_val);
mdelay(20);
val_rd = nr64(ENET_SERDES_RESET);
val_rd &= ~reset_val;
nw64(pll_cfg, val);
nw64(ctrl_reg, ctrl_val);
nw64(test_cfg_reg, test_cfg_val);
nw64(ENET_SERDES_RESET, val_rd);
mdelay(2000);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
u32 rxtx_ctrl, glue0;
err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
if (err)
return err;
err = esr_read_glue0(np, i, &glue0);
if (err)
return err;
rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
(2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
ESR_GLUE_CTRL0_THCNT |
ESR_GLUE_CTRL0_BLTIME);
glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
(0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
(0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
(BLTIME_300_CYCLES <<
ESR_GLUE_CTRL0_BLTIME_SHIFT));
err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
if (err)
return err;
err = esr_write_glue0(np, i, glue0);
if (err)
return err;
}
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
mask = val;
break;
case 1:
val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
mask = val;
break;
default:
return -EINVAL;
}
if ((sig & mask) != val) {
dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
"[%08x]\n", np->port, (int) (sig & mask), (int) val);
return -ENODEV;
}
return 0;
}
static int link_status_1g_serdes(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
int link_up;
u64 val;
u16 current_speed;
unsigned long flags;
u8 current_duplex;
link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
val = nr64_pcs(PCS_MII_STAT);
if (val & PCS_MII_STAT_LINK_STATUS) {
link_up = 1;
current_speed = SPEED_1000;
current_duplex = DUPLEX_FULL;
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return 0;
}
static int link_status_10g_serdes(struct niu *np, int *link_up_p)
{
unsigned long flags;
struct niu_link_config *lp = &np->link_config;
int link_up = 0;
int link_ok = 1;
u64 val, val2;
u16 current_speed;
u8 current_duplex;
if (!(np->flags & NIU_FLAGS_10G))
return link_status_1g_serdes(np, link_up_p);
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
val = nr64_xpcs(XPCS_STATUS(0));
val2 = nr64_mac(XMAC_INTER2);
if (val2 & 0x01000000)
link_ok = 0;
if ((val & 0x1000ULL) && link_ok) {
link_up = 1;
current_speed = SPEED_10000;
current_duplex = DUPLEX_FULL;
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return 0;
}
static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
u16 current_speed, bmsr;
unsigned long flags;
u8 current_duplex;
int err, link_up;
link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
err = -EINVAL;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
goto out;
bmsr = err;
if (bmsr & BMSR_LSTATUS) {
u16 adv, lpa, common, estat;
err = mii_read(np, np->phy_addr, MII_ADVERTISE);
if (err < 0)
goto out;
adv = err;
err = mii_read(np, np->phy_addr, MII_LPA);
if (err < 0)
goto out;
lpa = err;
common = adv & lpa;
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (err < 0)
goto out;
estat = err;
link_up = 1;
current_speed = SPEED_1000;
current_duplex = DUPLEX_FULL;
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
err = 0;
out:
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return err;
}
static int bcm8704_reset(struct niu *np)
{
int err, limit;
err = mdio_read(np, np->phy_addr,
BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
if (err < 0)
return err;
err |= BMCR_RESET;
err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
MII_BMCR, err);
if (err)
return err;
limit = 1000;
while (--limit >= 0) {
err = mdio_read(np, np->phy_addr,
BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
if (err < 0)
return err;
if (!(err & BMCR_RESET))
break;
}
if (limit < 0) {
dev_err(np->device, PFX "Port %u PHY will not reset "
"(bmcr=%04x)\n", np->port, (err & 0xffff));
return -ENODEV;
}
return 0;
}
/* When written, certain PHY registers need to be read back twice
* in order for the bits to settle properly.
*/
static int bcm8704_user_dev3_readback(struct niu *np, int reg)
{
int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
if (err < 0)
return err;
return 0;
}
static int bcm8706_init_user_dev3(struct niu *np)
{
int err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL);
if (err < 0)
return err;
err &= ~USER_ODIG_CTRL_GPIOS;
err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
err |= USER_ODIG_CTRL_RESV2;
err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL, err);
if (err)
return err;
mdelay(1000);
return 0;
}
static int bcm8704_init_user_dev3(struct niu *np)
{
int err;
err = mdio_write(np, np->phy_addr,
BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
(USER_CONTROL_OPTXRST_LVL |
USER_CONTROL_OPBIASFLT_LVL |
USER_CONTROL_OBTMPFLT_LVL |
USER_CONTROL_OPPRFLT_LVL |
USER_CONTROL_OPTXFLT_LVL |
USER_CONTROL_OPRXLOS_LVL |
USER_CONTROL_OPRXFLT_LVL |
USER_CONTROL_OPTXON_LVL |
(0x3f << USER_CONTROL_RES1_SHIFT)));
if (err)
return err;
err = mdio_write(np, np->phy_addr,
BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
(USER_PMD_TX_CTL_XFP_CLKEN |
(1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
(2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
USER_PMD_TX_CTL_TSCK_LPWREN));
if (err)
return err;
err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
if (err)
return err;
err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
if (err)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL);
if (err < 0)
return err;
err &= ~USER_ODIG_CTRL_GPIOS;
err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL, err);
if (err)
return err;
mdelay(1000);
return 0;
}
static int mrvl88x2011_act_led(struct niu *np, int val)
{
int err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_8_TO_11_CTL);
if (err < 0)
return err;
err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_8_TO_11_CTL, err);
}
static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
{
int err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_BLINK_CTL);
if (err >= 0) {
err &= ~MRVL88X2011_LED_BLKRATE_MASK;
err |= (rate << 4);
err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_BLINK_CTL, err);
}
return err;
}
static int xcvr_init_10g_mrvl88x2011(struct niu *np)
{
int err;
/* Set LED functions */
err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
if (err)
return err;
/* led activity */
err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
if (err)
return err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_GENERAL_CTL);
if (err < 0)
return err;
err |= MRVL88X2011_ENA_XFPREFCLK;
err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_GENERAL_CTL, err);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_PMA_PMD_CTL_1);
if (err < 0)
return err;
if (np->link_config.loopback_mode == LOOPBACK_MAC)
err |= MRVL88X2011_LOOPBACK;
else
err &= ~MRVL88X2011_LOOPBACK;
err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_PMA_PMD_CTL_1, err);
if (err < 0)
return err;
/* Enable PMD */
return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
}
static int xcvr_diag_bcm870x(struct niu *np)
{
u16 analog_stat0, tx_alarm_status;
int err = 0;
#if 1
err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
MII_STAT1000);
if (err < 0)
return err;
pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
np->port, err);
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
if (err < 0)
return err;
pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
np->port, err);
err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
MII_NWAYTEST);
if (err < 0)
return err;
pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
np->port, err);
#endif
/* XXX dig this out it might not be so useful XXX */
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_ANALOG_STATUS0);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_ANALOG_STATUS0);
if (err < 0)
return err;
analog_stat0 = err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_TX_ALARM_STATUS);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_TX_ALARM_STATUS);
if (err < 0)
return err;
tx_alarm_status = err;
if (analog_stat0 != 0x03fc) {
if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
pr_info(PFX "Port %u cable not connected "
"or bad cable.\n", np->port);
} else if (analog_stat0 == 0x639c) {
pr_info(PFX "Port %u optical module is bad "
"or missing.\n", np->port);
}
}
return 0;
}
static int xcvr_10g_set_lb_bcm870x(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
int err;
err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
MII_BMCR);
if (err < 0)
return err;
err &= ~BMCR_LOOPBACK;
if (lp->loopback_mode == LOOPBACK_MAC)
err |= BMCR_LOOPBACK;
err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
MII_BMCR, err);
if (err)
return err;
return 0;
}
static int xcvr_init_10g_bcm8706(struct niu *np)
{
int err = 0;
u64 val;
if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
(np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
return err;
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_LED_POLARITY;
val |= XMAC_CONFIG_FORCE_LED_ON;
nw64_mac(XMAC_CONFIG, val);
val = nr64(MIF_CONFIG);
val |= MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
err = bcm8704_reset(np);
if (err)
return err;
err = xcvr_10g_set_lb_bcm870x(np);
if (err)
return err;
err = bcm8706_init_user_dev3(np);
if (err)
return err;
err = xcvr_diag_bcm870x(np);
if (err)
return err;
return 0;
}
static int xcvr_init_10g_bcm8704(struct niu *np)
{
int err;
err = bcm8704_reset(np);
if (err)
return err;
err = bcm8704_init_user_dev3(np);
if (err)
return err;
err = xcvr_10g_set_lb_bcm870x(np);
if (err)
return err;
err = xcvr_diag_bcm870x(np);
if (err)
return err;
return 0;
}
static int xcvr_init_10g(struct niu *np)
{
int phy_id, err;
u64 val;
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_LED_POLARITY;
val |= XMAC_CONFIG_FORCE_LED_ON;
nw64_mac(XMAC_CONFIG, val);
/* XXX shared resource, lock parent XXX */
val = nr64(MIF_CONFIG);
val |= MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
phy_id = phy_decode(np->parent->port_phy, np->port);
phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
/* handle different phy types */
switch (phy_id & NIU_PHY_ID_MASK) {
case NIU_PHY_ID_MRVL88X2011:
err = xcvr_init_10g_mrvl88x2011(np);
break;
default: /* bcom 8704 */
err = xcvr_init_10g_bcm8704(np);
break;
}
return 0;
}
static int mii_reset(struct niu *np)
{
int limit, err;
err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
if (err)
return err;
limit = 1000;
while (--limit >= 0) {
udelay(500);
err = mii_read(np, np->phy_addr, MII_BMCR);
if (err < 0)
return err;
if (!(err & BMCR_RESET))
break;
}
if (limit < 0) {
dev_err(np->device, PFX "Port %u MII would not reset, "
"bmcr[%04x]\n", np->port, err);
return -ENODEV;
}
return 0;
}
static int xcvr_init_1g_rgmii(struct niu *np)
{
int err;
u64 val;
u16 bmcr, bmsr, estat;
val = nr64(MIF_CONFIG);
val &= ~MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
err = mii_reset(np);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
bmsr = err;
estat = 0;
if (bmsr & BMSR_ESTATEN) {
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (err < 0)
return err;
estat = err;
}
bmcr = 0;
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
if (bmsr & BMSR_ESTATEN) {
u16 ctrl1000 = 0;
if (estat & ESTATUS_1000_TFULL)
ctrl1000 |= ADVERTISE_1000FULL;
err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
if (err)
return err;
}
bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMCR);
if (err < 0)
return err;
bmcr = mii_read(np, np->phy_addr, MII_BMCR);
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
return 0;
}
static int mii_init_common(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u16 bmcr, bmsr, adv, estat;
int err;
err = mii_reset(np);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
bmsr = err;
estat = 0;
if (bmsr & BMSR_ESTATEN) {
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (err < 0)
return err;
estat = err;
}
bmcr = 0;
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
if (lp->loopback_mode == LOOPBACK_MAC) {
bmcr |= BMCR_LOOPBACK;
if (lp->active_speed == SPEED_1000)
bmcr |= BMCR_SPEED1000;
if (lp->active_duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
}
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 aux;
aux = (BCM5464R_AUX_CTL_EXT_LB |
BCM5464R_AUX_CTL_WRITE_1);
err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
if (err)
return err;
}
/* XXX configurable XXX */
/* XXX for now don't advertise half-duplex or asym pause... XXX */
adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
if (bmsr & BMSR_10FULL)
adv |= ADVERTISE_10FULL;
if (bmsr & BMSR_100FULL)
adv |= ADVERTISE_100FULL;
err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
if (err)
return err;
if (bmsr & BMSR_ESTATEN) {
u16 ctrl1000 = 0;
if (estat & ESTATUS_1000_TFULL)
ctrl1000 |= ADVERTISE_1000FULL;
err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
if (err)
return err;
}
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMCR);
if (err < 0)
return err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
#if 0
pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
np->port, bmcr, bmsr);
#endif
return 0;
}
static int xcvr_init_1g(struct niu *np)
{
u64 val;
/* XXX shared resource, lock parent XXX */
val = nr64(MIF_CONFIG);
val &= ~MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
return mii_init_common(np);
}
static int niu_xcvr_init(struct niu *np)
{
const struct niu_phy_ops *ops = np->phy_ops;
int err;
err = 0;
if (ops->xcvr_init)
err = ops->xcvr_init(np);
return err;
}
static int niu_serdes_init(struct niu *np)
{
const struct niu_phy_ops *ops = np->phy_ops;
int err;
err = 0;
if (ops->serdes_init)
err = ops->serdes_init(np);
return err;
}
static void niu_init_xif(struct niu *);
static void niu_handle_led(struct niu *, int status);
static int niu_link_status_common(struct niu *np, int link_up)
{
struct niu_link_config *lp = &np->link_config;
struct net_device *dev = np->dev;
unsigned long flags;
if (!netif_carrier_ok(dev) && link_up) {
niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
dev->name,
(lp->active_speed == SPEED_10000 ?
"10Gb/sec" :
(lp->active_speed == SPEED_1000 ?
"1Gb/sec" :
(lp->active_speed == SPEED_100 ?
"100Mbit/sec" : "10Mbit/sec"))),
(lp->active_duplex == DUPLEX_FULL ?
"full" : "half"));
spin_lock_irqsave(&np->lock, flags);
niu_init_xif(np);
niu_handle_led(np, 1);
spin_unlock_irqrestore(&np->lock, flags);
netif_carrier_on(dev);
} else if (netif_carrier_ok(dev) && !link_up) {
niuwarn(LINK, "%s: Link is down\n", dev->name);
spin_lock_irqsave(&np->lock, flags);
niu_handle_led(np, 0);
spin_unlock_irqrestore(&np->lock, flags);
netif_carrier_off(dev);
}
return 0;
}
static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
{
int err, link_up, pma_status, pcs_status;
link_up = 0;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_10G_PMD_STATUS_2);
if (err < 0)
goto out;
/* Check PMA/PMD Register: 1.0001.2 == 1 */
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_PMA_PMD_STATUS_1);
if (err < 0)
goto out;
pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
/* Check PMC Register : 3.0001.2 == 1: read twice */
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_PMA_PMD_STATUS_1);
if (err < 0)
goto out;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_PMA_PMD_STATUS_1);
if (err < 0)
goto out;
pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
/* Check XGXS Register : 4.0018.[0-3,12] */
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
MRVL88X2011_10G_XGXS_LANE_STAT);
if (err < 0)
goto out;
if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
0x800))
link_up = (pma_status && pcs_status) ? 1 : 0;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
err = 0;
out:
mrvl88x2011_act_led(np, (link_up ?
MRVL88X2011_LED_CTL_PCS_ACT :
MRVL88X2011_LED_CTL_OFF));
*link_up_p = link_up;
return err;
}
static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
{
int err, link_up;
link_up = 0;
err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
BCM8704_PMD_RCV_SIGDET);
if (err < 0)
goto out;
if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
BCM8704_PCS_10G_R_STATUS);
if (err < 0)
goto out;
if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
BCM8704_PHYXS_XGXS_LANE_STAT);
if (err < 0)
goto out;
if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
PHYXS_XGXS_LANE_STAT_MAGIC |
PHYXS_XGXS_LANE_STAT_PATTEST |
PHYXS_XGXS_LANE_STAT_LANE3 |
PHYXS_XGXS_LANE_STAT_LANE2 |
PHYXS_XGXS_LANE_STAT_LANE1 |
PHYXS_XGXS_LANE_STAT_LANE0)) {
err = 0;
np->link_config.active_speed = SPEED_INVALID;
np->link_config.active_duplex = DUPLEX_INVALID;
goto out;
}
link_up = 1;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
err = 0;
out:
*link_up_p = link_up;
if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
err = 0;
return err;
}
static int link_status_10g_bcom(struct niu *np, int *link_up_p)
{
int err, link_up;
link_up = 0;
err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
BCM8704_PMD_RCV_SIGDET);
if (err < 0)
goto out;
if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
BCM8704_PCS_10G_R_STATUS);
if (err < 0)
goto out;
if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
BCM8704_PHYXS_XGXS_LANE_STAT);
if (err < 0)
goto out;
if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
PHYXS_XGXS_LANE_STAT_MAGIC |
PHYXS_XGXS_LANE_STAT_LANE3 |
PHYXS_XGXS_LANE_STAT_LANE2 |
PHYXS_XGXS_LANE_STAT_LANE1 |
PHYXS_XGXS_LANE_STAT_LANE0)) {
err = 0;
goto out;
}
link_up = 1;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
err = 0;
out:
*link_up_p = link_up;
return err;
}
static int link_status_10g(struct niu *np, int *link_up_p)
{
unsigned long flags;
int err = -EINVAL;
spin_lock_irqsave(&np->lock, flags);
if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
int phy_id;
phy_id = phy_decode(np->parent->port_phy, np->port);
phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
/* handle different phy types */
switch (phy_id & NIU_PHY_ID_MASK) {
case NIU_PHY_ID_MRVL88X2011:
err = link_status_10g_mrvl(np, link_up_p);
break;
default: /* bcom 8704 */
err = link_status_10g_bcom(np, link_up_p);
break;
}
}
spin_unlock_irqrestore(&np->lock, flags);
return err;
}
static int niu_10g_phy_present(struct niu *np)
{
u64 sig, mask, val;
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return 0;
}
if ((sig & mask) != val)
return 0;
return 1;
}
static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
{
unsigned long flags;
int err = 0;
int phy_present;
int phy_present_prev;
spin_lock_irqsave(&np->lock, flags);
if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
1 : 0;
phy_present = niu_10g_phy_present(np);
if (phy_present != phy_present_prev) {
/* state change */
if (phy_present) {
np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
if (np->phy_ops->xcvr_init)
err = np->phy_ops->xcvr_init(np);
if (err) {
/* debounce */
np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
}
} else {
np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
*link_up_p = 0;
niuwarn(LINK, "%s: Hotplug PHY Removed\n",
np->dev->name);
}
}
if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT)
err = link_status_10g_bcm8706(np, link_up_p);
}
spin_unlock_irqrestore(&np->lock, flags);
return err;
}
static int link_status_1g(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
u16 current_speed, bmsr;
unsigned long flags;
u8 current_duplex;
int err, link_up;
link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
err = -EINVAL;
if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
goto out;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
goto out;
bmsr = err;
if (bmsr & BMSR_LSTATUS) {
u16 adv, lpa, common, estat;
err = mii_read(np, np->phy_addr, MII_ADVERTISE);
if (err < 0)
goto out;
adv = err;
err = mii_read(np, np->phy_addr, MII_LPA);
if (err < 0)
goto out;
lpa = err;
common = adv & lpa;
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (err < 0)
goto out;
estat = err;
link_up = 1;
if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
current_speed = SPEED_1000;
if (estat & ESTATUS_1000_TFULL)
current_duplex = DUPLEX_FULL;
else
current_duplex = DUPLEX_HALF;
} else {
if (common & ADVERTISE_100BASE4) {
current_speed = SPEED_100;
current_duplex = DUPLEX_HALF;
} else if (common & ADVERTISE_100FULL) {
current_speed = SPEED_100;
current_duplex = DUPLEX_FULL;
} else if (common & ADVERTISE_100HALF) {
current_speed = SPEED_100;
current_duplex = DUPLEX_HALF;
} else if (common & ADVERTISE_10FULL) {
current_speed = SPEED_10;
current_duplex = DUPLEX_FULL;
} else if (common & ADVERTISE_10HALF) {
current_speed = SPEED_10;
current_duplex = DUPLEX_HALF;
} else
link_up = 0;
}
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
err = 0;
out:
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return err;
}
static int niu_link_status(struct niu *np, int *link_up_p)
{
const struct niu_phy_ops *ops = np->phy_ops;
int err;
err = 0;
if (ops->link_status)
err = ops->link_status(np, link_up_p);
return err;
}
static void niu_timer(unsigned long __opaque)
{
struct niu *np = (struct niu *) __opaque;
unsigned long off;
int err, link_up;
err = niu_link_status(np, &link_up);
if (!err)
niu_link_status_common(np, link_up);
if (netif_carrier_ok(np->dev))
off = 5 * HZ;
else
off = 1 * HZ;
np->timer.expires = jiffies + off;
add_timer(&np->timer);
}
static const struct niu_phy_ops phy_ops_10g_serdes = {
.serdes_init = serdes_init_10g_serdes,
.link_status = link_status_10g_serdes,
};
static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
.serdes_init = serdes_init_niu_10g_serdes,
.link_status = link_status_10g_serdes,
};
static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
.serdes_init = serdes_init_niu_1g_serdes,
.link_status = link_status_1g_serdes,
};
static const struct niu_phy_ops phy_ops_1g_rgmii = {
.xcvr_init = xcvr_init_1g_rgmii,
.link_status = link_status_1g_rgmii,
};
static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
.serdes_init = serdes_init_niu_10g_fiber,
.xcvr_init = xcvr_init_10g,
.link_status = link_status_10g,
};
static const struct niu_phy_ops phy_ops_10g_fiber = {
.serdes_init = serdes_init_10g,
.xcvr_init = xcvr_init_10g,
.link_status = link_status_10g,
};
static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
.serdes_init = serdes_init_10g,
.xcvr_init = xcvr_init_10g_bcm8706,
.link_status = link_status_10g_hotplug,
};
static const struct niu_phy_ops phy_ops_10g_copper = {
.serdes_init = serdes_init_10g,
.link_status = link_status_10g, /* XXX */
};
static const struct niu_phy_ops phy_ops_1g_fiber = {
.serdes_init = serdes_init_1g,
.xcvr_init = xcvr_init_1g,
.link_status = link_status_1g,
};
static const struct niu_phy_ops phy_ops_1g_copper = {
.xcvr_init = xcvr_init_1g,
.link_status = link_status_1g,
};
struct niu_phy_template {
const struct niu_phy_ops *ops;
u32 phy_addr_base;
};
static const struct niu_phy_template phy_template_niu_10g_fiber = {
.ops = &phy_ops_10g_fiber_niu,
.phy_addr_base = 16,
};
static const struct niu_phy_template phy_template_niu_10g_serdes = {
.ops = &phy_ops_10g_serdes_niu,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_niu_1g_serdes = {
.ops = &phy_ops_1g_serdes_niu,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_10g_fiber = {
.ops = &phy_ops_10g_fiber,
.phy_addr_base = 8,
};
static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
.ops = &phy_ops_10g_fiber_hotplug,
.phy_addr_base = 8,
};
static const struct niu_phy_template phy_template_10g_copper = {
.ops = &phy_ops_10g_copper,
.phy_addr_base = 10,
};
static const struct niu_phy_template phy_template_1g_fiber = {
.ops = &phy_ops_1g_fiber,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_1g_copper = {
.ops = &phy_ops_1g_copper,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_1g_rgmii = {
.ops = &phy_ops_1g_rgmii,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_10g_serdes = {
.ops = &phy_ops_10g_serdes,
.phy_addr_base = 0,
};
static int niu_atca_port_num[4] = {
0, 0, 11, 10
};
static int serdes_init_10g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
u64 ctrl_val, test_cfg_val, sig, mask, val;
int err;
u64 reset_val;
switch (np->port) {
case 0:
reset_val = ENET_SERDES_RESET_0;
ctrl_reg = ENET_SERDES_0_CTRL_CFG;
test_cfg_reg = ENET_SERDES_0_TEST_CFG;
pll_cfg = ENET_SERDES_0_PLL_CFG;
break;
case 1:
reset_val = ENET_SERDES_RESET_1;
ctrl_reg = ENET_SERDES_1_CTRL_CFG;
test_cfg_reg = ENET_SERDES_1_TEST_CFG;
pll_cfg = ENET_SERDES_1_PLL_CFG;
break;
default:
return -EINVAL;
}
ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
ENET_SERDES_CTRL_SDET_1 |
ENET_SERDES_CTRL_SDET_2 |
ENET_SERDES_CTRL_SDET_3 |
(0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
test_cfg_val = 0;
if (lp->loopback_mode == LOOPBACK_PHY) {
test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_0_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_1_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_2_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_3_SHIFT));
}
esr_reset(np);
nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
nw64(ctrl_reg, ctrl_val);
nw64(test_cfg_reg, test_cfg_val);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
u32 rxtx_ctrl, glue0;
err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
if (err)
return err;
err = esr_read_glue0(np, i, &glue0);
if (err)
return err;
rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
(2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
ESR_GLUE_CTRL0_THCNT |
ESR_GLUE_CTRL0_BLTIME);
glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
(0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
(0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
(BLTIME_300_CYCLES <<
ESR_GLUE_CTRL0_BLTIME_SHIFT));
err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
if (err)
return err;
err = esr_write_glue0(np, i, glue0);
if (err)
return err;
}
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return -EINVAL;
}
if ((sig & mask) != val) {
int err;
err = serdes_init_1g_serdes(np);
if (!err) {
np->flags &= ~NIU_FLAGS_10G;
np->mac_xcvr = MAC_XCVR_PCS;
} else {
dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
np->port);
return -ENODEV;
}
}
return 0;
}
static int niu_determine_phy_disposition(struct niu *np)
{
struct niu_parent *parent = np->parent;
u8 plat_type = parent->plat_type;
const struct niu_phy_template *tp;
u32 phy_addr_off = 0;
if (plat_type == PLAT_TYPE_NIU) {
switch (np->flags &
(NIU_FLAGS_10G |
NIU_FLAGS_FIBER |
NIU_FLAGS_XCVR_SERDES)) {
case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
/* 10G Serdes */
tp = &phy_template_niu_10g_serdes;
break;
case NIU_FLAGS_XCVR_SERDES:
/* 1G Serdes */
tp = &phy_template_niu_1g_serdes;
break;
case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
/* 10G Fiber */
default:
tp = &phy_template_niu_10g_fiber;
phy_addr_off += np->port;
break;
}
} else {
switch (np->flags &
(NIU_FLAGS_10G |
NIU_FLAGS_FIBER |
NIU_FLAGS_XCVR_SERDES)) {
case 0:
/* 1G copper */
tp = &phy_template_1g_copper;
if (plat_type == PLAT_TYPE_VF_P0)
phy_addr_off = 10;
else if (plat_type == PLAT_TYPE_VF_P1)
phy_addr_off = 26;
phy_addr_off += (np->port ^ 0x3);
break;
case NIU_FLAGS_10G:
/* 10G copper */
tp = &phy_template_1g_copper;
break;
case NIU_FLAGS_FIBER:
/* 1G fiber */
tp = &phy_template_1g_fiber;
break;
case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
/* 10G fiber */
tp = &phy_template_10g_fiber;
if (plat_type == PLAT_TYPE_VF_P0 ||
plat_type == PLAT_TYPE_VF_P1)
phy_addr_off = 8;
phy_addr_off += np->port;
if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
tp = &phy_template_10g_fiber_hotplug;
if (np->port == 0)
phy_addr_off = 8;
if (np->port == 1)
phy_addr_off = 12;
}
break;
case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
case NIU_FLAGS_XCVR_SERDES:
switch(np->port) {
case 0:
case 1:
tp = &phy_template_10g_serdes;
break;
case 2:
case 3:
tp = &phy_template_1g_rgmii;
break;
default:
return -EINVAL;
break;
}
phy_addr_off = niu_atca_port_num[np->port];
break;
default:
return -EINVAL;
}
}
np->phy_ops = tp->ops;
np->phy_addr = tp->phy_addr_base + phy_addr_off;
return 0;
}
static int niu_init_link(struct niu *np)
{
struct niu_parent *parent = np->parent;
int err, ignore;
if (parent->plat_type == PLAT_TYPE_NIU) {
err = niu_xcvr_init(np);
if (err)
return err;
msleep(200);
}
err = niu_serdes_init(np);
if (err)
return err;
msleep(200);
err = niu_xcvr_init(np);
if (!err)
niu_link_status(np, &ignore);
return 0;
}
static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
{
u16 reg0 = addr[4] << 8 | addr[5];
u16 reg1 = addr[2] << 8 | addr[3];
u16 reg2 = addr[0] << 8 | addr[1];
if (np->flags & NIU_FLAGS_XMAC) {
nw64_mac(XMAC_ADDR0, reg0);
nw64_mac(XMAC_ADDR1, reg1);
nw64_mac(XMAC_ADDR2, reg2);
} else {
nw64_mac(BMAC_ADDR0, reg0);
nw64_mac(BMAC_ADDR1, reg1);
nw64_mac(BMAC_ADDR2, reg2);
}
}
static int niu_num_alt_addr(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return XMAC_NUM_ALT_ADDR;
else
return BMAC_NUM_ALT_ADDR;
}
static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
{
u16 reg0 = addr[4] << 8 | addr[5];
u16 reg1 = addr[2] << 8 | addr[3];
u16 reg2 = addr[0] << 8 | addr[1];
if (index >= niu_num_alt_addr(np))
return -EINVAL;
if (np->flags & NIU_FLAGS_XMAC) {
nw64_mac(XMAC_ALT_ADDR0(index), reg0);
nw64_mac(XMAC_ALT_ADDR1(index), reg1);
nw64_mac(XMAC_ALT_ADDR2(index), reg2);
} else {
nw64_mac(BMAC_ALT_ADDR0(index), reg0);
nw64_mac(BMAC_ALT_ADDR1(index), reg1);
nw64_mac(BMAC_ALT_ADDR2(index), reg2);
}
return 0;
}
static int niu_enable_alt_mac(struct niu *np, int index, int on)
{
unsigned long reg;
u64 val, mask;
if (index >= niu_num_alt_addr(np))
return -EINVAL;
if (np->flags & NIU_FLAGS_XMAC) {
reg = XMAC_ADDR_CMPEN;
mask = 1 << index;
} else {
reg = BMAC_ADDR_CMPEN;
mask = 1 << (index + 1);
}
val = nr64_mac(reg);
if (on)
val |= mask;
else
val &= ~mask;
nw64_mac(reg, val);
return 0;
}
static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
int num, int mac_pref)
{
u64 val = nr64_mac(reg);
val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
val |= num;
if (mac_pref)
val |= HOST_INFO_MPR;
nw64_mac(reg, val);
}
static int __set_rdc_table_num(struct niu *np,
int xmac_index, int bmac_index,
int rdc_table_num, int mac_pref)
{
unsigned long reg;
if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
return -EINVAL;
if (np->flags & NIU_FLAGS_XMAC)
reg = XMAC_HOST_INFO(xmac_index);
else
reg = BMAC_HOST_INFO(bmac_index);
__set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
return 0;
}
static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
int mac_pref)
{
return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
}
static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
int mac_pref)
{
return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
}
static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
int table_num, int mac_pref)
{
if (idx >= niu_num_alt_addr(np))
return -EINVAL;
return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
}
static u64 vlan_entry_set_parity(u64 reg_val)
{
u64 port01_mask;
u64 port23_mask;
port01_mask = 0x00ff;
port23_mask = 0xff00;
if (hweight64(reg_val & port01_mask) & 1)
reg_val |= ENET_VLAN_TBL_PARITY0;
else
reg_val &= ~ENET_VLAN_TBL_PARITY0;
if (hweight64(reg_val & port23_mask) & 1)
reg_val |= ENET_VLAN_TBL_PARITY1;
else
reg_val &= ~ENET_VLAN_TBL_PARITY1;
return reg_val;
}
static void vlan_tbl_write(struct niu *np, unsigned long index,
int port, int vpr, int rdc_table)
{
u64 reg_val = nr64(ENET_VLAN_TBL(index));
reg_val &= ~((ENET_VLAN_TBL_VPR |
ENET_VLAN_TBL_VLANRDCTBLN) <<
ENET_VLAN_TBL_SHIFT(port));
if (vpr)
reg_val |= (ENET_VLAN_TBL_VPR <<
ENET_VLAN_TBL_SHIFT(port));
reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
reg_val = vlan_entry_set_parity(reg_val);
nw64(ENET_VLAN_TBL(index), reg_val);
}
static void vlan_tbl_clear(struct niu *np)
{
int i;
for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
nw64(ENET_VLAN_TBL(i), 0);
}
static int tcam_wait_bit(struct niu *np, u64 bit)
{
int limit = 1000;
while (--limit > 0) {
if (nr64(TCAM_CTL) & bit)
break;
udelay(1);
}
if (limit < 0)
return -ENODEV;
return 0;
}
static int tcam_flush(struct niu *np, int index)
{
nw64(TCAM_KEY_0, 0x00);
nw64(TCAM_KEY_MASK_0, 0xff);
nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
return tcam_wait_bit(np, TCAM_CTL_STAT);
}
#if 0
static int tcam_read(struct niu *np, int index,
u64 *key, u64 *mask)
{
int err;
nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
err = tcam_wait_bit(np, TCAM_CTL_STAT);
if (!err) {
key[0] = nr64(TCAM_KEY_0);
key[1] = nr64(TCAM_KEY_1);
key[2] = nr64(TCAM_KEY_2);
key[3] = nr64(TCAM_KEY_3);
mask[0] = nr64(TCAM_KEY_MASK_0);
mask[1] = nr64(TCAM_KEY_MASK_1);
mask[2] = nr64(TCAM_KEY_MASK_2);
mask[3] = nr64(TCAM_KEY_MASK_3);
}
return err;
}
#endif
static int tcam_write(struct niu *np, int index,
u64 *key, u64 *mask)
{
nw64(TCAM_KEY_0, key[0]);
nw64(TCAM_KEY_1, key[1]);
nw64(TCAM_KEY_2, key[2]);
nw64(TCAM_KEY_3, key[3]);
nw64(TCAM_KEY_MASK_0, mask[0]);
nw64(TCAM_KEY_MASK_1, mask[1]);
nw64(TCAM_KEY_MASK_2, mask[2]);
nw64(TCAM_KEY_MASK_3, mask[3]);
nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
return tcam_wait_bit(np, TCAM_CTL_STAT);
}
#if 0
static int tcam_assoc_read(struct niu *np, int index, u64 *data)
{
int err;
nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
err = tcam_wait_bit(np, TCAM_CTL_STAT);
if (!err)
*data = nr64(TCAM_KEY_1);
return err;
}
#endif
static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
{
nw64(TCAM_KEY_1, assoc_data);
nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
return tcam_wait_bit(np, TCAM_CTL_STAT);
}
static void tcam_enable(struct niu *np, int on)
{
u64 val = nr64(FFLP_CFG_1);
if (on)
val &= ~FFLP_CFG_1_TCAM_DIS;
else
val |= FFLP_CFG_1_TCAM_DIS;
nw64(FFLP_CFG_1, val);
}
static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
{
u64 val = nr64(FFLP_CFG_1);
val &= ~(FFLP_CFG_1_FFLPINITDONE |
FFLP_CFG_1_CAMLAT |
FFLP_CFG_1_CAMRATIO);
val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
nw64(FFLP_CFG_1, val);
val = nr64(FFLP_CFG_1);
val |= FFLP_CFG_1_FFLPINITDONE;
nw64(FFLP_CFG_1, val);
}
static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
int on)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_ETHERTYPE1 ||
class > CLASS_CODE_ETHERTYPE2)
return -EINVAL;
reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
val = nr64(reg);
if (on)
val |= L2_CLS_VLD;
else
val &= ~L2_CLS_VLD;
nw64(reg, val);
return 0;
}
#if 0
static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
u64 ether_type)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_ETHERTYPE1 ||
class > CLASS_CODE_ETHERTYPE2 ||
(ether_type & ~(u64)0xffff) != 0)
return -EINVAL;
reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
val = nr64(reg);
val &= ~L2_CLS_ETYPE;
val |= (ether_type << L2_CLS_ETYPE_SHIFT);
nw64(reg, val);
return 0;
}
#endif
static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
int on)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_USER_PROG1 ||
class > CLASS_CODE_USER_PROG4)
return -EINVAL;
reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
val = nr64(reg);
if (on)
val |= L3_CLS_VALID;
else
val &= ~L3_CLS_VALID;
nw64(reg, val);
return 0;
}
#if 0
static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
int ipv6, u64 protocol_id,
u64 tos_mask, u64 tos_val)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_USER_PROG1 ||
class > CLASS_CODE_USER_PROG4 ||
(protocol_id & ~(u64)0xff) != 0 ||
(tos_mask & ~(u64)0xff) != 0 ||
(tos_val & ~(u64)0xff) != 0)
return -EINVAL;
reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
val = nr64(reg);
val &= ~(L3_CLS_IPVER | L3_CLS_PID |
L3_CLS_TOSMASK | L3_CLS_TOS);
if (ipv6)
val |= L3_CLS_IPVER;
val |= (protocol_id << L3_CLS_PID_SHIFT);
val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
val |= (tos_val << L3_CLS_TOS_SHIFT);
nw64(reg, val);
return 0;
}
#endif
static int tcam_early_init(struct niu *np)
{
unsigned long i;
int err;
tcam_enable(np, 0);
tcam_set_lat_and_ratio(np,
DEFAULT_TCAM_LATENCY,
DEFAULT_TCAM_ACCESS_RATIO);
for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
err = tcam_user_eth_class_enable(np, i, 0);
if (err)
return err;
}
for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
err = tcam_user_ip_class_enable(np, i, 0);
if (err)
return err;
}
return 0;
}
static int tcam_flush_all(struct niu *np)
{
unsigned long i;
for (i = 0; i < np->parent->tcam_num_entries; i++) {
int err = tcam_flush(np, i);
if (err)
return err;
}
return 0;
}
static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
{
return ((u64)index | (num_entries == 1 ?
HASH_TBL_ADDR_AUTOINC : 0));
}
#if 0
static int hash_read(struct niu *np, unsigned long partition,
unsigned long index, unsigned long num_entries,
u64 *data)
{
u64 val = hash_addr_regval(index, num_entries);
unsigned long i;
if (partition >= FCRAM_NUM_PARTITIONS ||
index + num_entries > FCRAM_SIZE)
return -EINVAL;
nw64(HASH_TBL_ADDR(partition), val);
for (i = 0; i < num_entries; i++)
data[i] = nr64(HASH_TBL_DATA(partition));
return 0;
}
#endif
static int hash_write(struct niu *np, unsigned long partition,
unsigned long index, unsigned long num_entries,
u64 *data)
{
u64 val = hash_addr_regval(index, num_entries);
unsigned long i;
if (partition >= FCRAM_NUM_PARTITIONS ||
index + (num_entries * 8) > FCRAM_SIZE)
return -EINVAL;
nw64(HASH_TBL_ADDR(partition), val);
for (i = 0; i < num_entries; i++)
nw64(HASH_TBL_DATA(partition), data[i]);
return 0;
}
static void fflp_reset(struct niu *np)
{
u64 val;
nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
udelay(10);
nw64(FFLP_CFG_1, 0);
val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
nw64(FFLP_CFG_1, val);
}
static void fflp_set_timings(struct niu *np)
{
u64 val = nr64(FFLP_CFG_1);
val &= ~FFLP_CFG_1_FFLPINITDONE;
val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
nw64(FFLP_CFG_1, val);
val = nr64(FFLP_CFG_1);
val |= FFLP_CFG_1_FFLPINITDONE;
nw64(FFLP_CFG_1, val);
val = nr64(FCRAM_REF_TMR);
val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
nw64(FCRAM_REF_TMR, val);
}
static int fflp_set_partition(struct niu *np, u64 partition,
u64 mask, u64 base, int enable)
{
unsigned long reg;
u64 val;
if (partition >= FCRAM_NUM_PARTITIONS ||
(mask & ~(u64)0x1f) != 0 ||
(base & ~(u64)0x1f) != 0)
return -EINVAL;
reg = FLW_PRT_SEL(partition);
val = nr64(reg);
val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
val |= (base << FLW_PRT_SEL_BASE_SHIFT);
if (enable)
val |= FLW_PRT_SEL_EXT;
nw64(reg, val);
return 0;
}
static int fflp_disable_all_partitions(struct niu *np)
{
unsigned long i;
for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
int err = fflp_set_partition(np, 0, 0, 0, 0);
if (err)
return err;
}
return 0;
}
static void fflp_llcsnap_enable(struct niu *np, int on)
{
u64 val = nr64(FFLP_CFG_1);
if (on)
val |= FFLP_CFG_1_LLCSNAP;
else
val &= ~FFLP_CFG_1_LLCSNAP;
nw64(FFLP_CFG_1, val);
}
static void fflp_errors_enable(struct niu *np, int on)
{
u64 val = nr64(FFLP_CFG_1);
if (on)
val &= ~FFLP_CFG_1_ERRORDIS;
else
val |= FFLP_CFG_1_ERRORDIS;
nw64(FFLP_CFG_1, val);
}
static int fflp_hash_clear(struct niu *np)
{
struct fcram_hash_ipv4 ent;
unsigned long i;
/* IPV4 hash entry with valid bit clear, rest is don't care. */
memset(&ent, 0, sizeof(ent));
ent.header = HASH_HEADER_EXT;
for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
int err = hash_write(np, 0, i, 1, (u64 *) &ent);
if (err)
return err;
}
return 0;
}
static int fflp_early_init(struct niu *np)
{
struct niu_parent *parent;
unsigned long flags;
int err;
niu_lock_parent(np, flags);
parent = np->parent;
err = 0;
if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
np->port);
if (np->parent->plat_type != PLAT_TYPE_NIU) {
fflp_reset(np);
fflp_set_timings(np);
err = fflp_disable_all_partitions(np);
if (err) {
niudbg(PROBE, "fflp_disable_all_partitions "
"failed, err=%d\n", err);
goto out;
}
}
err = tcam_early_init(np);
if (err) {
niudbg(PROBE, "tcam_early_init failed, err=%d\n",
err);
goto out;
}
fflp_llcsnap_enable(np, 1);
fflp_errors_enable(np, 0);
nw64(H1POLY, 0);
nw64(H2POLY, 0);
err = tcam_flush_all(np);
if (err) {
niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
err);
goto out;
}
if (np->parent->plat_type != PLAT_TYPE_NIU) {
err = fflp_hash_clear(np);
if (err) {
niudbg(PROBE, "fflp_hash_clear failed, "
"err=%d\n", err);
goto out;
}
}
vlan_tbl_clear(np);
niudbg(PROBE, "fflp_early_init: Success\n");
parent->flags |= PARENT_FLGS_CLS_HWINIT;
}
out:
niu_unlock_parent(np, flags);
return err;
}
static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
{
if (class_code < CLASS_CODE_USER_PROG1 ||
class_code > CLASS_CODE_SCTP_IPV6)
return -EINVAL;
nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
return 0;
}
static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
{
if (class_code < CLASS_CODE_USER_PROG1 ||
class_code > CLASS_CODE_SCTP_IPV6)
return -EINVAL;
nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
return 0;
}
static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
u32 offset, u32 size)
{
int i = skb_shinfo(skb)->nr_frags;
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
frag->page = page;
frag->page_offset = offset;
frag->size = size;
skb->len += size;
skb->data_len += size;
skb->truesize += size;
skb_shinfo(skb)->nr_frags = i + 1;
}
static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
{
a >>= PAGE_SHIFT;
a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
return (a & (MAX_RBR_RING_SIZE - 1));
}
static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
struct page ***link)
{
unsigned int h = niu_hash_rxaddr(rp, addr);
struct page *p, **pp;
addr &= PAGE_MASK;
pp = &rp->rxhash[h];
for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
if (p->index == addr) {
*link = pp;
break;
}
}
return p;
}
static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
{
unsigned int h = niu_hash_rxaddr(rp, base);
page->index = base;
page->mapping = (struct address_space *) rp->rxhash[h];
rp->rxhash[h] = page;
}
static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
gfp_t mask, int start_index)
{
struct page *page;
u64 addr;
int i;
page = alloc_page(mask);
if (!page)
return -ENOMEM;
addr = np->ops->map_page(np->device, page, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
niu_hash_page(rp, page, addr);
if (rp->rbr_blocks_per_page > 1)
atomic_add(rp->rbr_blocks_per_page - 1,
&compound_head(page)->_count);
for (i = 0; i < rp->rbr_blocks_per_page; i++) {
__le32 *rbr = &rp->rbr[start_index + i];
*rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
addr += rp->rbr_block_size;
}
return 0;
}
static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
{
int index = rp->rbr_index;
rp->rbr_pending++;
if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
int err = niu_rbr_add_page(np, rp, mask, index);
if (unlikely(err)) {
rp->rbr_pending--;
return;
}
rp->rbr_index += rp->rbr_blocks_per_page;
BUG_ON(rp->rbr_index > rp->rbr_table_size);
if (rp->rbr_index == rp->rbr_table_size)
rp->rbr_index = 0;
if (rp->rbr_pending >= rp->rbr_kick_thresh) {
nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
rp->rbr_pending = 0;
}
}
}
static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
{
unsigned int index = rp->rcr_index;
int num_rcr = 0;
rp->rx_dropped++;
while (1) {
struct page *page, **link;
u64 addr, val;
u32 rcr_size;
num_rcr++;
val = le64_to_cpup(&rp->rcr[index]);
addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
page = niu_find_rxpage(rp, addr, &link);
rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
RCR_ENTRY_PKTBUFSZ_SHIFT];
if ((page->index + PAGE_SIZE) - rcr_size == addr) {
*link = (struct page *) page->mapping;
np->ops->unmap_page(np->device, page->index,
PAGE_SIZE, DMA_FROM_DEVICE);
page->index = 0;
page->mapping = NULL;
__free_page(page);
rp->rbr_refill_pending++;
}
index = NEXT_RCR(rp, index);
if (!(val & RCR_ENTRY_MULTI))
break;
}
rp->rcr_index = index;
return num_rcr;
}
static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
{
unsigned int index = rp->rcr_index;
struct sk_buff *skb;
int len, num_rcr;
skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
if (unlikely(!skb))
return niu_rx_pkt_ignore(np, rp);
num_rcr = 0;
while (1) {
struct page *page, **link;
u32 rcr_size, append_size;
u64 addr, val, off;
num_rcr++;
val = le64_to_cpup(&rp->rcr[index]);
len = (val & RCR_ENTRY_L2_LEN) >>
RCR_ENTRY_L2_LEN_SHIFT;
len -= ETH_FCS_LEN;
addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
page = niu_find_rxpage(rp, addr, &link);
rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
RCR_ENTRY_PKTBUFSZ_SHIFT];
off = addr & ~PAGE_MASK;
append_size = rcr_size;
if (num_rcr == 1) {
int ptype;
off += 2;
append_size -= 2;
ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
if ((ptype == RCR_PKT_TYPE_TCP ||
ptype == RCR_PKT_TYPE_UDP) &&
!(val & (RCR_ENTRY_NOPORT |
RCR_ENTRY_ERROR)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
if (!(val & RCR_ENTRY_MULTI))
append_size = len - skb->len;
niu_rx_skb_append(skb, page, off, append_size);
if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
*link = (struct page *) page->mapping;
np->ops->unmap_page(np->device, page->index,
PAGE_SIZE, DMA_FROM_DEVICE);
page->index = 0;
page->mapping = NULL;
rp->rbr_refill_pending++;
} else
get_page(page);
index = NEXT_RCR(rp, index);
if (!(val & RCR_ENTRY_MULTI))
break;
}
rp->rcr_index = index;
skb_reserve(skb, NET_IP_ALIGN);
__pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
rp->rx_packets++;
rp->rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, np->dev);
netif_receive_skb(skb);
return num_rcr;
}
static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
{
int blocks_per_page = rp->rbr_blocks_per_page;
int err, index = rp->rbr_index;
err = 0;
while (index < (rp->rbr_table_size - blocks_per_page)) {
err = niu_rbr_add_page(np, rp, mask, index);
if (err)
break;
index += blocks_per_page;
}
rp->rbr_index = index;
return err;
}
static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
{
int i;
for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
struct page *page;
page = rp->rxhash[i];
while (page) {
struct page *next = (struct page *) page->mapping;
u64 base = page->index;
np->ops->unmap_page(np->device, base, PAGE_SIZE,
DMA_FROM_DEVICE);
page->index = 0;
page->mapping = NULL;
__free_page(page);
page = next;
}
}
for (i = 0; i < rp->rbr_table_size; i++)
rp->rbr[i] = cpu_to_le32(0);
rp->rbr_index = 0;
}
static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
{
struct tx_buff_info *tb = &rp->tx_buffs[idx];
struct sk_buff *skb = tb->skb;
struct tx_pkt_hdr *tp;
u64 tx_flags;
int i, len;
tp = (struct tx_pkt_hdr *) skb->data;
tx_flags = le64_to_cpup(&tp->flags);
rp->tx_packets++;
rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
((tx_flags & TXHDR_PAD) / 2));
len = skb_headlen(skb);
np->ops->unmap_single(np->device, tb->mapping,
len, DMA_TO_DEVICE);
if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
rp->mark_pending--;
tb->skb = NULL;
do {
idx = NEXT_TX(rp, idx);
len -= MAX_TX_DESC_LEN;
} while (len > 0);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
tb = &rp->tx_buffs[idx];
BUG_ON(tb->skb != NULL);
np->ops->unmap_page(np->device, tb->mapping,
skb_shinfo(skb)->frags[i].size,
DMA_TO_DEVICE);
idx = NEXT_TX(rp, idx);
}
dev_kfree_skb(skb);
return idx;
}
#define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
{
struct netdev_queue *txq;
u16 pkt_cnt, tmp;
int cons, index;
u64 cs;
index = (rp - np->tx_rings);
txq = netdev_get_tx_queue(np->dev, index);
cs = rp->tx_cs;
if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
goto out;
tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
(TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
rp->last_pkt_cnt = tmp;
cons = rp->cons;
niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
np->dev->name, pkt_cnt, cons);
while (pkt_cnt--)
cons = release_tx_packet(np, rp, cons);
rp->cons = cons;
smp_mb();
out:
if (unlikely(netif_tx_queue_stopped(txq) &&
(niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
__netif_tx_lock(txq, smp_processor_id());
if (netif_tx_queue_stopped(txq) &&
(niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
netif_tx_wake_queue(txq);
__netif_tx_unlock(txq);
}
}
static inline void niu_sync_rx_discard_stats(struct niu *np,
struct rx_ring_info *rp,
const int limit)
{
/* This elaborate scheme is needed for reading the RX discard
* counters, as they are only 16-bit and can overflow quickly,
* and because the overflow indication bit is not usable as
* the counter value does not wrap, but remains at max value
* 0xFFFF.
*
* In theory and in practice counters can be lost in between
* reading nr64() and clearing the counter nw64(). For this
* reason, the number of counter clearings nw64() is
* limited/reduced though the limit parameter.
*/
int rx_channel = rp->rx_channel;
u32 misc, wred;
/* RXMISC (Receive Miscellaneous Discard Count), covers the
* following discard events: IPP (Input Port Process),
* FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
* Block Ring) prefetch buffer is empty.
*/
misc = nr64(RXMISC(rx_channel));
if (unlikely((misc & RXMISC_COUNT) > limit)) {
nw64(RXMISC(rx_channel), 0);
rp->rx_errors += misc & RXMISC_COUNT;
if (unlikely(misc & RXMISC_OFLOW))
dev_err(np->device, "rx-%d: Counter overflow "
"RXMISC discard\n", rx_channel);
}
/* WRED (Weighted Random Early Discard) by hardware */
wred = nr64(RED_DIS_CNT(rx_channel));
if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
nw64(RED_DIS_CNT(rx_channel), 0);
rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
if (unlikely(wred & RED_DIS_CNT_OFLOW))
dev_err(np->device, "rx-%d: Counter overflow "
"WRED discard\n", rx_channel);
}
}
static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
{
int qlen, rcr_done = 0, work_done = 0;
struct rxdma_mailbox *mbox = rp->mbox;
u64 stat;
#if 1
stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
#else
stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
#endif
mbox->rx_dma_ctl_stat = 0;
mbox->rcrstat_a = 0;
niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
rcr_done = work_done = 0;
qlen = min(qlen, budget);
while (work_done < qlen) {
rcr_done += niu_process_rx_pkt(np, rp);
work_done++;
}
if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
unsigned int i;
for (i = 0; i < rp->rbr_refill_pending; i++)
niu_rbr_refill(np, rp, GFP_ATOMIC);
rp->rbr_refill_pending = 0;
}
stat = (RX_DMA_CTL_STAT_MEX |
((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
niu_sync_rx_discard_stats(np, rp, 0x7FFF);
return work_done;
}
static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
{
u64 v0 = lp->v0;
u32 tx_vec = (v0 >> 32);
u32 rx_vec = (v0 & 0xffffffff);
int i, work_done = 0;
niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
np->dev->name, (unsigned long long) v0);
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
if (tx_vec & (1 << rp->tx_channel))
niu_tx_work(np, rp);
nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
}
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
if (rx_vec & (1 << rp->rx_channel)) {
int this_work_done;
this_work_done = niu_rx_work(np, rp,
budget);
budget -= this_work_done;
work_done += this_work_done;
}
nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
}
return work_done;
}
static int niu_poll(struct napi_struct *napi, int budget)
{
struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
struct niu *np = lp->np;
int work_done;
work_done = niu_poll_core(np, lp, budget);
if (work_done < budget) {
netif_rx_complete(np->dev, napi);
niu_ldg_rearm(np, lp, 1);
}
return work_done;
}
static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
u64 stat)
{
dev_err(np->device, PFX "%s: RX channel %u errors ( ",
np->dev->name, rp->rx_channel);
if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
printk("RBR_TMOUT ");
if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
printk("RSP_CNT ");
if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
printk("BYTE_EN_BUS ");
if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
printk("RSP_DAT ");
if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
printk("RCR_ACK ");
if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
printk("RCR_SHA_PAR ");
if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
printk("RBR_PRE_PAR ");
if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
printk("CONFIG ");
if (stat & RX_DMA_CTL_STAT_RCRINCON)
printk("RCRINCON ");
if (stat & RX_DMA_CTL_STAT_RCRFULL)
printk("RCRFULL ");
if (stat & RX_DMA_CTL_STAT_RBRFULL)
printk("RBRFULL ");
if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
printk("RBRLOGPAGE ");
if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
printk("CFIGLOGPAGE ");
if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
printk("DC_FIDO ");
printk(")\n");
}
static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
{
u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
int err = 0;
if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
RX_DMA_CTL_STAT_PORT_FATAL))
err = -EINVAL;
if (err) {
dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
np->dev->name, rp->rx_channel,
(unsigned long long) stat);
niu_log_rxchan_errors(np, rp, stat);
}
nw64(RX_DMA_CTL_STAT(rp->rx_channel),
stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
return err;
}
static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
u64 cs)
{
dev_err(np->device, PFX "%s: TX channel %u errors ( ",
np->dev->name, rp->tx_channel);
if (cs & TX_CS_MBOX_ERR)
printk("MBOX ");
if (cs & TX_CS_PKT_SIZE_ERR)
printk("PKT_SIZE ");
if (cs & TX_CS_TX_RING_OFLOW)
printk("TX_RING_OFLOW ");
if (cs & TX_CS_PREF_BUF_PAR_ERR)
printk("PREF_BUF_PAR ");
if (cs & TX_CS_NACK_PREF)
printk("NACK_PREF ");
if (cs & TX_CS_NACK_PKT_RD)
printk("NACK_PKT_RD ");
if (cs & TX_CS_CONF_PART_ERR)
printk("CONF_PART ");
if (cs & TX_CS_PKT_PRT_ERR)
printk("PKT_PTR ");
printk(")\n");
}
static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
{
u64 cs, logh, logl;
cs = nr64(TX_CS(rp->tx_channel));
logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
dev_err(np->device, PFX "%s: TX channel %u error, "
"cs[%llx] logh[%llx] logl[%llx]\n",
np->dev->name, rp->tx_channel,
(unsigned long long) cs,
(unsigned long long) logh,
(unsigned long long) logl);
niu_log_txchan_errors(np, rp, cs);
return -ENODEV;
}
static int niu_mif_interrupt(struct niu *np)
{
u64 mif_status = nr64(MIF_STATUS);
int phy_mdint = 0;
if (np->flags & NIU_FLAGS_XMAC) {
u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
phy_mdint = 1;
}
dev_err(np->device, PFX "%s: MIF interrupt, "
"stat[%llx] phy_mdint(%d)\n",
np->dev->name, (unsigned long long) mif_status, phy_mdint);
return -ENODEV;
}
static void niu_xmac_interrupt(struct niu *np)
{
struct niu_xmac_stats *mp = &np->mac_stats.xmac;
u64 val;
val = nr64_mac(XTXMAC_STATUS);
if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
mp->tx_frames += TXMAC_FRM_CNT_COUNT;
if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
mp->tx_fifo_errors++;
if (val & XTXMAC_STATUS_TXMAC_OFLOW)
mp->tx_overflow_errors++;
if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
mp->tx_max_pkt_size_errors++;
if (val & XTXMAC_STATUS_TXMAC_UFLOW)
mp->tx_underflow_errors++;
val = nr64_mac(XRXMAC_STATUS);
if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
mp->rx_local_faults++;
if (val & XRXMAC_STATUS_RFLT_DET)
mp->rx_remote_faults++;
if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
mp->rx_octets += RXMAC_BT_CNT_COUNT;
if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
if (val & XRXMAC_STATUS_RXUFLOW)
mp->rx_underflows++;
if (val & XRXMAC_STATUS_RXOFLOW)
mp->rx_overflows++;
val = nr64_mac(XMAC_FC_STAT);
if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
mp->pause_off_state++;
if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
mp->pause_on_state++;
if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
mp->pause_received++;
}
static void niu_bmac_interrupt(struct niu *np)
{
struct niu_bmac_stats *mp = &np->mac_stats.bmac;
u64 val;
val = nr64_mac(BTXMAC_STATUS);
if (val & BTXMAC_STATUS_UNDERRUN)
mp->tx_underflow_errors++;
if (val & BTXMAC_STATUS_MAX_PKT_ERR)
mp->tx_max_pkt_size_errors++;
if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
val = nr64_mac(BRXMAC_STATUS);
if (val & BRXMAC_STATUS_OVERFLOW)
mp->rx_overflows++;
if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
if (val & BRXMAC_STATUS_CRC_ERR_EXP)
mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
if (val & BRXMAC_STATUS_LEN_ERR_EXP)
mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
val = nr64_mac(BMAC_CTRL_STATUS);
if (val & BMAC_CTRL_STATUS_NOPAUSE)
mp->pause_off_state++;
if (val & BMAC_CTRL_STATUS_PAUSE)
mp->pause_on_state++;
if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
mp->pause_received++;
}
static int niu_mac_interrupt(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_xmac_interrupt(np);
else
niu_bmac_interrupt(np);
return 0;
}
static void niu_log_device_error(struct niu *np, u64 stat)
{
dev_err(np->device, PFX "%s: Core device errors ( ",
np->dev->name);
if (stat & SYS_ERR_MASK_META2)
printk("META2 ");
if (stat & SYS_ERR_MASK_META1)
printk("META1 ");
if (stat & SYS_ERR_MASK_PEU)
printk("PEU ");
if (stat & SYS_ERR_MASK_TXC)
printk("TXC ");
if (stat & SYS_ERR_MASK_RDMC)
printk("RDMC ");
if (stat & SYS_ERR_MASK_TDMC)
printk("TDMC ");
if (stat & SYS_ERR_MASK_ZCP)
printk("ZCP ");
if (stat & SYS_ERR_MASK_FFLP)
printk("FFLP ");
if (stat & SYS_ERR_MASK_IPP)
printk("IPP ");
if (stat & SYS_ERR_MASK_MAC)
printk("MAC ");
if (stat & SYS_ERR_MASK_SMX)
printk("SMX ");
printk(")\n");
}
static int niu_device_error(struct niu *np)
{
u64 stat = nr64(SYS_ERR_STAT);
dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
np->dev->name, (unsigned long long) stat);
niu_log_device_error(np, stat);
return -ENODEV;
}
static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
u64 v0, u64 v1, u64 v2)
{
int i, err = 0;
lp->v0 = v0;
lp->v1 = v1;
lp->v2 = v2;
if (v1 & 0x00000000ffffffffULL) {
u32 rx_vec = (v1 & 0xffffffff);
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
if (rx_vec & (1 << rp->rx_channel)) {
int r = niu_rx_error(np, rp);
if (r) {
err = r;
} else {
if (!v0)
nw64(RX_DMA_CTL_STAT(rp->rx_channel),
RX_DMA_CTL_STAT_MEX);
}
}
}
}
if (v1 & 0x7fffffff00000000ULL) {
u32 tx_vec = (v1 >> 32) & 0x7fffffff;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
if (tx_vec & (1 << rp->tx_channel)) {
int r = niu_tx_error(np, rp);
if (r)
err = r;
}
}
}
if ((v0 | v1) & 0x8000000000000000ULL) {
int r = niu_mif_interrupt(np);
if (r)
err = r;
}
if (v2) {
if (v2 & 0x01ef) {
int r = niu_mac_interrupt(np);
if (r)
err = r;
}
if (v2 & 0x0210) {
int r = niu_device_error(np);
if (r)
err = r;
}
}
if (err)
niu_enable_interrupts(np, 0);
return err;
}
static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
int ldn)
{
struct rxdma_mailbox *mbox = rp->mbox;
u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
RX_DMA_CTL_STAT_RCRTO);
nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
np->dev->name, (unsigned long long) stat);
}
static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
int ldn)
{
rp->tx_cs = nr64(TX_CS(rp->tx_channel));
niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
np->dev->name, (unsigned long long) rp->tx_cs);
}
static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
{
struct niu_parent *parent = np->parent;
u32 rx_vec, tx_vec;
int i;
tx_vec = (v0 >> 32);
rx_vec = (v0 & 0xffffffff);
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
int ldn = LDN_RXDMA(rp->rx_channel);
if (parent->ldg_map[ldn] != ldg)
continue;
nw64(LD_IM0(ldn), LD_IM0_MASK);
if (rx_vec & (1 << rp->rx_channel))
niu_rxchan_intr(np, rp, ldn);
}
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
int ldn = LDN_TXDMA(rp->tx_channel);
if (parent->ldg_map[ldn] != ldg)
continue;
nw64(LD_IM0(ldn), LD_IM0_MASK);
if (tx_vec & (1 << rp->tx_channel))
niu_txchan_intr(np, rp, ldn);
}
}
static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
u64 v0, u64 v1, u64 v2)
{
if (likely(netif_rx_schedule_prep(np->dev, &lp->napi))) {
lp->v0 = v0;
lp->v1 = v1;
lp->v2 = v2;
__niu_fastpath_interrupt(np, lp->ldg_num, v0);
__netif_rx_schedule(np->dev, &lp->napi);
}
}
static irqreturn_t niu_interrupt(int irq, void *dev_id)
{
struct niu_ldg *lp = dev_id;
struct niu *np = lp->np;
int ldg = lp->ldg_num;
unsigned long flags;
u64 v0, v1, v2;
if (netif_msg_intr(np))
printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
lp, ldg);
spin_lock_irqsave(&np->lock, flags);
v0 = nr64(LDSV0(ldg));
v1 = nr64(LDSV1(ldg));
v2 = nr64(LDSV2(ldg));
if (netif_msg_intr(np))
printk("v0[%llx] v1[%llx] v2[%llx]\n",
(unsigned long long) v0,
(unsigned long long) v1,
(unsigned long long) v2);
if (unlikely(!v0 && !v1 && !v2)) {
spin_unlock_irqrestore(&np->lock, flags);
return IRQ_NONE;
}
if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
if (err)
goto out;
}
if (likely(v0 & ~((u64)1 << LDN_MIF)))
niu_schedule_napi(np, lp, v0, v1, v2);
else
niu_ldg_rearm(np, lp, 1);
out:
spin_unlock_irqrestore(&np->lock, flags);
return IRQ_HANDLED;
}
static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
{
if (rp->mbox) {
np->ops->free_coherent(np->device,
sizeof(struct rxdma_mailbox),
rp->mbox, rp->mbox_dma);
rp->mbox = NULL;
}
if (rp->rcr) {
np->ops->free_coherent(np->device,
MAX_RCR_RING_SIZE * sizeof(__le64),
rp->rcr, rp->rcr_dma);
rp->rcr = NULL;
rp->rcr_table_size = 0;
rp->rcr_index = 0;
}
if (rp->rbr) {
niu_rbr_free(np, rp);
np->ops->free_coherent(np->device,
MAX_RBR_RING_SIZE * sizeof(__le32),
rp->rbr, rp->rbr_dma);
rp->rbr = NULL;
rp->rbr_table_size = 0;
rp->rbr_index = 0;
}
kfree(rp->rxhash);
rp->rxhash = NULL;
}
static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
{
if (rp->mbox) {
np->ops->free_coherent(np->device,
sizeof(struct txdma_mailbox),
rp->mbox, rp->mbox_dma);
rp->mbox = NULL;
}
if (rp->descr) {
int i;
for (i = 0; i < MAX_TX_RING_SIZE; i++) {
if (rp->tx_buffs[i].skb)
(void) release_tx_packet(np, rp, i);
}
np->ops->free_coherent(np->device,
MAX_TX_RING_SIZE * sizeof(__le64),
rp->descr, rp->descr_dma);
rp->descr = NULL;
rp->pending = 0;
rp->prod = 0;
rp->cons = 0;
rp->wrap_bit = 0;
}
}
static void niu_free_channels(struct niu *np)
{
int i;
if (np->rx_rings) {
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_free_rx_ring_info(np, rp);
}
kfree(np->rx_rings);
np->rx_rings = NULL;
np->num_rx_rings = 0;
}
if (np->tx_rings) {
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
niu_free_tx_ring_info(np, rp);
}
kfree(np->tx_rings);
np->tx_rings = NULL;
np->num_tx_rings = 0;
}
}
static int niu_alloc_rx_ring_info(struct niu *np,
struct rx_ring_info *rp)
{
BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
GFP_KERNEL);
if (!rp->rxhash)
return -ENOMEM;
rp->mbox = np->ops->alloc_coherent(np->device,
sizeof(struct rxdma_mailbox),
&rp->mbox_dma, GFP_KERNEL);
if (!rp->mbox)
return -ENOMEM;
if ((unsigned long)rp->mbox & (64UL - 1)) {
dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
"RXDMA mailbox %p\n", np->dev->name, rp->mbox);
return -EINVAL;
}
rp->rcr = np->ops->alloc_coherent(np->device,
MAX_RCR_RING_SIZE * sizeof(__le64),
&rp->rcr_dma, GFP_KERNEL);
if (!rp->rcr)
return -ENOMEM;
if ((unsigned long)rp->rcr & (64UL - 1)) {
dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
"RXDMA RCR table %p\n", np->dev->name, rp->rcr);
return -EINVAL;
}
rp->rcr_table_size = MAX_RCR_RING_SIZE;
rp->rcr_index = 0;
rp->rbr = np->ops->alloc_coherent(np->device,
MAX_RBR_RING_SIZE * sizeof(__le32),
&rp->rbr_dma, GFP_KERNEL);
if (!rp->rbr)
return -ENOMEM;
if ((unsigned long)rp->rbr & (64UL - 1)) {
dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
"RXDMA RBR table %p\n", np->dev->name, rp->rbr);
return -EINVAL;
}
rp->rbr_table_size = MAX_RBR_RING_SIZE;
rp->rbr_index = 0;
rp->rbr_pending = 0;
return 0;
}
static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
{
int mtu = np->dev->mtu;
/* These values are recommended by the HW designers for fair
* utilization of DRR amongst the rings.
*/
rp->max_burst = mtu + 32;
if (rp->max_burst > 4096)
rp->max_burst = 4096;
}
static int niu_alloc_tx_ring_info(struct niu *np,
struct tx_ring_info *rp)
{
BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
rp->mbox = np->ops->alloc_coherent(np->device,
sizeof(struct txdma_mailbox),
&rp->mbox_dma, GFP_KERNEL);
if (!rp->mbox)
return -ENOMEM;
if ((unsigned long)rp->mbox & (64UL - 1)) {
dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
"TXDMA mailbox %p\n", np->dev->name, rp->mbox);
return -EINVAL;
}
rp->descr = np->ops->alloc_coherent(np->device,
MAX_TX_RING_SIZE * sizeof(__le64),
&rp->descr_dma, GFP_KERNEL);
if (!rp->descr)
return -ENOMEM;
if ((unsigned long)rp->descr & (64UL - 1)) {
dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
"TXDMA descr table %p\n", np->dev->name, rp->descr);
return -EINVAL;
}
rp->pending = MAX_TX_RING_SIZE;
rp->prod = 0;
rp->cons = 0;
rp->wrap_bit = 0;
/* XXX make these configurable... XXX */
rp->mark_freq = rp->pending / 4;
niu_set_max_burst(np, rp);
return 0;
}
static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
{
u16 bss;
bss = min(PAGE_SHIFT, 15);
rp->rbr_block_size = 1 << bss;
rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
rp->rbr_sizes[0] = 256;
rp->rbr_sizes[1] = 1024;
if (np->dev->mtu > ETH_DATA_LEN) {
switch (PAGE_SIZE) {
case 4 * 1024:
rp->rbr_sizes[2] = 4096;
break;
default:
rp->rbr_sizes[2] = 8192;
break;
}
} else {
rp->rbr_sizes[2] = 2048;
}
rp->rbr_sizes[3] = rp->rbr_block_size;
}
static int niu_alloc_channels(struct niu *np)
{
struct niu_parent *parent = np->parent;
int first_rx_channel, first_tx_channel;
int i, port, err;
port = np->port;
first_rx_channel = first_tx_channel = 0;
for (i = 0; i < port; i++) {
first_rx_channel += parent->rxchan_per_port[i];
first_tx_channel += parent->txchan_per_port[i];
}
np->num_rx_rings = parent->rxchan_per_port[port];
np->num_tx_rings = parent->txchan_per_port[port];
np->dev->real_num_tx_queues = np->num_tx_rings;
np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
GFP_KERNEL);
err = -ENOMEM;
if (!np->rx_rings)
goto out_err;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
rp->np = np;
rp->rx_channel = first_rx_channel + i;
err = niu_alloc_rx_ring_info(np, rp);
if (err)
goto out_err;
niu_size_rbr(np, rp);
/* XXX better defaults, configurable, etc... XXX */
rp->nonsyn_window = 64;
rp->nonsyn_threshold = rp->rcr_table_size - 64;
rp->syn_window = 64;
rp->syn_threshold = rp->rcr_table_size - 64;
rp->rcr_pkt_threshold = 16;
rp->rcr_timeout = 8;
rp->rbr_kick_thresh = RBR_REFILL_MIN;
if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
err = niu_rbr_fill(np, rp, GFP_KERNEL);
if (err)
return err;
}
np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
GFP_KERNEL);
err = -ENOMEM;
if (!np->tx_rings)
goto out_err;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
rp->np = np;
rp->tx_channel = first_tx_channel + i;
err = niu_alloc_tx_ring_info(np, rp);
if (err)
goto out_err;
}
return 0;
out_err:
niu_free_channels(np);
return err;
}
static int niu_tx_cs_sng_poll(struct niu *np, int channel)
{
int limit = 1000;
while (--limit > 0) {
u64 val = nr64(TX_CS(channel));
if (val & TX_CS_SNG_STATE)
return 0;
}
return -ENODEV;
}
static int niu_tx_channel_stop(struct niu *np, int channel)
{
u64 val = nr64(TX_CS(channel));
val |= TX_CS_STOP_N_GO;
nw64(TX_CS(channel), val);
return niu_tx_cs_sng_poll(np, channel);
}
static int niu_tx_cs_reset_poll(struct niu *np, int channel)
{
int limit = 1000;
while (--limit > 0) {
u64 val = nr64(TX_CS(channel));
if (!(val & TX_CS_RST))
return 0;
}
return -ENODEV;
}
static int niu_tx_channel_reset(struct niu *np, int channel)
{
u64 val = nr64(TX_CS(channel));
int err;
val |= TX_CS_RST;
nw64(TX_CS(channel), val);
err = niu_tx_cs_reset_poll(np, channel);
if (!err)
nw64(TX_RING_KICK(channel), 0);
return err;
}
static int niu_tx_channel_lpage_init(struct niu *np, int channel)
{
u64 val;
nw64(TX_LOG_MASK1(channel), 0);
nw64(TX_LOG_VAL1(channel), 0);
nw64(TX_LOG_MASK2(channel), 0);
nw64(TX_LOG_VAL2(channel), 0);
nw64(TX_LOG_PAGE_RELO1(channel), 0);
nw64(TX_LOG_PAGE_RELO2(channel), 0);
nw64(TX_LOG_PAGE_HDL(channel), 0);
val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
nw64(TX_LOG_PAGE_VLD(channel), val);
/* XXX TXDMA 32bit mode? XXX */
return 0;
}
static void niu_txc_enable_port(struct niu *np, int on)
{
unsigned long flags;
u64 val, mask;
niu_lock_parent(np, flags);
val = nr64(TXC_CONTROL);
mask = (u64)1 << np->port;
if (on) {
val |= TXC_CONTROL_ENABLE | mask;
} else {
val &= ~mask;
if ((val & ~TXC_CONTROL_ENABLE) == 0)
val &= ~TXC_CONTROL_ENABLE;
}
nw64(TXC_CONTROL, val);
niu_unlock_parent(np, flags);
}
static void niu_txc_set_imask(struct niu *np, u64 imask)
{
unsigned long flags;
u64 val;
niu_lock_parent(np, flags);
val = nr64(TXC_INT_MASK);
val &= ~TXC_INT_MASK_VAL(np->port);
val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
niu_unlock_parent(np, flags);
}
static void niu_txc_port_dma_enable(struct niu *np, int on)
{
u64 val = 0;
if (on) {
int i;
for (i = 0; i < np->num_tx_rings; i++)
val |= (1 << np->tx_rings[i].tx_channel);
}
nw64(TXC_PORT_DMA(np->port), val);
}
static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
{
int err, channel = rp->tx_channel;
u64 val, ring_len;
err = niu_tx_channel_stop(np, channel);
if (err)
return err;
err = niu_tx_channel_reset(np, channel);
if (err)
return err;
err = niu_tx_channel_lpage_init(np, channel);
if (err)
return err;
nw64(TXC_DMA_MAX(channel), rp->max_burst);
nw64(TX_ENT_MSK(channel), 0);
if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
TX_RNG_CFIG_STADDR)) {
dev_err(np->device, PFX "%s: TX ring channel %d "
"DMA addr (%llx) is not aligned.\n",
np->dev->name, channel,
(unsigned long long) rp->descr_dma);
return -EINVAL;
}
/* The length field in TX_RNG_CFIG is measured in 64-byte
* blocks. rp->pending is the number of TX descriptors in
* our ring, 8 bytes each, thus we divide by 8 bytes more
* to get the proper value the chip wants.
*/
ring_len = (rp->pending / 8);
val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
rp->descr_dma);
nw64(TX_RNG_CFIG(channel), val);
if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
dev_err(np->device, PFX "%s: TX ring channel %d "
"MBOX addr (%llx) is has illegal bits.\n",
np->dev->name, channel,
(unsigned long long) rp->mbox_dma);
return -EINVAL;
}
nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
nw64(TX_CS(channel), 0);
rp->last_pkt_cnt = 0;
return 0;
}
static void niu_init_rdc_groups(struct niu *np)
{
struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
int i, first_table_num = tp->first_table_num;
for (i = 0; i < tp->num_tables; i++) {
struct rdc_table *tbl = &tp->tables[i];
int this_table = first_table_num + i;
int slot;
for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
nw64(RDC_TBL(this_table, slot),
tbl->rxdma_channel[slot]);
}
nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
}
static void niu_init_drr_weight(struct niu *np)
{
int type = phy_decode(np->parent->port_phy, np->port);
u64 val;
switch (type) {
case PORT_TYPE_10G:
val = PT_DRR_WEIGHT_DEFAULT_10G;
break;
case PORT_TYPE_1G:
default:
val = PT_DRR_WEIGHT_DEFAULT_1G;
break;
}
nw64(PT_DRR_WT(np->port), val);
}
static int niu_init_hostinfo(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
int i, err, num_alt = niu_num_alt_addr(np);
int first_rdc_table = tp->first_table_num;
err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
if (err)
return err;
err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
if (err)
return err;
for (i = 0; i < num_alt; i++) {
err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
if (err)
return err;
}
return 0;
}
static int niu_rx_channel_reset(struct niu *np, int channel)
{
return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
RXDMA_CFIG1_RST, 1000, 10,
"RXDMA_CFIG1");
}
static int niu_rx_channel_lpage_init(struct niu *np, int channel)
{
u64 val;
nw64(RX_LOG_MASK1(channel), 0);
nw64(RX_LOG_VAL1(channel), 0);
nw64(RX_LOG_MASK2(channel), 0);
nw64(RX_LOG_VAL2(channel), 0);
nw64(RX_LOG_PAGE_RELO1(channel), 0);
nw64(RX_LOG_PAGE_RELO2(channel), 0);
nw64(RX_LOG_PAGE_HDL(channel), 0);
val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
nw64(RX_LOG_PAGE_VLD(channel), val);
return 0;
}
static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
{
u64 val;
val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
nw64(RDC_RED_PARA(rp->rx_channel), val);
}
static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
{
u64 val = 0;
switch (rp->rbr_block_size) {
case 4 * 1024:
val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
case 8 * 1024:
val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
case 16 * 1024:
val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
case 32 * 1024:
val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
default:
return -EINVAL;
}
val |= RBR_CFIG_B_VLD2;
switch (rp->rbr_sizes[2]) {
case 2 * 1024:
val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
case 4 * 1024:
val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
case 8 * 1024:
val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
case 16 * 1024:
val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
default:
return -EINVAL;
}
val |= RBR_CFIG_B_VLD1;
switch (rp->rbr_sizes[1]) {
case 1 * 1024:
val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
case 2 * 1024:
val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
case 4 * 1024:
val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
case 8 * 1024:
val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
default:
return -EINVAL;
}
val |= RBR_CFIG_B_VLD0;
switch (rp->rbr_sizes[0]) {
case 256:
val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
case 512:
val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
case 1 * 1024:
val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
case 2 * 1024:
val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
default:
return -EINVAL;
}
*ret = val;
return 0;
}
static int niu_enable_rx_channel(struct niu *np, int channel, int on)
{
u64 val = nr64(RXDMA_CFIG1(channel));
int limit;
if (on)
val |= RXDMA_CFIG1_EN;
else
val &= ~RXDMA_CFIG1_EN;
nw64(RXDMA_CFIG1(channel), val);
limit = 1000;
while (--limit > 0) {
if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
break;
udelay(10);
}
if (limit <= 0)
return -ENODEV;
return 0;
}
static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
{
int err, channel = rp->rx_channel;
u64 val;
err = niu_rx_channel_reset(np, channel);
if (err)
return err;
err = niu_rx_channel_lpage_init(np, channel);
if (err)
return err;
niu_rx_channel_wred_init(np, rp);
nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
nw64(RX_DMA_CTL_STAT(channel),
(RX_DMA_CTL_STAT_MEX |
RX_DMA_CTL_STAT_RCRTHRES |
RX_DMA_CTL_STAT_RCRTO |
RX_DMA_CTL_STAT_RBR_EMPTY));
nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
nw64(RBR_CFIG_A(channel),
((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
(rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
err = niu_compute_rbr_cfig_b(rp, &val);
if (err)
return err;
nw64(RBR_CFIG_B(channel), val);
nw64(RCRCFIG_A(channel),
((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
(rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
nw64(RCRCFIG_B(channel),
((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
RCRCFIG_B_ENTOUT |
((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
err = niu_enable_rx_channel(np, channel, 1);
if (err)
return err;
nw64(RBR_KICK(channel), rp->rbr_index);
val = nr64(RX_DMA_CTL_STAT(channel));
val |= RX_DMA_CTL_STAT_RBR_EMPTY;
nw64(RX_DMA_CTL_STAT(channel), val);
return 0;
}
static int niu_init_rx_channels(struct niu *np)
{
unsigned long flags;
u64 seed = jiffies_64;
int err, i;
niu_lock_parent(np, flags);
nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
niu_unlock_parent(np, flags);
/* XXX RXDMA 32bit mode? XXX */
niu_init_rdc_groups(np);
niu_init_drr_weight(np);
err = niu_init_hostinfo(np);
if (err)
return err;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
err = niu_init_one_rx_channel(np, rp);
if (err)
return err;
}
return 0;
}
static int niu_set_ip_frag_rule(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_classifier *cp = &np->clas;
struct niu_tcam_entry *tp;
int index, err;
/* XXX fix this allocation scheme XXX */
index = cp->tcam_index;
tp = &parent->tcam[index];
/* Note that the noport bit is the same in both ipv4 and
* ipv6 format TCAM entries.
*/
memset(tp, 0, sizeof(*tp));
tp->key[1] = TCAM_V4KEY1_NOPORT;
tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
err = tcam_write(np, index, tp->key, tp->key_mask);
if (err)
return err;
err = tcam_assoc_write(np, index, tp->assoc_data);
if (err)
return err;
return 0;
}
static int niu_init_classifier_hw(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_classifier *cp = &np->clas;
int i, err;
nw64(H1POLY, cp->h1_init);
nw64(H2POLY, cp->h2_init);
err = niu_init_hostinfo(np);
if (err)
return err;
for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
vlan_tbl_write(np, i, np->port,
vp->vlan_pref, vp->rdc_num);
}
for (i = 0; i < cp->num_alt_mac_mappings; i++) {
struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
ap->rdc_num, ap->mac_pref);
if (err)
return err;
}
for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
int index = i - CLASS_CODE_USER_PROG1;
err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
if (err)
return err;
err = niu_set_flow_key(np, i, parent->flow_key[index]);
if (err)
return err;
}
err = niu_set_ip_frag_rule(np);
if (err)
return err;
tcam_enable(np, 1);
return 0;
}
static int niu_zcp_write(struct niu *np, int index, u64 *data)
{
nw64(ZCP_RAM_DATA0, data[0]);
nw64(ZCP_RAM_DATA1, data[1]);
nw64(ZCP_RAM_DATA2, data[2]);
nw64(ZCP_RAM_DATA3, data[3]);
nw64(ZCP_RAM_DATA4, data[4]);
nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
nw64(ZCP_RAM_ACC,
(ZCP_RAM_ACC_WRITE |
(0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
(ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
1000, 100);
}
static int niu_zcp_read(struct niu *np, int index, u64 *data)
{
int err;
err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
1000, 100);
if (err) {
dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
"ZCP_RAM_ACC[%llx]\n", np->dev->name,
(unsigned long long) nr64(ZCP_RAM_ACC));
return err;
}
nw64(ZCP_RAM_ACC,
(ZCP_RAM_ACC_READ |
(0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
(ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
1000, 100);
if (err) {
dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
"ZCP_RAM_ACC[%llx]\n", np->dev->name,
(unsigned long long) nr64(ZCP_RAM_ACC));
return err;
}
data[0] = nr64(ZCP_RAM_DATA0);
data[1] = nr64(ZCP_RAM_DATA1);
data[2] = nr64(ZCP_RAM_DATA2);
data[3] = nr64(ZCP_RAM_DATA3);
data[4] = nr64(ZCP_RAM_DATA4);
return 0;
}
static void niu_zcp_cfifo_reset(struct niu *np)
{
u64 val = nr64(RESET_CFIFO);
val |= RESET_CFIFO_RST(np->port);
nw64(RESET_CFIFO, val);
udelay(10);
val &= ~RESET_CFIFO_RST(np->port);
nw64(RESET_CFIFO, val);
}
static int niu_init_zcp(struct niu *np)
{
u64 data[5], rbuf[5];
int i, max, err;
if (np->parent->plat_type != PLAT_TYPE_NIU) {
if (np->port == 0 || np->port == 1)
max = ATLAS_P0_P1_CFIFO_ENTRIES;
else
max = ATLAS_P2_P3_CFIFO_ENTRIES;
} else
max = NIU_CFIFO_ENTRIES;
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
data[4] = 0;
for (i = 0; i < max; i++) {
err = niu_zcp_write(np, i, data);
if (err)
return err;
err = niu_zcp_read(np, i, rbuf);
if (err)
return err;
}
niu_zcp_cfifo_reset(np);
nw64(CFIFO_ECC(np->port), 0);
nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
(void) nr64(ZCP_INT_STAT);
nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
return 0;
}
static void niu_ipp_write(struct niu *np, int index, u64 *data)
{
u64 val = nr64_ipp(IPP_CFIG);
nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
nw64_ipp(IPP_DFIFO_WR_PTR, index);
nw64_ipp(IPP_DFIFO_WR0, data[0]);
nw64_ipp(IPP_DFIFO_WR1, data[1]);
nw64_ipp(IPP_DFIFO_WR2, data[2]);
nw64_ipp(IPP_DFIFO_WR3, data[3]);
nw64_ipp(IPP_DFIFO_WR4, data[4]);
nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
}
static void niu_ipp_read(struct niu *np, int index, u64 *data)
{
nw64_ipp(IPP_DFIFO_RD_PTR, index);
data[0] = nr64_ipp(IPP_DFIFO_RD0);
data[1] = nr64_ipp(IPP_DFIFO_RD1);
data[2] = nr64_ipp(IPP_DFIFO_RD2);
data[3] = nr64_ipp(IPP_DFIFO_RD3);
data[4] = nr64_ipp(IPP_DFIFO_RD4);
}
static int niu_ipp_reset(struct niu *np)
{
return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
1000, 100, "IPP_CFIG");
}
static int niu_init_ipp(struct niu *np)
{
u64 data[5], rbuf[5], val;
int i, max, err;
if (np->parent->plat_type != PLAT_TYPE_NIU) {
if (np->port == 0 || np->port == 1)
max = ATLAS_P0_P1_DFIFO_ENTRIES;
else
max = ATLAS_P2_P3_DFIFO_ENTRIES;
} else
max = NIU_DFIFO_ENTRIES;
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
data[4] = 0;
for (i = 0; i < max; i++) {
niu_ipp_write(np, i, data);
niu_ipp_read(np, i, rbuf);
}
(void) nr64_ipp(IPP_INT_STAT);
(void) nr64_ipp(IPP_INT_STAT);
err = niu_ipp_reset(np);
if (err)
return err;
(void) nr64_ipp(IPP_PKT_DIS);
(void) nr64_ipp(IPP_BAD_CS_CNT);
(void) nr64_ipp(IPP_ECC);
(void) nr64_ipp(IPP_INT_STAT);
nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
val = nr64_ipp(IPP_CFIG);
val &= ~IPP_CFIG_IP_MAX_PKT;
val |= (IPP_CFIG_IPP_ENABLE |
IPP_CFIG_DFIFO_ECC_EN |
IPP_CFIG_DROP_BAD_CRC |
IPP_CFIG_CKSUM_EN |
(0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
nw64_ipp(IPP_CFIG, val);
return 0;
}
static void niu_handle_led(struct niu *np, int status)
{
u64 val;
val = nr64_mac(XMAC_CONFIG);
if ((np->flags & NIU_FLAGS_10G) != 0 &&
(np->flags & NIU_FLAGS_FIBER) != 0) {
if (status) {
val |= XMAC_CONFIG_LED_POLARITY;
val &= ~XMAC_CONFIG_FORCE_LED_ON;
} else {
val |= XMAC_CONFIG_FORCE_LED_ON;
val &= ~XMAC_CONFIG_LED_POLARITY;
}
}
nw64_mac(XMAC_CONFIG, val);
}
static void niu_init_xif_xmac(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u64 val;
if (np->flags & NIU_FLAGS_XCVR_SERDES) {
val = nr64(MIF_CONFIG);
val |= MIF_CONFIG_ATCA_GE;
nw64(MIF_CONFIG, val);
}
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
val |= XMAC_CONFIG_TX_OUTPUT_EN;
if (lp->loopback_mode == LOOPBACK_MAC) {
val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
val |= XMAC_CONFIG_LOOPBACK;
} else {
val &= ~XMAC_CONFIG_LOOPBACK;
}
if (np->flags & NIU_FLAGS_10G) {
val &= ~XMAC_CONFIG_LFS_DISABLE;
} else {
val |= XMAC_CONFIG_LFS_DISABLE;
if (!(np->flags & NIU_FLAGS_FIBER) &&
!(np->flags & NIU_FLAGS_XCVR_SERDES))
val |= XMAC_CONFIG_1G_PCS_BYPASS;
else
val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
}
val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
if (lp->active_speed == SPEED_100)
val |= XMAC_CONFIG_SEL_CLK_25MHZ;
else
val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
nw64_mac(XMAC_CONFIG, val);
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_MODE_MASK;
if (np->flags & NIU_FLAGS_10G) {
val |= XMAC_CONFIG_MODE_XGMII;
} else {
if (lp->active_speed == SPEED_100)
val |= XMAC_CONFIG_MODE_MII;
else
val |= XMAC_CONFIG_MODE_GMII;
}
nw64_mac(XMAC_CONFIG, val);
}
static void niu_init_xif_bmac(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u64 val;
val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
if (lp->loopback_mode == LOOPBACK_MAC)
val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
else
val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
if (lp->active_speed == SPEED_1000)
val |= BMAC_XIF_CONFIG_GMII_MODE;
else
val &= ~BMAC_XIF_CONFIG_GMII_MODE;
val &= ~(BMAC_XIF_CONFIG_LINK_LED |
BMAC_XIF_CONFIG_LED_POLARITY);
if (!(np->flags & NIU_FLAGS_10G) &&
!(np->flags & NIU_FLAGS_FIBER) &&
lp->active_speed == SPEED_100)
val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
else
val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
nw64_mac(BMAC_XIF_CONFIG, val);
}
static void niu_init_xif(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_init_xif_xmac(np);
else
niu_init_xif_bmac(np);
}
static void niu_pcs_mii_reset(struct niu *np)
{
int limit = 1000;
u64 val = nr64_pcs(PCS_MII_CTL);
val |= PCS_MII_CTL_RST;
nw64_pcs(PCS_MII_CTL, val);
while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
udelay(100);
val = nr64_pcs(PCS_MII_CTL);
}
}
static void niu_xpcs_reset(struct niu *np)
{
int limit = 1000;
u64 val = nr64_xpcs(XPCS_CONTROL1);
val |= XPCS_CONTROL1_RESET;
nw64_xpcs(XPCS_CONTROL1, val);
while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
udelay(100);
val = nr64_xpcs(XPCS_CONTROL1);
}
}
static int niu_init_pcs(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u64 val;
switch (np->flags & (NIU_FLAGS_10G |
NIU_FLAGS_FIBER |
NIU_FLAGS_XCVR_SERDES)) {
case NIU_FLAGS_FIBER:
/* 1G fiber */
nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
nw64_pcs(PCS_DPATH_MODE, 0);
niu_pcs_mii_reset(np);
break;
case NIU_FLAGS_10G:
case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
/* 10G SERDES */
if (!(np->flags & NIU_FLAGS_XMAC))
return -EINVAL;
/* 10G copper or fiber */
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
nw64_mac(XMAC_CONFIG, val);
niu_xpcs_reset(np);
val = nr64_xpcs(XPCS_CONTROL1);
if (lp->loopback_mode == LOOPBACK_PHY)
val |= XPCS_CONTROL1_LOOPBACK;
else
val &= ~XPCS_CONTROL1_LOOPBACK;
nw64_xpcs(XPCS_CONTROL1, val);
nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
(void) nr64_xpcs(XPCS_SYMERR_CNT01);
(void) nr64_xpcs(XPCS_SYMERR_CNT23);
break;
case NIU_FLAGS_XCVR_SERDES:
/* 1G SERDES */
niu_pcs_mii_reset(np);
nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
nw64_pcs(PCS_DPATH_MODE, 0);
break;
case 0:
/* 1G copper */
case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
/* 1G RGMII FIBER */
nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
niu_pcs_mii_reset(np);
break;
default:
return -EINVAL;
}
return 0;
}
static int niu_reset_tx_xmac(struct niu *np)
{
return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
(XTXMAC_SW_RST_REG_RS |
XTXMAC_SW_RST_SOFT_RST),
1000, 100, "XTXMAC_SW_RST");
}
static int niu_reset_tx_bmac(struct niu *np)
{
int limit;
nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
limit = 1000;
while (--limit >= 0) {
if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
break;
udelay(100);
}
if (limit < 0) {
dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
"BTXMAC_SW_RST[%llx]\n",
np->port,
(unsigned long long) nr64_mac(BTXMAC_SW_RST));
return -ENODEV;
}
return 0;
}
static int niu_reset_tx_mac(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return niu_reset_tx_xmac(np);
else
return niu_reset_tx_bmac(np);
}
static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
{
u64 val;
val = nr64_mac(XMAC_MIN);
val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
XMAC_MIN_RX_MIN_PKT_SIZE);
val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
nw64_mac(XMAC_MIN, val);
nw64_mac(XMAC_MAX, max);
nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
val = nr64_mac(XMAC_IPG);
if (np->flags & NIU_FLAGS_10G) {
val &= ~XMAC_IPG_IPG_XGMII;
val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
} else {
val &= ~XMAC_IPG_IPG_MII_GMII;
val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
}
nw64_mac(XMAC_IPG, val);
val = nr64_mac(XMAC_CONFIG);
val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
XMAC_CONFIG_STRETCH_MODE |
XMAC_CONFIG_VAR_MIN_IPG_EN |
XMAC_CONFIG_TX_ENABLE);
nw64_mac(XMAC_CONFIG, val);
nw64_mac(TXMAC_FRM_CNT, 0);
nw64_mac(TXMAC_BYTE_CNT, 0);
}
static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
{
u64 val;
nw64_mac(BMAC_MIN_FRAME, min);
nw64_mac(BMAC_MAX_FRAME, max);
nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
nw64_mac(BMAC_CTRL_TYPE, 0x8808);
nw64_mac(BMAC_PREAMBLE_SIZE, 7);
val = nr64_mac(BTXMAC_CONFIG);
val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
BTXMAC_CONFIG_ENABLE);
nw64_mac(BTXMAC_CONFIG, val);
}
static void niu_init_tx_mac(struct niu *np)
{
u64 min, max;
min = 64;
if (np->dev->mtu > ETH_DATA_LEN)
max = 9216;
else
max = 1522;
/* The XMAC_MIN register only accepts values for TX min which
* have the low 3 bits cleared.
*/
BUILD_BUG_ON(min & 0x7);
if (np->flags & NIU_FLAGS_XMAC)
niu_init_tx_xmac(np, min, max);
else
niu_init_tx_bmac(np, min, max);
}
static int niu_reset_rx_xmac(struct niu *np)
{
int limit;
nw64_mac(XRXMAC_SW_RST,
XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
limit = 1000;
while (--limit >= 0) {
if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
XRXMAC_SW_RST_SOFT_RST)))
break;
udelay(100);
}
if (limit < 0) {
dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
"XRXMAC_SW_RST[%llx]\n",
np->port,
(unsigned long long) nr64_mac(XRXMAC_SW_RST));
return -ENODEV;
}
return 0;
}
static int niu_reset_rx_bmac(struct niu *np)
{
int limit;
nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
limit = 1000;
while (--limit >= 0) {
if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
break;
udelay(100);
}
if (limit < 0) {
dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
"BRXMAC_SW_RST[%llx]\n",
np->port,
(unsigned long long) nr64_mac(BRXMAC_SW_RST));
return -ENODEV;
}
return 0;
}
static int niu_reset_rx_mac(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return niu_reset_rx_xmac(np);
else
return niu_reset_rx_bmac(np);
}
static void niu_init_rx_xmac(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
int first_rdc_table = tp->first_table_num;
unsigned long i;
u64 val;
nw64_mac(XMAC_ADD_FILT0, 0);
nw64_mac(XMAC_ADD_FILT1, 0);
nw64_mac(XMAC_ADD_FILT2, 0);
nw64_mac(XMAC_ADD_FILT12_MASK, 0);
nw64_mac(XMAC_ADD_FILT00_MASK, 0);
for (i = 0; i < MAC_NUM_HASH; i++)
nw64_mac(XMAC_HASH_TBL(i), 0);
nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
val = nr64_mac(XMAC_CONFIG);
val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
XMAC_CONFIG_PROMISCUOUS |
XMAC_CONFIG_PROMISC_GROUP |
XMAC_CONFIG_ERR_CHK_DIS |
XMAC_CONFIG_RX_CRC_CHK_DIS |
XMAC_CONFIG_RESERVED_MULTICAST |
XMAC_CONFIG_RX_CODEV_CHK_DIS |
XMAC_CONFIG_ADDR_FILTER_EN |
XMAC_CONFIG_RCV_PAUSE_ENABLE |
XMAC_CONFIG_STRIP_CRC |
XMAC_CONFIG_PASS_FLOW_CTRL |
XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
val |= (XMAC_CONFIG_HASH_FILTER_EN);
nw64_mac(XMAC_CONFIG, val);
nw64_mac(RXMAC_BT_CNT, 0);
nw64_mac(RXMAC_BC_FRM_CNT, 0);
nw64_mac(RXMAC_MC_FRM_CNT, 0);
nw64_mac(RXMAC_FRAG_CNT, 0);
nw64_mac(RXMAC_HIST_CNT1, 0);
nw64_mac(RXMAC_HIST_CNT2, 0);
nw64_mac(RXMAC_HIST_CNT3, 0);
nw64_mac(RXMAC_HIST_CNT4, 0);
nw64_mac(RXMAC_HIST_CNT5, 0);
nw64_mac(RXMAC_HIST_CNT6, 0);
nw64_mac(RXMAC_HIST_CNT7, 0);
nw64_mac(RXMAC_MPSZER_CNT, 0);
nw64_mac(RXMAC_CRC_ER_CNT, 0);
nw64_mac(RXMAC_CD_VIO_CNT, 0);
nw64_mac(LINK_FAULT_CNT, 0);
}
static void niu_init_rx_bmac(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
int first_rdc_table = tp->first_table_num;
unsigned long i;
u64 val;
nw64_mac(BMAC_ADD_FILT0, 0);
nw64_mac(BMAC_ADD_FILT1, 0);
nw64_mac(BMAC_ADD_FILT2, 0);
nw64_mac(BMAC_ADD_FILT12_MASK, 0);
nw64_mac(BMAC_ADD_FILT00_MASK, 0);
for (i = 0; i < MAC_NUM_HASH; i++)
nw64_mac(BMAC_HASH_TBL(i), 0);
niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
val = nr64_mac(BRXMAC_CONFIG);
val &= ~(BRXMAC_CONFIG_ENABLE |
BRXMAC_CONFIG_STRIP_PAD |
BRXMAC_CONFIG_STRIP_FCS |
BRXMAC_CONFIG_PROMISC |
BRXMAC_CONFIG_PROMISC_GRP |
BRXMAC_CONFIG_ADDR_FILT_EN |
BRXMAC_CONFIG_DISCARD_DIS);
val |= (BRXMAC_CONFIG_HASH_FILT_EN);
nw64_mac(BRXMAC_CONFIG, val);
val = nr64_mac(BMAC_ADDR_CMPEN);
val |= BMAC_ADDR_CMPEN_EN0;
nw64_mac(BMAC_ADDR_CMPEN, val);
}
static void niu_init_rx_mac(struct niu *np)
{
niu_set_primary_mac(np, np->dev->dev_addr);
if (np->flags & NIU_FLAGS_XMAC)
niu_init_rx_xmac(np);
else
niu_init_rx_bmac(np);
}
static void niu_enable_tx_xmac(struct niu *np, int on)
{
u64 val = nr64_mac(XMAC_CONFIG);
if (on)
val |= XMAC_CONFIG_TX_ENABLE;
else
val &= ~XMAC_CONFIG_TX_ENABLE;
nw64_mac(XMAC_CONFIG, val);
}
static void niu_enable_tx_bmac(struct niu *np, int on)
{
u64 val = nr64_mac(BTXMAC_CONFIG);
if (on)
val |= BTXMAC_CONFIG_ENABLE;
else
val &= ~BTXMAC_CONFIG_ENABLE;
nw64_mac(BTXMAC_CONFIG, val);
}
static void niu_enable_tx_mac(struct niu *np, int on)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_enable_tx_xmac(np, on);
else
niu_enable_tx_bmac(np, on);
}
static void niu_enable_rx_xmac(struct niu *np, int on)
{
u64 val = nr64_mac(XMAC_CONFIG);
val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
XMAC_CONFIG_PROMISCUOUS);
if (np->flags & NIU_FLAGS_MCAST)
val |= XMAC_CONFIG_HASH_FILTER_EN;
if (np->flags & NIU_FLAGS_PROMISC)
val |= XMAC_CONFIG_PROMISCUOUS;
if (on)
val |= XMAC_CONFIG_RX_MAC_ENABLE;
else
val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
nw64_mac(XMAC_CONFIG, val);
}
static void niu_enable_rx_bmac(struct niu *np, int on)
{
u64 val = nr64_mac(BRXMAC_CONFIG);
val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
BRXMAC_CONFIG_PROMISC);
if (np->flags & NIU_FLAGS_MCAST)
val |= BRXMAC_CONFIG_HASH_FILT_EN;
if (np->flags & NIU_FLAGS_PROMISC)
val |= BRXMAC_CONFIG_PROMISC;
if (on)
val |= BRXMAC_CONFIG_ENABLE;
else
val &= ~BRXMAC_CONFIG_ENABLE;
nw64_mac(BRXMAC_CONFIG, val);
}
static void niu_enable_rx_mac(struct niu *np, int on)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_enable_rx_xmac(np, on);
else
niu_enable_rx_bmac(np, on);
}
static int niu_init_mac(struct niu *np)
{
int err;
niu_init_xif(np);
err = niu_init_pcs(np);
if (err)
return err;
err = niu_reset_tx_mac(np);
if (err)
return err;
niu_init_tx_mac(np);
err = niu_reset_rx_mac(np);
if (err)
return err;
niu_init_rx_mac(np);
/* This looks hookey but the RX MAC reset we just did will
* undo some of the state we setup in niu_init_tx_mac() so we
* have to call it again. In particular, the RX MAC reset will
* set the XMAC_MAX register back to it's default value.
*/
niu_init_tx_mac(np);
niu_enable_tx_mac(np, 1);
niu_enable_rx_mac(np, 1);
return 0;
}
static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
{
(void) niu_tx_channel_stop(np, rp->tx_channel);
}
static void niu_stop_tx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
niu_stop_one_tx_channel(np, rp);
}
}
static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
{
(void) niu_tx_channel_reset(np, rp->tx_channel);
}
static void niu_reset_tx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
niu_reset_one_tx_channel(np, rp);
}
}
static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
{
(void) niu_enable_rx_channel(np, rp->rx_channel, 0);
}
static void niu_stop_rx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_stop_one_rx_channel(np, rp);
}
}
static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
{
int channel = rp->rx_channel;
(void) niu_rx_channel_reset(np, channel);
nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
nw64(RX_DMA_CTL_STAT(channel), 0);
(void) niu_enable_rx_channel(np, channel, 0);
}
static void niu_reset_rx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_reset_one_rx_channel(np, rp);
}
}
static void niu_disable_ipp(struct niu *np)
{
u64 rd, wr, val;
int limit;
rd = nr64_ipp(IPP_DFIFO_RD_PTR);
wr = nr64_ipp(IPP_DFIFO_WR_PTR);
limit = 100;
while (--limit >= 0 && (rd != wr)) {
rd = nr64_ipp(IPP_DFIFO_RD_PTR);
wr = nr64_ipp(IPP_DFIFO_WR_PTR);
}
if (limit < 0 &&
(rd != 0 && wr != 1)) {
dev_err(np->device, PFX "%s: IPP would not quiesce, "
"rd_ptr[%llx] wr_ptr[%llx]\n",
np->dev->name,
(unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
(unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
}
val = nr64_ipp(IPP_CFIG);
val &= ~(IPP_CFIG_IPP_ENABLE |
IPP_CFIG_DFIFO_ECC_EN |
IPP_CFIG_DROP_BAD_CRC |
IPP_CFIG_CKSUM_EN);
nw64_ipp(IPP_CFIG, val);
(void) niu_ipp_reset(np);
}
static int niu_init_hw(struct niu *np)
{
int i, err;
niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
niu_txc_enable_port(np, 1);
niu_txc_port_dma_enable(np, 1);
niu_txc_set_imask(np, 0);
niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
err = niu_init_one_tx_channel(np, rp);
if (err)
return err;
}
niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
err = niu_init_rx_channels(np);
if (err)
goto out_uninit_tx_channels;
niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
err = niu_init_classifier_hw(np);
if (err)
goto out_uninit_rx_channels;
niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
err = niu_init_zcp(np);
if (err)
goto out_uninit_rx_channels;
niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
err = niu_init_ipp(np);
if (err)
goto out_uninit_rx_channels;
niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
err = niu_init_mac(np);
if (err)
goto out_uninit_ipp;
return 0;
out_uninit_ipp:
niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
niu_disable_ipp(np);
out_uninit_rx_channels:
niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
niu_stop_rx_channels(np);
niu_reset_rx_channels(np);
out_uninit_tx_channels:
niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
niu_stop_tx_channels(np);
niu_reset_tx_channels(np);
return err;
}
static void niu_stop_hw(struct niu *np)
{
niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
niu_enable_interrupts(np, 0);
niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
niu_enable_rx_mac(np, 0);
niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
niu_disable_ipp(np);
niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
niu_stop_tx_channels(np);
niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
niu_stop_rx_channels(np);
niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
niu_reset_tx_channels(np);
niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
niu_reset_rx_channels(np);
}
static void niu_set_irq_name(struct niu *np)
{
int port = np->port;
int i, j = 1;
sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
if (port == 0) {
sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
j = 3;
}
for (i = 0; i < np->num_ldg - j; i++) {
if (i < np->num_rx_rings)
sprintf(np->irq_name[i+j], "%s-rx-%d",
np->dev->name, i);
else if (i < np->num_tx_rings + np->num_rx_rings)
sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
i - np->num_rx_rings);
}
}
static int niu_request_irq(struct niu *np)
{
int i, j, err;
niu_set_irq_name(np);
err = 0;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
err = request_irq(lp->irq, niu_interrupt,
IRQF_SHARED | IRQF_SAMPLE_RANDOM,
np->irq_name[i], lp);
if (err)
goto out_free_irqs;
}
return 0;
out_free_irqs:
for (j = 0; j < i; j++) {
struct niu_ldg *lp = &np->ldg[j];
free_irq(lp->irq, lp);
}
return err;
}
static void niu_free_irq(struct niu *np)
{
int i;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
free_irq(lp->irq, lp);
}
}
static void niu_enable_napi(struct niu *np)
{
int i;
for (i = 0; i < np->num_ldg; i++)
napi_enable(&np->ldg[i].napi);
}
static void niu_disable_napi(struct niu *np)
{
int i;
for (i = 0; i < np->num_ldg; i++)
napi_disable(&np->ldg[i].napi);
}
static int niu_open(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
int err;
netif_carrier_off(dev);
err = niu_alloc_channels(np);
if (err)
goto out_err;
err = niu_enable_interrupts(np, 0);
if (err)
goto out_free_channels;
err = niu_request_irq(np);
if (err)
goto out_free_channels;
niu_enable_napi(np);
spin_lock_irq(&np->lock);
err = niu_init_hw(np);
if (!err) {
init_timer(&np->timer);
np->timer.expires = jiffies + HZ;
np->timer.data = (unsigned long) np;
np->timer.function = niu_timer;
err = niu_enable_interrupts(np, 1);
if (err)
niu_stop_hw(np);
}
spin_unlock_irq(&np->lock);
if (err) {
niu_disable_napi(np);
goto out_free_irq;
}
netif_tx_start_all_queues(dev);
if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
netif_carrier_on(dev);
add_timer(&np->timer);
return 0;
out_free_irq:
niu_free_irq(np);
out_free_channels:
niu_free_channels(np);
out_err:
return err;
}
static void niu_full_shutdown(struct niu *np, struct net_device *dev)
{
cancel_work_sync(&np->reset_task);
niu_disable_napi(np);
netif_tx_stop_all_queues(dev);
del_timer_sync(&np->timer);
spin_lock_irq(&np->lock);
niu_stop_hw(np);
spin_unlock_irq(&np->lock);
}
static int niu_close(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
niu_full_shutdown(np, dev);
niu_free_irq(np);
niu_free_channels(np);
niu_handle_led(np, 0);
return 0;
}
static void niu_sync_xmac_stats(struct niu *np)
{
struct niu_xmac_stats *mp = &np->mac_stats.xmac;
mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
}
static void niu_sync_bmac_stats(struct niu *np)
{
struct niu_bmac_stats *mp = &np->mac_stats.bmac;
mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
}
static void niu_sync_mac_stats(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_sync_xmac_stats(np);
else
niu_sync_bmac_stats(np);
}
static void niu_get_rx_stats(struct niu *np)
{
unsigned long pkts, dropped, errors, bytes;
int i;
pkts = dropped = errors = bytes = 0;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_sync_rx_discard_stats(np, rp, 0);
pkts += rp->rx_packets;
bytes += rp->rx_bytes;
dropped += rp->rx_dropped;
errors += rp->rx_errors;
}
np->dev->stats.rx_packets = pkts;
np->dev->stats.rx_bytes = bytes;
np->dev->stats.rx_dropped = dropped;
np->dev->stats.rx_errors = errors;
}
static void niu_get_tx_stats(struct niu *np)
{
unsigned long pkts, errors, bytes;
int i;
pkts = errors = bytes = 0;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
pkts += rp->tx_packets;
bytes += rp->tx_bytes;
errors += rp->tx_errors;
}
np->dev->stats.tx_packets = pkts;
np->dev->stats.tx_bytes = bytes;
np->dev->stats.tx_errors = errors;
}
static struct net_device_stats *niu_get_stats(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
niu_get_rx_stats(np);
niu_get_tx_stats(np);
return &dev->stats;
}
static void niu_load_hash_xmac(struct niu *np, u16 *hash)
{
int i;
for (i = 0; i < 16; i++)
nw64_mac(XMAC_HASH_TBL(i), hash[i]);
}
static void niu_load_hash_bmac(struct niu *np, u16 *hash)
{
int i;
for (i = 0; i < 16; i++)
nw64_mac(BMAC_HASH_TBL(i), hash[i]);
}
static void niu_load_hash(struct niu *np, u16 *hash)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_load_hash_xmac(np, hash);
else
niu_load_hash_bmac(np, hash);
}
static void niu_set_rx_mode(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
int i, alt_cnt, err;
struct dev_addr_list *addr;
unsigned long flags;
u16 hash[16] = { 0, };
spin_lock_irqsave(&np->lock, flags);
niu_enable_rx_mac(np, 0);
np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
if (dev->flags & IFF_PROMISC)
np->flags |= NIU_FLAGS_PROMISC;
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
np->flags |= NIU_FLAGS_MCAST;
alt_cnt = dev->uc_count;
if (alt_cnt > niu_num_alt_addr(np)) {
alt_cnt = 0;
np->flags |= NIU_FLAGS_PROMISC;
}
if (alt_cnt) {
int index = 0;
for (addr = dev->uc_list; addr; addr = addr->next) {
err = niu_set_alt_mac(np, index,
addr->da_addr);
if (err)
printk(KERN_WARNING PFX "%s: Error %d "
"adding alt mac %d\n",
dev->name, err, index);
err = niu_enable_alt_mac(np, index, 1);
if (err)
printk(KERN_WARNING PFX "%s: Error %d "
"enabling alt mac %d\n",
dev->name, err, index);
index++;
}
} else {
int alt_start;
if (np->flags & NIU_FLAGS_XMAC)
alt_start = 0;
else
alt_start = 1;
for (i = alt_start; i < niu_num_alt_addr(np); i++) {
err = niu_enable_alt_mac(np, i, 0);
if (err)
printk(KERN_WARNING PFX "%s: Error %d "
"disabling alt mac %d\n",
dev->name, err, i);
}
}
if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < 16; i++)
hash[i] = 0xffff;
} else if (dev->mc_count > 0) {
for (addr = dev->mc_list; addr; addr = addr->next) {
u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
crc >>= 24;
hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
}
}
if (np->flags & NIU_FLAGS_MCAST)
niu_load_hash(np, hash);
niu_enable_rx_mac(np, 1);
spin_unlock_irqrestore(&np->lock, flags);
}
static int niu_set_mac_addr(struct net_device *dev, void *p)
{
struct niu *np = netdev_priv(dev);
struct sockaddr *addr = p;
unsigned long flags;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
if (!netif_running(dev))
return 0;
spin_lock_irqsave(&np->lock, flags);
niu_enable_rx_mac(np, 0);
niu_set_primary_mac(np, dev->dev_addr);
niu_enable_rx_mac(np, 1);
spin_unlock_irqrestore(&np->lock, flags);
return 0;
}
static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
return -EOPNOTSUPP;
}
static void niu_netif_stop(struct niu *np)
{
np->dev->trans_start = jiffies; /* prevent tx timeout */
niu_disable_napi(np);
netif_tx_disable(np->dev);
}
static void niu_netif_start(struct niu *np)
{
/* NOTE: unconditional netif_wake_queue is only appropriate
* so long as all callers are assured to have free tx slots
* (such as after niu_init_hw).
*/
netif_tx_wake_all_queues(np->dev);
niu_enable_napi(np);
niu_enable_interrupts(np, 1);
}
static void niu_reset_buffers(struct niu *np)
{
int i, j, k, err;
if (np->rx_rings) {
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
struct page *page;
page = rp->rxhash[j];
while (page) {
struct page *next =
(struct page *) page->mapping;
u64 base = page->index;
base = base >> RBR_DESCR_ADDR_SHIFT;
rp->rbr[k++] = cpu_to_le32(base);
page = next;
}
}
for (; k < MAX_RBR_RING_SIZE; k++) {
err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
if (unlikely(err))
break;
}
rp->rbr_index = rp->rbr_table_size - 1;
rp->rcr_index = 0;
rp->rbr_pending = 0;
rp->rbr_refill_pending = 0;
}
}
if (np->tx_rings) {
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
for (j = 0; j < MAX_TX_RING_SIZE; j++) {
if (rp->tx_buffs[j].skb)
(void) release_tx_packet(np, rp, j);
}
rp->pending = MAX_TX_RING_SIZE;
rp->prod = 0;
rp->cons = 0;
rp->wrap_bit = 0;
}
}
}
static void niu_reset_task(struct work_struct *work)
{
struct niu *np = container_of(work, struct niu, reset_task);
unsigned long flags;
int err;
spin_lock_irqsave(&np->lock, flags);
if (!netif_running(np->dev)) {
spin_unlock_irqrestore(&np->lock, flags);
return;
}
spin_unlock_irqrestore(&np->lock, flags);
del_timer_sync(&np->timer);
niu_netif_stop(np);
spin_lock_irqsave(&np->lock, flags);
niu_stop_hw(np);
spin_unlock_irqrestore(&np->lock, flags);
niu_reset_buffers(np);
spin_lock_irqsave(&np->lock, flags);
err = niu_init_hw(np);
if (!err) {
np->timer.expires = jiffies + HZ;
add_timer(&np->timer);
niu_netif_start(np);
}
spin_unlock_irqrestore(&np->lock, flags);
}
static void niu_tx_timeout(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
dev->name);
schedule_work(&np->reset_task);
}
static void niu_set_txd(struct tx_ring_info *rp, int index,
u64 mapping, u64 len, u64 mark,
u64 n_frags)
{
__le64 *desc = &rp->descr[index];
*desc = cpu_to_le64(mark |
(n_frags << TX_DESC_NUM_PTR_SHIFT) |
(len << TX_DESC_TR_LEN_SHIFT) |
(mapping & TX_DESC_SAD));
}
static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
u64 pad_bytes, u64 len)
{
u16 eth_proto, eth_proto_inner;
u64 csum_bits, l3off, ihl, ret;
u8 ip_proto;
int ipv6;
eth_proto = be16_to_cpu(ehdr->h_proto);
eth_proto_inner = eth_proto;
if (eth_proto == ETH_P_8021Q) {
struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
__be16 val = vp->h_vlan_encapsulated_proto;
eth_proto_inner = be16_to_cpu(val);
}
ipv6 = ihl = 0;
switch (skb->protocol) {
case __constant_htons(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
ihl = ip_hdr(skb)->ihl;
break;
case __constant_htons(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
ihl = (40 >> 2);
ipv6 = 1;
break;
default:
ip_proto = ihl = 0;
break;
}
csum_bits = TXHDR_CSUM_NONE;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
u64 start, stuff;
csum_bits = (ip_proto == IPPROTO_TCP ?
TXHDR_CSUM_TCP :
(ip_proto == IPPROTO_UDP ?
TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
start = skb_transport_offset(skb) -
(pad_bytes + sizeof(struct tx_pkt_hdr));
stuff = start + skb->csum_offset;
csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
}
l3off = skb_network_offset(skb) -
(pad_bytes + sizeof(struct tx_pkt_hdr));
ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
(len << TXHDR_LEN_SHIFT) |
((l3off / 2) << TXHDR_L3START_SHIFT) |
(ihl << TXHDR_IHL_SHIFT) |
((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
(ipv6 ? TXHDR_IP_VER : 0) |
csum_bits);
return ret;
}
static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
unsigned long align, headroom;
struct netdev_queue *txq;
struct tx_ring_info *rp;
struct tx_pkt_hdr *tp;
unsigned int len, nfg;
struct ethhdr *ehdr;
int prod, i, tlen;
u64 mapping, mrk;
i = skb_get_queue_mapping(skb);
rp = &np->tx_rings[i];
txq = netdev_get_tx_queue(dev, i);
if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
netif_tx_stop_queue(txq);
dev_err(np->device, PFX "%s: BUG! Tx ring full when "
"queue awake!\n", dev->name);
rp->tx_errors++;
return NETDEV_TX_BUSY;
}
if (skb->len < ETH_ZLEN) {
unsigned int pad_bytes = ETH_ZLEN - skb->len;
if (skb_pad(skb, pad_bytes))
goto out;
skb_put(skb, pad_bytes);
}
len = sizeof(struct tx_pkt_hdr) + 15;
if (skb_headroom(skb) < len) {
struct sk_buff *skb_new;
skb_new = skb_realloc_headroom(skb, len);
if (!skb_new) {
rp->tx_errors++;
goto out_drop;
}
kfree_skb(skb);
skb = skb_new;
} else
skb_orphan(skb);
align = ((unsigned long) skb->data & (16 - 1));
headroom = align + sizeof(struct tx_pkt_hdr);
ehdr = (struct ethhdr *) skb->data;
tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
len = skb->len - sizeof(struct tx_pkt_hdr);
tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
tp->resv = 0;
len = skb_headlen(skb);
mapping = np->ops->map_single(np->device, skb->data,
len, DMA_TO_DEVICE);
prod = rp->prod;
rp->tx_buffs[prod].skb = skb;
rp->tx_buffs[prod].mapping = mapping;
mrk = TX_DESC_SOP;
if (++rp->mark_counter == rp->mark_freq) {
rp->mark_counter = 0;
mrk |= TX_DESC_MARK;
rp->mark_pending++;
}
tlen = len;
nfg = skb_shinfo(skb)->nr_frags;
while (tlen > 0) {
tlen -= MAX_TX_DESC_LEN;
nfg++;
}
while (len > 0) {
unsigned int this_len = len;
if (this_len > MAX_TX_DESC_LEN)
this_len = MAX_TX_DESC_LEN;
niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
mrk = nfg = 0;
prod = NEXT_TX(rp, prod);
mapping += this_len;
len -= this_len;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = frag->size;
mapping = np->ops->map_page(np->device, frag->page,
frag->page_offset, len,
DMA_TO_DEVICE);
rp->tx_buffs[prod].skb = NULL;
rp->tx_buffs[prod].mapping = mapping;
niu_set_txd(rp, prod, mapping, len, 0, 0);
prod = NEXT_TX(rp, prod);
}
if (prod < rp->prod)
rp->wrap_bit ^= TX_RING_KICK_WRAP;
rp->prod = prod;
nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
netif_tx_stop_queue(txq);
if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
netif_tx_wake_queue(txq);
}
dev->trans_start = jiffies;
out:
return NETDEV_TX_OK;
out_drop:
rp->tx_errors++;
kfree_skb(skb);
goto out;
}
static int niu_change_mtu(struct net_device *dev, int new_mtu)
{
struct niu *np = netdev_priv(dev);
int err, orig_jumbo, new_jumbo;
if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
return -EINVAL;
orig_jumbo = (dev->mtu > ETH_DATA_LEN);
new_jumbo = (new_mtu > ETH_DATA_LEN);
dev->mtu = new_mtu;
if (!netif_running(dev) ||
(orig_jumbo == new_jumbo))
return 0;
niu_full_shutdown(np, dev);
niu_free_channels(np);
niu_enable_napi(np);
err = niu_alloc_channels(np);
if (err)
return err;
spin_lock_irq(&np->lock);
err = niu_init_hw(np);
if (!err) {
init_timer(&np->timer);
np->timer.expires = jiffies + HZ;
np->timer.data = (unsigned long) np;
np->timer.function = niu_timer;
err = niu_enable_interrupts(np, 1);
if (err)
niu_stop_hw(np);
}
spin_unlock_irq(&np->lock);
if (!err) {
netif_tx_start_all_queues(dev);
if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
netif_carrier_on(dev);
add_timer(&np->timer);
}
return err;
}
static void niu_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct niu *np = netdev_priv(dev);
struct niu_vpd *vpd = &np->vpd;
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
sprintf(info->fw_version, "%d.%d",
vpd->fcode_major, vpd->fcode_minor);
if (np->parent->plat_type != PLAT_TYPE_NIU)
strcpy(info->bus_info, pci_name(np->pdev));
}
static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct niu *np = netdev_priv(dev);
struct niu_link_config *lp;
lp = &np->link_config;
memset(cmd, 0, sizeof(*cmd));
cmd->phy_address = np->phy_addr;
cmd->supported = lp->supported;
cmd->advertising = lp->advertising;
cmd->autoneg = lp->autoneg;
cmd->speed = lp->active_speed;
cmd->duplex = lp->active_duplex;
return 0;
}
static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
return -EINVAL;
}
static u32 niu_get_msglevel(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
return np->msg_enable;
}
static void niu_set_msglevel(struct net_device *dev, u32 value)
{
struct niu *np = netdev_priv(dev);
np->msg_enable = value;
}
static int niu_get_eeprom_len(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
return np->eeprom_len;
}
static int niu_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct niu *np = netdev_priv(dev);
u32 offset, len, val;
offset = eeprom->offset;
len = eeprom->len;
if (offset + len < offset)
return -EINVAL;
if (offset >= np->eeprom_len)
return -EINVAL;
if (offset + len > np->eeprom_len)
len = eeprom->len = np->eeprom_len - offset;
if (offset & 3) {
u32 b_offset, b_count;
b_offset = offset & 3;
b_count = 4 - b_offset;
if (b_count > len)
b_count = len;
val = nr64(ESPC_NCR((offset - b_offset) / 4));
memcpy(data, ((char *)&val) + b_offset, b_count);
data += b_count;
len -= b_count;
offset += b_count;
}
while (len >= 4) {
val = nr64(ESPC_NCR(offset / 4));
memcpy(data, &val, 4);
data += 4;
len -= 4;
offset += 4;
}
if (len) {
val = nr64(ESPC_NCR(offset / 4));
memcpy(data, &val, len);
}
return 0;
}
static int niu_ethflow_to_class(int flow_type, u64 *class)
{
switch (flow_type) {
case TCP_V4_FLOW:
*class = CLASS_CODE_TCP_IPV4;
break;
case UDP_V4_FLOW:
*class = CLASS_CODE_UDP_IPV4;
break;
case AH_ESP_V4_FLOW:
*class = CLASS_CODE_AH_ESP_IPV4;
break;
case SCTP_V4_FLOW:
*class = CLASS_CODE_SCTP_IPV4;
break;
case TCP_V6_FLOW:
*class = CLASS_CODE_TCP_IPV6;
break;
case UDP_V6_FLOW:
*class = CLASS_CODE_UDP_IPV6;
break;
case AH_ESP_V6_FLOW:
*class = CLASS_CODE_AH_ESP_IPV6;
break;
case SCTP_V6_FLOW:
*class = CLASS_CODE_SCTP_IPV6;
break;
default:
return 0;
}
return 1;
}
static u64 niu_flowkey_to_ethflow(u64 flow_key)
{
u64 ethflow = 0;
if (flow_key & FLOW_KEY_PORT)
ethflow |= RXH_DEV_PORT;
if (flow_key & FLOW_KEY_L2DA)
ethflow |= RXH_L2DA;
if (flow_key & FLOW_KEY_VLAN)
ethflow |= RXH_VLAN;
if (flow_key & FLOW_KEY_IPSA)
ethflow |= RXH_IP_SRC;
if (flow_key & FLOW_KEY_IPDA)
ethflow |= RXH_IP_DST;
if (flow_key & FLOW_KEY_PROTO)
ethflow |= RXH_L3_PROTO;
if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
ethflow |= RXH_L4_B_0_1;
if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
ethflow |= RXH_L4_B_2_3;
return ethflow;
}
static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
{
u64 key = 0;
if (ethflow & RXH_DEV_PORT)
key |= FLOW_KEY_PORT;
if (ethflow & RXH_L2DA)
key |= FLOW_KEY_L2DA;
if (ethflow & RXH_VLAN)
key |= FLOW_KEY_VLAN;
if (ethflow & RXH_IP_SRC)
key |= FLOW_KEY_IPSA;
if (ethflow & RXH_IP_DST)
key |= FLOW_KEY_IPDA;
if (ethflow & RXH_L3_PROTO)
key |= FLOW_KEY_PROTO;
if (ethflow & RXH_L4_B_0_1)
key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
if (ethflow & RXH_L4_B_2_3)
key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
*flow_key = key;
return 1;
}
static int niu_get_hash_opts(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct niu *np = netdev_priv(dev);
u64 class;
cmd->data = 0;
if (!niu_ethflow_to_class(cmd->flow_type, &class))
return -EINVAL;
if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
TCAM_KEY_DISC)
cmd->data = RXH_DISCARD;
else
cmd->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
CLASS_CODE_USER_PROG1]);
return 0;
}
static int niu_set_hash_opts(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct niu *np = netdev_priv(dev);
u64 class;
u64 flow_key = 0;
unsigned long flags;
if (!niu_ethflow_to_class(cmd->flow_type, &class))
return -EINVAL;
if (class < CLASS_CODE_USER_PROG1 ||
class > CLASS_CODE_SCTP_IPV6)
return -EINVAL;
if (cmd->data & RXH_DISCARD) {
niu_lock_parent(np, flags);
flow_key = np->parent->tcam_key[class -
CLASS_CODE_USER_PROG1];
flow_key |= TCAM_KEY_DISC;
nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
niu_unlock_parent(np, flags);
return 0;
} else {
/* Discard was set before, but is not set now */
if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
TCAM_KEY_DISC) {
niu_lock_parent(np, flags);
flow_key = np->parent->tcam_key[class -
CLASS_CODE_USER_PROG1];
flow_key &= ~TCAM_KEY_DISC;
nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
flow_key);
np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
flow_key;
niu_unlock_parent(np, flags);
}
}
if (!niu_ethflow_to_flowkey(cmd->data, &flow_key))
return -EINVAL;
niu_lock_parent(np, flags);
nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
niu_unlock_parent(np, flags);
return 0;
}
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_xmac_stat_keys[] = {
{ "tx_frames" },
{ "tx_bytes" },
{ "tx_fifo_errors" },
{ "tx_overflow_errors" },
{ "tx_max_pkt_size_errors" },
{ "tx_underflow_errors" },
{ "rx_local_faults" },
{ "rx_remote_faults" },
{ "rx_link_faults" },
{ "rx_align_errors" },
{ "rx_frags" },
{ "rx_mcasts" },
{ "rx_bcasts" },
{ "rx_hist_cnt1" },
{ "rx_hist_cnt2" },
{ "rx_hist_cnt3" },
{ "rx_hist_cnt4" },
{ "rx_hist_cnt5" },
{ "rx_hist_cnt6" },
{ "rx_hist_cnt7" },
{ "rx_octets" },
{ "rx_code_violations" },
{ "rx_len_errors" },
{ "rx_crc_errors" },
{ "rx_underflows" },
{ "rx_overflows" },
{ "pause_off_state" },
{ "pause_on_state" },
{ "pause_received" },
};
#define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_bmac_stat_keys[] = {
{ "tx_underflow_errors" },
{ "tx_max_pkt_size_errors" },
{ "tx_bytes" },
{ "tx_frames" },
{ "rx_overflows" },
{ "rx_frames" },
{ "rx_align_errors" },
{ "rx_crc_errors" },
{ "rx_len_errors" },
{ "pause_off_state" },
{ "pause_on_state" },
{ "pause_received" },
};
#define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_rxchan_stat_keys[] = {
{ "rx_channel" },
{ "rx_packets" },
{ "rx_bytes" },
{ "rx_dropped" },
{ "rx_errors" },
};
#define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_txchan_stat_keys[] = {
{ "tx_channel" },
{ "tx_packets" },
{ "tx_bytes" },
{ "tx_errors" },
};
#define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
struct niu *np = netdev_priv(dev);
int i;
if (stringset != ETH_SS_STATS)
return;
if (np->flags & NIU_FLAGS_XMAC) {
memcpy(data, niu_xmac_stat_keys,
sizeof(niu_xmac_stat_keys));
data += sizeof(niu_xmac_stat_keys);
} else {
memcpy(data, niu_bmac_stat_keys,
sizeof(niu_bmac_stat_keys));
data += sizeof(niu_bmac_stat_keys);
}
for (i = 0; i < np->num_rx_rings; i++) {
memcpy(data, niu_rxchan_stat_keys,
sizeof(niu_rxchan_stat_keys));
data += sizeof(niu_rxchan_stat_keys);
}
for (i = 0; i < np->num_tx_rings; i++) {
memcpy(data, niu_txchan_stat_keys,
sizeof(niu_txchan_stat_keys));
data += sizeof(niu_txchan_stat_keys);
}
}
static int niu_get_stats_count(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
return ((np->flags & NIU_FLAGS_XMAC ?
NUM_XMAC_STAT_KEYS :
NUM_BMAC_STAT_KEYS) +
(np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
(np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
}
static void niu_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct niu *np = netdev_priv(dev);
int i;
niu_sync_mac_stats(np);
if (np->flags & NIU_FLAGS_XMAC) {
memcpy(data, &np->mac_stats.xmac,
sizeof(struct niu_xmac_stats));
data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
} else {
memcpy(data, &np->mac_stats.bmac,
sizeof(struct niu_bmac_stats));
data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
}
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_sync_rx_discard_stats(np, rp, 0);
data[0] = rp->rx_channel;
data[1] = rp->rx_packets;
data[2] = rp->rx_bytes;
data[3] = rp->rx_dropped;
data[4] = rp->rx_errors;
data += 5;
}
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
data[0] = rp->tx_channel;
data[1] = rp->tx_packets;
data[2] = rp->tx_bytes;
data[3] = rp->tx_errors;
data += 4;
}
}
static u64 niu_led_state_save(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return nr64_mac(XMAC_CONFIG);
else
return nr64_mac(BMAC_XIF_CONFIG);
}
static void niu_led_state_restore(struct niu *np, u64 val)
{
if (np->flags & NIU_FLAGS_XMAC)
nw64_mac(XMAC_CONFIG, val);
else
nw64_mac(BMAC_XIF_CONFIG, val);
}
static void niu_force_led(struct niu *np, int on)
{
u64 val, reg, bit;
if (np->flags & NIU_FLAGS_XMAC) {
reg = XMAC_CONFIG;
bit = XMAC_CONFIG_FORCE_LED_ON;
} else {
reg = BMAC_XIF_CONFIG;
bit = BMAC_XIF_CONFIG_LINK_LED;
}
val = nr64_mac(reg);
if (on)
val |= bit;
else
val &= ~bit;
nw64_mac(reg, val);
}
static int niu_phys_id(struct net_device *dev, u32 data)
{
struct niu *np = netdev_priv(dev);
u64 orig_led_state;
int i;
if (!netif_running(dev))
return -EAGAIN;
if (data == 0)
data = 2;
orig_led_state = niu_led_state_save(np);
for (i = 0; i < (data * 2); i++) {
int on = ((i % 2) == 0);
niu_force_led(np, on);
if (msleep_interruptible(500))
break;
}
niu_led_state_restore(np, orig_led_state);
return 0;
}
static const struct ethtool_ops niu_ethtool_ops = {
.get_drvinfo = niu_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_msglevel = niu_get_msglevel,
.set_msglevel = niu_set_msglevel,
.get_eeprom_len = niu_get_eeprom_len,
.get_eeprom = niu_get_eeprom,
.get_settings = niu_get_settings,
.set_settings = niu_set_settings,
.get_strings = niu_get_strings,
.get_stats_count = niu_get_stats_count,
.get_ethtool_stats = niu_get_ethtool_stats,
.phys_id = niu_phys_id,
.get_rxhash = niu_get_hash_opts,
.set_rxhash = niu_set_hash_opts,
};
static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
int ldg, int ldn)
{
if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
return -EINVAL;
if (ldn < 0 || ldn > LDN_MAX)
return -EINVAL;
parent->ldg_map[ldn] = ldg;
if (np->parent->plat_type == PLAT_TYPE_NIU) {
/* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
* the firmware, and we're not supposed to change them.
* Validate the mapping, because if it's wrong we probably
* won't get any interrupts and that's painful to debug.
*/
if (nr64(LDG_NUM(ldn)) != ldg) {
dev_err(np->device, PFX "Port %u, mis-matched "
"LDG assignment "
"for ldn %d, should be %d is %llu\n",
np->port, ldn, ldg,
(unsigned long long) nr64(LDG_NUM(ldn)));
return -EINVAL;
}
} else
nw64(LDG_NUM(ldn), ldg);
return 0;
}
static int niu_set_ldg_timer_res(struct niu *np, int res)
{
if (res < 0 || res > LDG_TIMER_RES_VAL)
return -EINVAL;
nw64(LDG_TIMER_RES, res);
return 0;
}
static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
{
if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
(func < 0 || func > 3) ||
(vector < 0 || vector > 0x1f))
return -EINVAL;
nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
return 0;
}
static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
{
u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
(addr << ESPC_PIO_STAT_ADDR_SHIFT));
int limit;
if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
return -EINVAL;
frame = frame_base;
nw64(ESPC_PIO_STAT, frame);
limit = 64;
do {
udelay(5);
frame = nr64(ESPC_PIO_STAT);
if (frame & ESPC_PIO_STAT_READ_END)
break;
} while (limit--);
if (!(frame & ESPC_PIO_STAT_READ_END)) {
dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
(unsigned long long) frame);
return -ENODEV;
}
frame = frame_base;
nw64(ESPC_PIO_STAT, frame);
limit = 64;
do {
udelay(5);
frame = nr64(ESPC_PIO_STAT);
if (frame & ESPC_PIO_STAT_READ_END)
break;
} while (limit--);
if (!(frame & ESPC_PIO_STAT_READ_END)) {
dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
(unsigned long long) frame);
return -ENODEV;
}
frame = nr64(ESPC_PIO_STAT);
return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
}
static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
{
int err = niu_pci_eeprom_read(np, off);
u16 val;
if (err < 0)
return err;
val = (err << 8);
err = niu_pci_eeprom_read(np, off + 1);
if (err < 0)
return err;
val |= (err & 0xff);
return val;
}
static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
{
int err = niu_pci_eeprom_read(np, off);
u16 val;
if (err < 0)
return err;
val = (err & 0xff);
err = niu_pci_eeprom_read(np, off + 1);
if (err < 0)
return err;
val |= (err & 0xff) << 8;
return val;
}
static int __devinit niu_pci_vpd_get_propname(struct niu *np,
u32 off,
char *namebuf,
int namebuf_len)
{
int i;
for (i = 0; i < namebuf_len; i++) {
int err = niu_pci_eeprom_read(np, off + i);
if (err < 0)
return err;
*namebuf++ = err;
if (!err)
break;
}
if (i >= namebuf_len)
return -EINVAL;
return i + 1;
}
static void __devinit niu_vpd_parse_version(struct niu *np)
{
struct niu_vpd *vpd = &np->vpd;
int len = strlen(vpd->version) + 1;
const char *s = vpd->version;
int i;
for (i = 0; i < len - 5; i++) {
if (!strncmp(s + i, "FCode ", 5))
break;
}
if (i >= len - 5)
return;
s += i + 5;
sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
vpd->fcode_major, vpd->fcode_minor);
if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
(vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
np->flags |= NIU_FLAGS_VPD_VALID;
}
/* ESPC_PIO_EN_ENABLE must be set */
static int __devinit niu_pci_vpd_scan_props(struct niu *np,
u32 start, u32 end)
{
unsigned int found_mask = 0;
#define FOUND_MASK_MODEL 0x00000001
#define FOUND_MASK_BMODEL 0x00000002
#define FOUND_MASK_VERS 0x00000004
#define FOUND_MASK_MAC 0x00000008
#define FOUND_MASK_NMAC 0x00000010
#define FOUND_MASK_PHY 0x00000020
#define FOUND_MASK_ALL 0x0000003f
niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
start, end);
while (start < end) {
int len, err, instance, type, prop_len;
char namebuf[64];
u8 *prop_buf;
int max_len;
if (found_mask == FOUND_MASK_ALL) {
niu_vpd_parse_version(np);
return 1;
}
err = niu_pci_eeprom_read(np, start + 2);
if (err < 0)
return err;
len = err;
start += 3;
instance = niu_pci_eeprom_read(np, start);
type = niu_pci_eeprom_read(np, start + 3);
prop_len = niu_pci_eeprom_read(np, start + 4);
err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
if (err < 0)
return err;
prop_buf = NULL;
max_len = 0;
if (!strcmp(namebuf, "model")) {
prop_buf = np->vpd.model;
max_len = NIU_VPD_MODEL_MAX;
found_mask |= FOUND_MASK_MODEL;
} else if (!strcmp(namebuf, "board-model")) {
prop_buf = np->vpd.board_model;
max_len = NIU_VPD_BD_MODEL_MAX;
found_mask |= FOUND_MASK_BMODEL;
} else if (!strcmp(namebuf, "version")) {
prop_buf = np->vpd.version;
max_len = NIU_VPD_VERSION_MAX;
found_mask |= FOUND_MASK_VERS;
} else if (!strcmp(namebuf, "local-mac-address")) {
prop_buf = np->vpd.local_mac;
max_len = ETH_ALEN;
found_mask |= FOUND_MASK_MAC;
} else if (!strcmp(namebuf, "num-mac-addresses")) {
prop_buf = &np->vpd.mac_num;
max_len = 1;
found_mask |= FOUND_MASK_NMAC;
} else if (!strcmp(namebuf, "phy-type")) {
prop_buf = np->vpd.phy_type;
max_len = NIU_VPD_PHY_TYPE_MAX;
found_mask |= FOUND_MASK_PHY;
}
if (max_len && prop_len > max_len) {
dev_err(np->device, PFX "Property '%s' length (%d) is "
"too long.\n", namebuf, prop_len);
return -EINVAL;
}
if (prop_buf) {
u32 off = start + 5 + err;
int i;
niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
"len[%d]\n", namebuf, prop_len);
for (i = 0; i < prop_len; i++)
*prop_buf++ = niu_pci_eeprom_read(np, off + i);
}
start += len;
}
return 0;
}
/* ESPC_PIO_EN_ENABLE must be set */
static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
{
u32 offset;
int err;
err = niu_pci_eeprom_read16_swp(np, start + 1);
if (err < 0)
return;
offset = err + 3;
while (start + offset < ESPC_EEPROM_SIZE) {
u32 here = start + offset;
u32 end;
err = niu_pci_eeprom_read(np, here);
if (err != 0x90)
return;
err = niu_pci_eeprom_read16_swp(np, here + 1);
if (err < 0)
return;
here = start + offset + 3;
end = start + offset + err;
offset += err;
err = niu_pci_vpd_scan_props(np, here, end);
if (err < 0 || err == 1)
return;
}
}
/* ESPC_PIO_EN_ENABLE must be set */
static u32 __devinit niu_pci_vpd_offset(struct niu *np)
{
u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
int err;
while (start < end) {
ret = start;
/* ROM header signature? */
err = niu_pci_eeprom_read16(np, start + 0);
if (err != 0x55aa)
return 0;
/* Apply offset to PCI data structure. */
err = niu_pci_eeprom_read16(np, start + 23);
if (err < 0)
return 0;
start += err;
/* Check for "PCIR" signature. */
err = niu_pci_eeprom_read16(np, start + 0);
if (err != 0x5043)
return 0;
err = niu_pci_eeprom_read16(np, start + 2);
if (err != 0x4952)
return 0;
/* Check for OBP image type. */
err = niu_pci_eeprom_read(np, start + 20);
if (err < 0)
return 0;
if (err != 0x01) {
err = niu_pci_eeprom_read(np, ret + 2);
if (err < 0)
return 0;
start = ret + (err * 512);
continue;
}
err = niu_pci_eeprom_read16_swp(np, start + 8);
if (err < 0)
return err;
ret += err;
err = niu_pci_eeprom_read(np, ret + 0);
if (err != 0x82)
return 0;
return ret;
}
return 0;
}
static int __devinit niu_phy_type_prop_decode(struct niu *np,
const char *phy_prop)
{
if (!strcmp(phy_prop, "mif")) {
/* 1G copper, MII */
np->flags &= ~(NIU_FLAGS_FIBER |
NIU_FLAGS_10G);
np->mac_xcvr = MAC_XCVR_MII;
} else if (!strcmp(phy_prop, "xgf")) {
/* 10G fiber, XPCS */
np->flags |= (NIU_FLAGS_10G |
NIU_FLAGS_FIBER);
np->mac_xcvr = MAC_XCVR_XPCS;
} else if (!strcmp(phy_prop, "pcs")) {
/* 1G fiber, PCS */
np->flags &= ~NIU_FLAGS_10G;
np->flags |= NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_PCS;
} else if (!strcmp(phy_prop, "xgc")) {
/* 10G copper, XPCS */
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_XPCS;
} else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
/* 10G Serdes or 1G Serdes, default to 10G */
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->flags |= NIU_FLAGS_XCVR_SERDES;
np->mac_xcvr = MAC_XCVR_XPCS;
} else {
return -EINVAL;
}
return 0;
}
static int niu_pci_vpd_get_nports(struct niu *np)
{
int ports = 0;
if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
ports = 4;
} else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
ports = 2;
}
return ports;
}
static void __devinit niu_pci_vpd_validate(struct niu *np)
{
struct net_device *dev = np->dev;
struct niu_vpd *vpd = &np->vpd;
u8 val8;
if (!is_valid_ether_addr(&vpd->local_mac[0])) {
dev_err(np->device, PFX "VPD MAC invalid, "
"falling back to SPROM.\n");
np->flags &= ~NIU_FLAGS_VPD_VALID;
return;
}
if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->flags |= NIU_FLAGS_XCVR_SERDES;
np->mac_xcvr = MAC_XCVR_PCS;
if (np->port > 1) {
np->flags |= NIU_FLAGS_FIBER;
np->flags &= ~NIU_FLAGS_10G;
}
if (np->flags & NIU_FLAGS_10G)
np->mac_xcvr = MAC_XCVR_XPCS;
} else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
NIU_FLAGS_HOTPLUG_PHY);
} else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
dev_err(np->device, PFX "Illegal phy string [%s].\n",
np->vpd.phy_type);
dev_err(np->device, PFX "Falling back to SPROM.\n");
np->flags &= ~NIU_FLAGS_VPD_VALID;
return;
}
memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
val8 = dev->perm_addr[5];
dev->perm_addr[5] += np->port;
if (dev->perm_addr[5] < val8)
dev->perm_addr[4]++;
memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
}
static int __devinit niu_pci_probe_sprom(struct niu *np)
{
struct net_device *dev = np->dev;
int len, i;
u64 val, sum;
u8 val8;
val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
len = val / 4;
np->eeprom_len = len;
niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
sum = 0;
for (i = 0; i < len; i++) {
val = nr64(ESPC_NCR(i));
sum += (val >> 0) & 0xff;
sum += (val >> 8) & 0xff;
sum += (val >> 16) & 0xff;
sum += (val >> 24) & 0xff;
}
niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
if ((sum & 0xff) != 0xab) {
dev_err(np->device, PFX "Bad SPROM checksum "
"(%x, should be 0xab)\n", (int) (sum & 0xff));
return -EINVAL;
}
val = nr64(ESPC_PHY_TYPE);
switch (np->port) {
case 0:
val8 = (val & ESPC_PHY_TYPE_PORT0) >>
ESPC_PHY_TYPE_PORT0_SHIFT;
break;
case 1:
val8 = (val & ESPC_PHY_TYPE_PORT1) >>
ESPC_PHY_TYPE_PORT1_SHIFT;
break;
case 2:
val8 = (val & ESPC_PHY_TYPE_PORT2) >>
ESPC_PHY_TYPE_PORT2_SHIFT;
break;
case 3:
val8 = (val & ESPC_PHY_TYPE_PORT3) >>
ESPC_PHY_TYPE_PORT3_SHIFT;
break;
default:
dev_err(np->device, PFX "Bogus port number %u\n",
np->port);
return -EINVAL;
}
niudbg(PROBE, "SPROM: PHY type %x\n", val8);
switch (val8) {
case ESPC_PHY_TYPE_1G_COPPER:
/* 1G copper, MII */
np->flags &= ~(NIU_FLAGS_FIBER |
NIU_FLAGS_10G);
np->mac_xcvr = MAC_XCVR_MII;
break;
case ESPC_PHY_TYPE_1G_FIBER:
/* 1G fiber, PCS */
np->flags &= ~NIU_FLAGS_10G;
np->flags |= NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_PCS;
break;
case ESPC_PHY_TYPE_10G_COPPER:
/* 10G copper, XPCS */
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_XPCS;
break;
case ESPC_PHY_TYPE_10G_FIBER:
/* 10G fiber, XPCS */
np->flags |= (NIU_FLAGS_10G |
NIU_FLAGS_FIBER);
np->mac_xcvr = MAC_XCVR_XPCS;
break;
default:
dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
return -EINVAL;
}
val = nr64(ESPC_MAC_ADDR0);
niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
(unsigned long long) val);
dev->perm_addr[0] = (val >> 0) & 0xff;
dev->perm_addr[1] = (val >> 8) & 0xff;
dev->perm_addr[2] = (val >> 16) & 0xff;
dev->perm_addr[3] = (val >> 24) & 0xff;
val = nr64(ESPC_MAC_ADDR1);
niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
(unsigned long long) val);
dev->perm_addr[4] = (val >> 0) & 0xff;
dev->perm_addr[5] = (val >> 8) & 0xff;
if (!is_valid_ether_addr(&dev->perm_addr[0])) {
dev_err(np->device, PFX "SPROM MAC address invalid\n");
dev_err(np->device, PFX "[ \n");
for (i = 0; i < 6; i++)
printk("%02x ", dev->perm_addr[i]);
printk("]\n");
return -EINVAL;
}
val8 = dev->perm_addr[5];
dev->perm_addr[5] += np->port;
if (dev->perm_addr[5] < val8)
dev->perm_addr[4]++;
memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
val = nr64(ESPC_MOD_STR_LEN);
niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
(unsigned long long) val);
if (val >= 8 * 4)
return -EINVAL;
for (i = 0; i < val; i += 4) {
u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
}
np->vpd.model[val] = '\0';
val = nr64(ESPC_BD_MOD_STR_LEN);
niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
(unsigned long long) val);
if (val >= 4 * 4)
return -EINVAL;
for (i = 0; i < val; i += 4) {
u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
}
np->vpd.board_model[val] = '\0';
np->vpd.mac_num =
nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
np->vpd.mac_num);
return 0;
}
static int __devinit niu_get_and_validate_port(struct niu *np)
{
struct niu_parent *parent = np->parent;
if (np->port <= 1)
np->flags |= NIU_FLAGS_XMAC;
if (!parent->num_ports) {
if (parent->plat_type == PLAT_TYPE_NIU) {
parent->num_ports = 2;
} else {
parent->num_ports = niu_pci_vpd_get_nports(np);
if (!parent->num_ports) {
/* Fall back to SPROM as last resort.
* This will fail on most cards.
*/
parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
ESPC_NUM_PORTS_MACS_VAL;
/* All of the current probing methods fail on
* Maramba on-board parts.
*/
if (!parent->num_ports)
parent->num_ports = 4;
}
}
}
niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
np->port, parent->num_ports);
if (np->port >= parent->num_ports)
return -ENODEV;
return 0;
}
static int __devinit phy_record(struct niu_parent *parent,
struct phy_probe_info *p,
int dev_id_1, int dev_id_2, u8 phy_port,
int type)
{
u32 id = (dev_id_1 << 16) | dev_id_2;
u8 idx;
if (dev_id_1 < 0 || dev_id_2 < 0)
return 0;
if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
return 0;
} else {
if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
return 0;
}
pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
parent->index, id,
(type == PHY_TYPE_PMA_PMD ?
"PMA/PMD" :
(type == PHY_TYPE_PCS ?
"PCS" : "MII")),
phy_port);
if (p->cur[type] >= NIU_MAX_PORTS) {
printk(KERN_ERR PFX "Too many PHY ports.\n");
return -EINVAL;
}
idx = p->cur[type];
p->phy_id[type][idx] = id;
p->phy_port[type][idx] = phy_port;
p->cur[type] = idx + 1;
return 0;
}
static int __devinit port_has_10g(struct phy_probe_info *p, int port)
{
int i;
for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
return 1;
}
for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
if (p->phy_port[PHY_TYPE_PCS][i] == port)
return 1;
}
return 0;
}
static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
{
int port, cnt;
cnt = 0;
*lowest = 32;
for (port = 8; port < 32; port++) {
if (port_has_10g(p, port)) {
if (!cnt)
*lowest = port;
cnt++;
}
}
return cnt;
}
static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
{
*lowest = 32;
if (p->cur[PHY_TYPE_MII])
*lowest = p->phy_port[PHY_TYPE_MII][0];
return p->cur[PHY_TYPE_MII];
}
static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
{
int num_ports = parent->num_ports;
int i;
for (i = 0; i < num_ports; i++) {
parent->rxchan_per_port[i] = (16 / num_ports);
parent->txchan_per_port[i] = (16 / num_ports);
pr_info(PFX "niu%d: Port %u [%u RX chans] "
"[%u TX chans]\n",
parent->index, i,
parent->rxchan_per_port[i],
parent->txchan_per_port[i]);
}
}
static void __devinit niu_divide_channels(struct niu_parent *parent,
int num_10g, int num_1g)
{
int num_ports = parent->num_ports;
int rx_chans_per_10g, rx_chans_per_1g;
int tx_chans_per_10g, tx_chans_per_1g;
int i, tot_rx, tot_tx;
if (!num_10g || !num_1g) {
rx_chans_per_10g = rx_chans_per_1g =
(NIU_NUM_RXCHAN / num_ports);
tx_chans_per_10g = tx_chans_per_1g =
(NIU_NUM_TXCHAN / num_ports);
} else {
rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
rx_chans_per_10g = (NIU_NUM_RXCHAN -
(rx_chans_per_1g * num_1g)) /
num_10g;
tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
tx_chans_per_10g = (NIU_NUM_TXCHAN -
(tx_chans_per_1g * num_1g)) /
num_10g;
}
tot_rx = tot_tx = 0;
for (i = 0; i < num_ports; i++) {
int type = phy_decode(parent->port_phy, i);
if (type == PORT_TYPE_10G) {
parent->rxchan_per_port[i] = rx_chans_per_10g;
parent->txchan_per_port[i] = tx_chans_per_10g;
} else {
parent->rxchan_per_port[i] = rx_chans_per_1g;
parent->txchan_per_port[i] = tx_chans_per_1g;
}
pr_info(PFX "niu%d: Port %u [%u RX chans] "
"[%u TX chans]\n",
parent->index, i,
parent->rxchan_per_port[i],
parent->txchan_per_port[i]);
tot_rx += parent->rxchan_per_port[i];
tot_tx += parent->txchan_per_port[i];
}
if (tot_rx > NIU_NUM_RXCHAN) {
printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
"resetting to one per port.\n",
parent->index, tot_rx);
for (i = 0; i < num_ports; i++)
parent->rxchan_per_port[i] = 1;
}
if (tot_tx > NIU_NUM_TXCHAN) {
printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
"resetting to one per port.\n",
parent->index, tot_tx);
for (i = 0; i < num_ports; i++)
parent->txchan_per_port[i] = 1;
}
if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
"RX[%d] TX[%d]\n",
parent->index, tot_rx, tot_tx);
}
}
static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
int num_10g, int num_1g)
{
int i, num_ports = parent->num_ports;
int rdc_group, rdc_groups_per_port;
int rdc_channel_base;
rdc_group = 0;
rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
rdc_channel_base = 0;
for (i = 0; i < num_ports; i++) {
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
int grp, num_channels = parent->rxchan_per_port[i];
int this_channel_offset;
tp->first_table_num = rdc_group;
tp->num_tables = rdc_groups_per_port;
this_channel_offset = 0;
for (grp = 0; grp < tp->num_tables; grp++) {
struct rdc_table *rt = &tp->tables[grp];
int slot;
pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
parent->index, i, tp->first_table_num + grp);
for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
rt->rxdma_channel[slot] =
rdc_channel_base + this_channel_offset;
printk("%d ", rt->rxdma_channel[slot]);
if (++this_channel_offset == num_channels)
this_channel_offset = 0;
}
printk("]\n");
}
parent->rdc_default[i] = rdc_channel_base;
rdc_channel_base += num_channels;
rdc_group += rdc_groups_per_port;
}
}
static int __devinit fill_phy_probe_info(struct niu *np,
struct niu_parent *parent,
struct phy_probe_info *info)
{
unsigned long flags;
int port, err;
memset(info, 0, sizeof(*info));
/* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
niu_lock_parent(np, flags);
err = 0;
for (port = 8; port < 32; port++) {
int dev_id_1, dev_id_2;
dev_id_1 = mdio_read(np, port,
NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
dev_id_2 = mdio_read(np, port,
NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
err = phy_record(parent, info, dev_id_1, dev_id_2, port,
PHY_TYPE_PMA_PMD);
if (err)
break;
dev_id_1 = mdio_read(np, port,
NIU_PCS_DEV_ADDR, MII_PHYSID1);
dev_id_2 = mdio_read(np, port,
NIU_PCS_DEV_ADDR, MII_PHYSID2);
err = phy_record(parent, info, dev_id_1, dev_id_2, port,
PHY_TYPE_PCS);
if (err)
break;
dev_id_1 = mii_read(np, port, MII_PHYSID1);
dev_id_2 = mii_read(np, port, MII_PHYSID2);
err = phy_record(parent, info, dev_id_1, dev_id_2, port,
PHY_TYPE_MII);
if (err)
break;
}
niu_unlock_parent(np, flags);
return err;
}
static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
{
struct phy_probe_info *info = &parent->phy_probe_info;
int lowest_10g, lowest_1g;
int num_10g, num_1g;
u32 val;
int err;
num_10g = num_1g = 0;
if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
num_10g = 0;
num_1g = 2;
parent->plat_type = PLAT_TYPE_ATCA_CP3220;
parent->num_ports = 4;
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_1G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
} else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
num_10g = 2;
num_1g = 0;
parent->num_ports = 2;
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1));
} else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
(parent->plat_type == PLAT_TYPE_NIU)) {
/* this is the Monza case */
if (np->flags & NIU_FLAGS_10G) {
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1));
} else {
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_1G, 1));
}
} else {
err = fill_phy_probe_info(np, parent, info);
if (err)
return err;
num_10g = count_10g_ports(info, &lowest_10g);
num_1g = count_1g_ports(info, &lowest_1g);
switch ((num_10g << 4) | num_1g) {
case 0x24:
if (lowest_1g == 10)
parent->plat_type = PLAT_TYPE_VF_P0;
else if (lowest_1g == 26)
parent->plat_type = PLAT_TYPE_VF_P1;
else
goto unknown_vg_1g_port;
/* fallthru */
case 0x22:
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
break;
case 0x20:
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1));
break;
case 0x10:
val = phy_encode(PORT_TYPE_10G, np->port);
break;
case 0x14:
if (lowest_1g == 10)
parent->plat_type = PLAT_TYPE_VF_P0;
else if (lowest_1g == 26)
parent->plat_type = PLAT_TYPE_VF_P1;
else
goto unknown_vg_1g_port;
/* fallthru */
case 0x13:
if ((lowest_10g & 0x7) == 0)
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_1G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
else
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_10G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
break;
case 0x04:
if (lowest_1g == 10)
parent->plat_type = PLAT_TYPE_VF_P0;
else if (lowest_1g == 26)
parent->plat_type = PLAT_TYPE_VF_P1;
else
goto unknown_vg_1g_port;
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_1G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
break;
default:
printk(KERN_ERR PFX "Unsupported port config "
"10G[%d] 1G[%d]\n",
num_10g, num_1g);
return -EINVAL;
}
}
parent->port_phy = val;
if (parent->plat_type == PLAT_TYPE_NIU)
niu_n2_divide_channels(parent);
else
niu_divide_channels(parent, num_10g, num_1g);
niu_divide_rdc_groups(parent, num_10g, num_1g);
return 0;
unknown_vg_1g_port:
printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
lowest_1g);
return -EINVAL;
}
static int __devinit niu_probe_ports(struct niu *np)
{
struct niu_parent *parent = np->parent;
int err, i;
niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
parent->port_phy);
if (parent->port_phy == PORT_PHY_UNKNOWN) {
err = walk_phys(np, parent);
if (err)
return err;
niu_set_ldg_timer_res(np, 2);
for (i = 0; i <= LDN_MAX; i++)
niu_ldn_irq_enable(np, i, 0);
}
if (parent->port_phy == PORT_PHY_INVALID)
return -EINVAL;
return 0;
}
static int __devinit niu_classifier_swstate_init(struct niu *np)
{
struct niu_classifier *cp = &np->clas;
niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
np->parent->tcam_num_entries);
cp->tcam_index = (u16) np->port;
cp->h1_init = 0xffffffff;
cp->h2_init = 0xffff;
return fflp_early_init(np);
}
static void __devinit niu_link_config_init(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
lp->advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full |
ADVERTISED_10000baseT_Full |
ADVERTISED_Autoneg);
lp->speed = lp->active_speed = SPEED_INVALID;
lp->duplex = lp->active_duplex = DUPLEX_INVALID;
#if 0
lp->loopback_mode = LOOPBACK_MAC;
lp->active_speed = SPEED_10000;
lp->active_duplex = DUPLEX_FULL;
#else
lp->loopback_mode = LOOPBACK_DISABLED;
#endif
}
static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
{
switch (np->port) {
case 0:
np->mac_regs = np->regs + XMAC_PORT0_OFF;
np->ipp_off = 0x00000;
np->pcs_off = 0x04000;
np->xpcs_off = 0x02000;
break;
case 1:
np->mac_regs = np->regs + XMAC_PORT1_OFF;
np->ipp_off = 0x08000;
np->pcs_off = 0x0a000;
np->xpcs_off = 0x08000;
break;
case 2:
np->mac_regs = np->regs + BMAC_PORT2_OFF;
np->ipp_off = 0x04000;
np->pcs_off = 0x0e000;
np->xpcs_off = ~0UL;
break;
case 3:
np->mac_regs = np->regs + BMAC_PORT3_OFF;
np->ipp_off = 0x0c000;
np->pcs_off = 0x12000;
np->xpcs_off = ~0UL;
break;
default:
dev_err(np->device, PFX "Port %u is invalid, cannot "
"compute MAC block offset.\n", np->port);
return -EINVAL;
}
return 0;
}
static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
{
struct msix_entry msi_vec[NIU_NUM_LDG];
struct niu_parent *parent = np->parent;
struct pci_dev *pdev = np->pdev;
int i, num_irqs, err;
u8 first_ldg;
first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
ldg_num_map[i] = first_ldg + i;
num_irqs = (parent->rxchan_per_port[np->port] +
parent->txchan_per_port[np->port] +
(np->port == 0 ? 3 : 1));
BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
retry:
for (i = 0; i < num_irqs; i++) {
msi_vec[i].vector = 0;
msi_vec[i].entry = i;
}
err = pci_enable_msix(pdev, msi_vec, num_irqs);
if (err < 0) {
np->flags &= ~NIU_FLAGS_MSIX;
return;
}
if (err > 0) {
num_irqs = err;
goto retry;
}
np->flags |= NIU_FLAGS_MSIX;
for (i = 0; i < num_irqs; i++)
np->ldg[i].irq = msi_vec[i].vector;
np->num_ldg = num_irqs;
}
static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
{
#ifdef CONFIG_SPARC64
struct of_device *op = np->op;
const u32 *int_prop;
int i;
int_prop = of_get_property(op->node, "interrupts", NULL);
if (!int_prop)
return -ENODEV;
for (i = 0; i < op->num_irqs; i++) {
ldg_num_map[i] = int_prop[i];
np->ldg[i].irq = op->irqs[i];
}
np->num_ldg = op->num_irqs;
return 0;
#else
return -EINVAL;
#endif
}
static int __devinit niu_ldg_init(struct niu *np)
{
struct niu_parent *parent = np->parent;
u8 ldg_num_map[NIU_NUM_LDG];
int first_chan, num_chan;
int i, err, ldg_rotor;
u8 port;
np->num_ldg = 1;
np->ldg[0].irq = np->dev->irq;
if (parent->plat_type == PLAT_TYPE_NIU) {
err = niu_n2_irq_init(np, ldg_num_map);
if (err)
return err;
} else
niu_try_msix(np, ldg_num_map);
port = np->port;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
lp->np = np;
lp->ldg_num = ldg_num_map[i];
lp->timer = 2; /* XXX */
/* On N2 NIU the firmware has setup the SID mappings so they go
* to the correct values that will route the LDG to the proper
* interrupt in the NCU interrupt table.
*/
if (np->parent->plat_type != PLAT_TYPE_NIU) {
err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
if (err)
return err;
}
}
/* We adopt the LDG assignment ordering used by the N2 NIU
* 'interrupt' properties because that simplifies a lot of
* things. This ordering is:
*
* MAC
* MIF (if port zero)
* SYSERR (if port zero)
* RX channels
* TX channels
*/
ldg_rotor = 0;
err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
LDN_MAC(port));
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
if (port == 0) {
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_MIF);
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_DEVICE_ERROR);
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
}
first_chan = 0;
for (i = 0; i < port; i++)
first_chan += parent->rxchan_per_port[port];
num_chan = parent->rxchan_per_port[port];
for (i = first_chan; i < (first_chan + num_chan); i++) {
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_RXDMA(i));
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
}
first_chan = 0;
for (i = 0; i < port; i++)
first_chan += parent->txchan_per_port[port];
num_chan = parent->txchan_per_port[port];
for (i = first_chan; i < (first_chan + num_chan); i++) {
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_TXDMA(i));
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
}
return 0;
}
static void __devexit niu_ldg_free(struct niu *np)
{
if (np->flags & NIU_FLAGS_MSIX)
pci_disable_msix(np->pdev);
}
static int __devinit niu_get_of_props(struct niu *np)
{
#ifdef CONFIG_SPARC64
struct net_device *dev = np->dev;
struct device_node *dp;
const char *phy_type;
const u8 *mac_addr;
const char *model;
int prop_len;
if (np->parent->plat_type == PLAT_TYPE_NIU)
dp = np->op->node;
else
dp = pci_device_to_OF_node(np->pdev);
phy_type = of_get_property(dp, "phy-type", &prop_len);
if (!phy_type) {
dev_err(np->device, PFX "%s: OF node lacks "
"phy-type property\n",
dp->full_name);
return -EINVAL;
}
if (!strcmp(phy_type, "none"))
return -ENODEV;
strcpy(np->vpd.phy_type, phy_type);
if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
dp->full_name, np->vpd.phy_type);
return -EINVAL;
}
mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
if (!mac_addr) {
dev_err(np->device, PFX "%s: OF node lacks "
"local-mac-address property\n",
dp->full_name);
return -EINVAL;
}
if (prop_len != dev->addr_len) {
dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
"is wrong.\n",
dp->full_name, prop_len);
}
memcpy(dev->perm_addr, mac_addr, dev->addr_len);
if (!is_valid_ether_addr(&dev->perm_addr[0])) {
int i;
dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
dp->full_name);
dev_err(np->device, PFX "%s: [ \n",
dp->full_name);
for (i = 0; i < 6; i++)
printk("%02x ", dev->perm_addr[i]);
printk("]\n");
return -EINVAL;
}
memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
model = of_get_property(dp, "model", &prop_len);
if (model)
strcpy(np->vpd.model, model);
return 0;
#else
return -EINVAL;
#endif
}
static int __devinit niu_get_invariants(struct niu *np)
{
int err, have_props;
u32 offset;
err = niu_get_of_props(np);
if (err == -ENODEV)
return err;
have_props = !err;
err = niu_init_mac_ipp_pcs_base(np);
if (err)
return err;
if (have_props) {
err = niu_get_and_validate_port(np);
if (err)
return err;
} else {
if (np->parent->plat_type == PLAT_TYPE_NIU)
return -EINVAL;
nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
offset = niu_pci_vpd_offset(np);
niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
offset);
if (offset)
niu_pci_vpd_fetch(np, offset);
nw64(ESPC_PIO_EN, 0);
if (np->flags & NIU_FLAGS_VPD_VALID) {
niu_pci_vpd_validate(np);
err = niu_get_and_validate_port(np);
if (err)
return err;
}
if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
err = niu_get_and_validate_port(np);
if (err)
return err;
err = niu_pci_probe_sprom(np);
if (err)
return err;
}
}
err = niu_probe_ports(np);
if (err)
return err;
niu_ldg_init(np);
niu_classifier_swstate_init(np);
niu_link_config_init(np);
err = niu_determine_phy_disposition(np);
if (!err)
err = niu_init_link(np);
return err;
}
static LIST_HEAD(niu_parent_list);
static DEFINE_MUTEX(niu_parent_lock);
static int niu_parent_index;
static ssize_t show_port_phy(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = plat_dev->dev.platform_data;
u32 port_phy = p->port_phy;
char *orig_buf = buf;
int i;
if (port_phy == PORT_PHY_UNKNOWN ||
port_phy == PORT_PHY_INVALID)
return 0;
for (i = 0; i < p->num_ports; i++) {
const char *type_str;
int type;
type = phy_decode(port_phy, i);
if (type == PORT_TYPE_10G)
type_str = "10G";
else
type_str = "1G";
buf += sprintf(buf,
(i == 0) ? "%s" : " %s",
type_str);
}
buf += sprintf(buf, "\n");
return buf - orig_buf;
}
static ssize_t show_plat_type(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = plat_dev->dev.platform_data;
const char *type_str;
switch (p->plat_type) {
case PLAT_TYPE_ATLAS:
type_str = "atlas";
break;
case PLAT_TYPE_NIU:
type_str = "niu";
break;
case PLAT_TYPE_VF_P0:
type_str = "vf_p0";
break;
case PLAT_TYPE_VF_P1:
type_str = "vf_p1";
break;
default:
type_str = "unknown";
break;
}
return sprintf(buf, "%s\n", type_str);
}
static ssize_t __show_chan_per_port(struct device *dev,
struct device_attribute *attr, char *buf,
int rx)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = plat_dev->dev.platform_data;
char *orig_buf = buf;
u8 *arr;
int i;
arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
for (i = 0; i < p->num_ports; i++) {
buf += sprintf(buf,
(i == 0) ? "%d" : " %d",
arr[i]);
}
buf += sprintf(buf, "\n");
return buf - orig_buf;
}
static ssize_t show_rxchan_per_port(struct device *dev,
struct device_attribute *attr, char *buf)
{
return __show_chan_per_port(dev, attr, buf, 1);
}
static ssize_t show_txchan_per_port(struct device *dev,
struct device_attribute *attr, char *buf)
{
return __show_chan_per_port(dev, attr, buf, 1);
}
static ssize_t show_num_ports(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = plat_dev->dev.platform_data;
return sprintf(buf, "%d\n", p->num_ports);
}
static struct device_attribute niu_parent_attributes[] = {
__ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
__ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
__ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
__ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
__ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
{}
};
static struct niu_parent * __devinit niu_new_parent(struct niu *np,
union niu_parent_id *id,
u8 ptype)
{
struct platform_device *plat_dev;
struct niu_parent *p;
int i;
niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
plat_dev = platform_device_register_simple("niu", niu_parent_index,
NULL, 0);
if (!plat_dev)
return NULL;
for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
int err = device_create_file(&plat_dev->dev,
&niu_parent_attributes[i]);
if (err)
goto fail_unregister;
}
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
goto fail_unregister;
p->index = niu_parent_index++;
plat_dev->dev.platform_data = p;
p->plat_dev = plat_dev;
memcpy(&p->id, id, sizeof(*id));
p->plat_type = ptype;
INIT_LIST_HEAD(&p->list);
atomic_set(&p->refcnt, 0);
list_add(&p->list, &niu_parent_list);
spin_lock_init(&p->lock);
p->rxdma_clock_divider = 7500;
p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
if (p->plat_type == PLAT_TYPE_NIU)
p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
int index = i - CLASS_CODE_USER_PROG1;
p->tcam_key[index] = TCAM_KEY_TSEL;
p->flow_key[index] = (FLOW_KEY_IPSA |
FLOW_KEY_IPDA |
FLOW_KEY_PROTO |
(FLOW_KEY_L4_BYTE12 <<
FLOW_KEY_L4_0_SHIFT) |
(FLOW_KEY_L4_BYTE12 <<
FLOW_KEY_L4_1_SHIFT));
}
for (i = 0; i < LDN_MAX + 1; i++)
p->ldg_map[i] = LDG_INVALID;
return p;
fail_unregister:
platform_device_unregister(plat_dev);
return NULL;
}
static struct niu_parent * __devinit niu_get_parent(struct niu *np,
union niu_parent_id *id,
u8 ptype)
{
struct niu_parent *p, *tmp;
int port = np->port;
niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
ptype, port);
mutex_lock(&niu_parent_lock);
p = NULL;
list_for_each_entry(tmp, &niu_parent_list, list) {
if (!memcmp(id, &tmp->id, sizeof(*id))) {
p = tmp;
break;
}
}
if (!p)
p = niu_new_parent(np, id, ptype);
if (p) {
char port_name[6];
int err;
sprintf(port_name, "port%d", port);
err = sysfs_create_link(&p->plat_dev->dev.kobj,
&np->device->kobj,
port_name);
if (!err) {
p->ports[port] = np;
atomic_inc(&p->refcnt);
}
}
mutex_unlock(&niu_parent_lock);
return p;
}
static void niu_put_parent(struct niu *np)
{
struct niu_parent *p = np->parent;
u8 port = np->port;
char port_name[6];
BUG_ON(!p || p->ports[port] != np);
niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
sprintf(port_name, "port%d", port);
mutex_lock(&niu_parent_lock);
sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
p->ports[port] = NULL;
np->parent = NULL;
if (atomic_dec_and_test(&p->refcnt)) {
list_del(&p->list);
platform_device_unregister(p->plat_dev);
}
mutex_unlock(&niu_parent_lock);
}
static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
u64 *handle, gfp_t flag)
{
dma_addr_t dh;
void *ret;
ret = dma_alloc_coherent(dev, size, &dh, flag);
if (ret)
*handle = dh;
return ret;
}
static void niu_pci_free_coherent(struct device *dev, size_t size,
void *cpu_addr, u64 handle)
{
dma_free_coherent(dev, size, cpu_addr, handle);
}
static u64 niu_pci_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
return dma_map_page(dev, page, offset, size, direction);
}
static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
size_t size, enum dma_data_direction direction)
{
return dma_unmap_page(dev, dma_address, size, direction);
}
static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
size_t size,
enum dma_data_direction direction)
{
return dma_map_single(dev, cpu_addr, size, direction);
}
static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
size_t size,
enum dma_data_direction direction)
{
dma_unmap_single(dev, dma_address, size, direction);
}
static const struct niu_ops niu_pci_ops = {
.alloc_coherent = niu_pci_alloc_coherent,
.free_coherent = niu_pci_free_coherent,
.map_page = niu_pci_map_page,
.unmap_page = niu_pci_unmap_page,
.map_single = niu_pci_map_single,
.unmap_single = niu_pci_unmap_single,
};
static void __devinit niu_driver_version(void)
{
static int niu_version_printed;
if (niu_version_printed++ == 0)
pr_info("%s", version);
}
static struct net_device * __devinit niu_alloc_and_init(
struct device *gen_dev, struct pci_dev *pdev,
struct of_device *op, const struct niu_ops *ops,
u8 port)
{
struct net_device *dev;
struct niu *np;
dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
if (!dev) {
dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
return NULL;
}
SET_NETDEV_DEV(dev, gen_dev);
np = netdev_priv(dev);
np->dev = dev;
np->pdev = pdev;
np->op = op;
np->device = gen_dev;
np->ops = ops;
np->msg_enable = niu_debug;
spin_lock_init(&np->lock);
INIT_WORK(&np->reset_task, niu_reset_task);
np->port = port;
return dev;
}
static const struct net_device_ops niu_netdev_ops = {
.ndo_open = niu_open,
.ndo_stop = niu_close,
.ndo_start_xmit = niu_start_xmit,
.ndo_get_stats = niu_get_stats,
.ndo_set_multicast_list = niu_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = niu_set_mac_addr,
.ndo_do_ioctl = niu_ioctl,
.ndo_tx_timeout = niu_tx_timeout,
.ndo_change_mtu = niu_change_mtu,
};
static void __devinit niu_assign_netdev_ops(struct net_device *dev)
{
dev->netdev_ops = &niu_netdev_ops;
dev->ethtool_ops = &niu_ethtool_ops;
dev->watchdog_timeo = NIU_TX_TIMEOUT;
}
static void __devinit niu_device_announce(struct niu *np)
{
struct net_device *dev = np->dev;
pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
dev->name,
(np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
(np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
(np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
(np->mac_xcvr == MAC_XCVR_MII ? "MII" :
(np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
np->vpd.phy_type);
} else {
pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
dev->name,
(np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
(np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
(np->flags & NIU_FLAGS_FIBER ? "FIBER" :
(np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
"COPPER")),
(np->mac_xcvr == MAC_XCVR_MII ? "MII" :
(np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
np->vpd.phy_type);
}
}
static int __devinit niu_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
union niu_parent_id parent_id;
struct net_device *dev;
struct niu *np;
int err, pos;
u64 dma_mask;
u16 val16;
niu_driver_version();
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
"aborting.\n");
return err;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
"base addresses, aborting.\n");
err = -ENODEV;
goto err_out_disable_pdev;
}
err = pci_request_regions(pdev, DRV_MODULE_NAME);
if (err) {
dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
"aborting.\n");
goto err_out_disable_pdev;
}
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (pos <= 0) {
dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
"aborting.\n");
goto err_out_free_res;
}
dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
&niu_pci_ops, PCI_FUNC(pdev->devfn));
if (!dev) {
err = -ENOMEM;
goto err_out_free_res;
}
np = netdev_priv(dev);
memset(&parent_id, 0, sizeof(parent_id));
parent_id.pci.domain = pci_domain_nr(pdev->bus);
parent_id.pci.bus = pdev->bus->number;
parent_id.pci.device = PCI_SLOT(pdev->devfn);
np->parent = niu_get_parent(np, &parent_id,
PLAT_TYPE_ATLAS);
if (!np->parent) {
err = -ENOMEM;
goto err_out_free_dev;
}
pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
val16 |= (PCI_EXP_DEVCTL_CERE |
PCI_EXP_DEVCTL_NFERE |
PCI_EXP_DEVCTL_FERE |
PCI_EXP_DEVCTL_URRE |
PCI_EXP_DEVCTL_RELAX_EN);
pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
dma_mask = DMA_44BIT_MASK;
err = pci_set_dma_mask(pdev, dma_mask);
if (!err) {
dev->features |= NETIF_F_HIGHDMA;
err = pci_set_consistent_dma_mask(pdev, dma_mask);
if (err) {
dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
"DMA for consistent allocations, "
"aborting.\n");
goto err_out_release_parent;
}
}
if (err || dma_mask == DMA_32BIT_MASK) {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
dev_err(&pdev->dev, PFX "No usable DMA configuration, "
"aborting.\n");
goto err_out_release_parent;
}
}
dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
np->regs = pci_ioremap_bar(pdev, 0);
if (!np->regs) {
dev_err(&pdev->dev, PFX "Cannot map device registers, "
"aborting.\n");
err = -ENOMEM;
goto err_out_release_parent;
}
pci_set_master(pdev);
pci_save_state(pdev);
dev->irq = pdev->irq;
niu_assign_netdev_ops(dev);
err = niu_get_invariants(np);
if (err) {
if (err != -ENODEV)
dev_err(&pdev->dev, PFX "Problem fetching invariants "
"of chip, aborting.\n");
goto err_out_iounmap;
}
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, PFX "Cannot register net device, "
"aborting.\n");
goto err_out_iounmap;
}
pci_set_drvdata(pdev, dev);
niu_device_announce(np);
return 0;
err_out_iounmap:
if (np->regs) {
iounmap(np->regs);
np->regs = NULL;
}
err_out_release_parent:
niu_put_parent(np);
err_out_free_dev:
free_netdev(dev);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct niu *np = netdev_priv(dev);
unregister_netdev(dev);
if (np->regs) {
iounmap(np->regs);
np->regs = NULL;
}
niu_ldg_free(np);
niu_put_parent(np);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct niu *np = netdev_priv(dev);
unsigned long flags;
if (!netif_running(dev))
return 0;
flush_scheduled_work();
niu_netif_stop(np);
del_timer_sync(&np->timer);
spin_lock_irqsave(&np->lock, flags);
niu_enable_interrupts(np, 0);
spin_unlock_irqrestore(&np->lock, flags);
netif_device_detach(dev);
spin_lock_irqsave(&np->lock, flags);
niu_stop_hw(np);
spin_unlock_irqrestore(&np->lock, flags);
pci_save_state(pdev);
return 0;
}
static int niu_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct niu *np = netdev_priv(dev);
unsigned long flags;
int err;
if (!netif_running(dev))
return 0;
pci_restore_state(pdev);
netif_device_attach(dev);
spin_lock_irqsave(&np->lock, flags);
err = niu_init_hw(np);
if (!err) {
np->timer.expires = jiffies + HZ;
add_timer(&np->timer);
niu_netif_start(np);
}
spin_unlock_irqrestore(&np->lock, flags);
return err;
}
static struct pci_driver niu_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = niu_pci_tbl,
.probe = niu_pci_init_one,
.remove = __devexit_p(niu_pci_remove_one),
.suspend = niu_suspend,
.resume = niu_resume,
};
#ifdef CONFIG_SPARC64
static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
u64 *dma_addr, gfp_t flag)
{
unsigned long order = get_order(size);
unsigned long page = __get_free_pages(flag, order);
if (page == 0UL)
return NULL;
memset((char *)page, 0, PAGE_SIZE << order);
*dma_addr = __pa(page);
return (void *) page;
}
static void niu_phys_free_coherent(struct device *dev, size_t size,
void *cpu_addr, u64 handle)
{
unsigned long order = get_order(size);
free_pages((unsigned long) cpu_addr, order);
}
static u64 niu_phys_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
return page_to_phys(page) + offset;
}
static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
size_t size, enum dma_data_direction direction)
{
/* Nothing to do. */
}
static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
size_t size,
enum dma_data_direction direction)
{
return __pa(cpu_addr);
}
static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
size_t size,
enum dma_data_direction direction)
{
/* Nothing to do. */
}
static const struct niu_ops niu_phys_ops = {
.alloc_coherent = niu_phys_alloc_coherent,
.free_coherent = niu_phys_free_coherent,
.map_page = niu_phys_map_page,
.unmap_page = niu_phys_unmap_page,
.map_single = niu_phys_map_single,
.unmap_single = niu_phys_unmap_single,
};
static unsigned long res_size(struct resource *r)
{
return r->end - r->start + 1UL;
}
static int __devinit niu_of_probe(struct of_device *op,
const struct of_device_id *match)
{
union niu_parent_id parent_id;
struct net_device *dev;
struct niu *np;
const u32 *reg;
int err;
niu_driver_version();
reg = of_get_property(op->node, "reg", NULL);
if (!reg) {
dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
op->node->full_name);
return -ENODEV;
}
dev = niu_alloc_and_init(&op->dev, NULL, op,
&niu_phys_ops, reg[0] & 0x1);
if (!dev) {
err = -ENOMEM;
goto err_out;
}
np = netdev_priv(dev);
memset(&parent_id, 0, sizeof(parent_id));
parent_id.of = of_get_parent(op->node);
np->parent = niu_get_parent(np, &parent_id,
PLAT_TYPE_NIU);
if (!np->parent) {
err = -ENOMEM;
goto err_out_free_dev;
}
dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
np->regs = of_ioremap(&op->resource[1], 0,
res_size(&op->resource[1]),
"niu regs");
if (!np->regs) {
dev_err(&op->dev, PFX "Cannot map device registers, "
"aborting.\n");
err = -ENOMEM;
goto err_out_release_parent;
}
np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
res_size(&op->resource[2]),
"niu vregs-1");
if (!np->vir_regs_1) {
dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
"aborting.\n");
err = -ENOMEM;
goto err_out_iounmap;
}
np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
res_size(&op->resource[3]),
"niu vregs-2");
if (!np->vir_regs_2) {
dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
"aborting.\n");
err = -ENOMEM;
goto err_out_iounmap;
}
niu_assign_netdev_ops(dev);
err = niu_get_invariants(np);
if (err) {
if (err != -ENODEV)
dev_err(&op->dev, PFX "Problem fetching invariants "
"of chip, aborting.\n");
goto err_out_iounmap;
}
err = register_netdev(dev);
if (err) {
dev_err(&op->dev, PFX "Cannot register net device, "
"aborting.\n");
goto err_out_iounmap;
}
dev_set_drvdata(&op->dev, dev);
niu_device_announce(np);
return 0;
err_out_iounmap:
if (np->vir_regs_1) {
of_iounmap(&op->resource[2], np->vir_regs_1,
res_size(&op->resource[2]));
np->vir_regs_1 = NULL;
}
if (np->vir_regs_2) {
of_iounmap(&op->resource[3], np->vir_regs_2,
res_size(&op->resource[3]));
np->vir_regs_2 = NULL;
}
if (np->regs) {
of_iounmap(&op->resource[1], np->regs,
res_size(&op->resource[1]));
np->regs = NULL;
}
err_out_release_parent:
niu_put_parent(np);
err_out_free_dev:
free_netdev(dev);
err_out:
return err;
}
static int __devexit niu_of_remove(struct of_device *op)
{
struct net_device *dev = dev_get_drvdata(&op->dev);
if (dev) {
struct niu *np = netdev_priv(dev);
unregister_netdev(dev);
if (np->vir_regs_1) {
of_iounmap(&op->resource[2], np->vir_regs_1,
res_size(&op->resource[2]));
np->vir_regs_1 = NULL;
}
if (np->vir_regs_2) {
of_iounmap(&op->resource[3], np->vir_regs_2,
res_size(&op->resource[3]));
np->vir_regs_2 = NULL;
}
if (np->regs) {
of_iounmap(&op->resource[1], np->regs,
res_size(&op->resource[1]));
np->regs = NULL;
}
niu_ldg_free(np);
niu_put_parent(np);
free_netdev(dev);
dev_set_drvdata(&op->dev, NULL);
}
return 0;
}
static const struct of_device_id niu_match[] = {
{
.name = "network",
.compatible = "SUNW,niusl",
},
{},
};
MODULE_DEVICE_TABLE(of, niu_match);
static struct of_platform_driver niu_of_driver = {
.name = "niu",
.match_table = niu_match,
.probe = niu_of_probe,
.remove = __devexit_p(niu_of_remove),
};
#endif /* CONFIG_SPARC64 */
static int __init niu_init(void)
{
int err = 0;
BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
#ifdef CONFIG_SPARC64
err = of_register_driver(&niu_of_driver, &of_bus_type);
#endif
if (!err) {
err = pci_register_driver(&niu_pci_driver);
#ifdef CONFIG_SPARC64
if (err)
of_unregister_driver(&niu_of_driver);
#endif
}
return err;
}
static void __exit niu_exit(void)
{
pci_unregister_driver(&niu_pci_driver);
#ifdef CONFIG_SPARC64
of_unregister_driver(&niu_of_driver);
#endif
}
module_init(niu_init);
module_exit(niu_exit);