kernel-fxtec-pro1x/arch/mips/alchemy/common/platform.c
Manuel Lauss 5d4ddcb427 MIPS: Alchemy: Cleanup DMA addresses
According to the databooks, the Au1000 DMA engine must be programmed with
the physical FIFO addresses.  This patch does that; furthermore this
opened the possibility to get rid of a lot of now unnecessary address
defines.

Signed-off-by: Manuel Lauss <manuel.lauss@googlemail.com>
To: Linux-MIPS <linux-mips@linux-mips.org>
Cc: Florian Fainelli <florian@openwrt.org>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Patchwork: https://patchwork.linux-mips.org/patch/2348/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org
2011-05-19 09:55:46 +01:00

556 lines
14 KiB
C

/*
* Platform device support for Au1x00 SoCs.
*
* Copyright 2004, Matt Porter <mporter@kernel.crashing.org>
*
* (C) Copyright Embedded Alley Solutions, Inc 2005
* Author: Pantelis Antoniou <pantelis@embeddedalley.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/serial_8250.h>
#include <linux/slab.h>
#include <asm/mach-au1x00/au1xxx.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#include <asm/mach-au1x00/au1xxx_eth.h>
#include <prom.h>
static void alchemy_8250_pm(struct uart_port *port, unsigned int state,
unsigned int old_state)
{
#ifdef CONFIG_SERIAL_8250
switch (state) {
case 0:
alchemy_uart_enable(CPHYSADDR(port->membase));
serial8250_do_pm(port, state, old_state);
break;
case 3: /* power off */
serial8250_do_pm(port, state, old_state);
alchemy_uart_disable(CPHYSADDR(port->membase));
break;
default:
serial8250_do_pm(port, state, old_state);
break;
}
#endif
}
#define PORT(_base, _irq) \
{ \
.mapbase = _base, \
.irq = _irq, \
.regshift = 2, \
.iotype = UPIO_AU, \
.flags = UPF_SKIP_TEST | UPF_IOREMAP | \
UPF_FIXED_TYPE, \
.type = PORT_16550A, \
.pm = alchemy_8250_pm, \
}
static struct plat_serial8250_port au1x00_uart_data[][4] __initdata = {
[ALCHEMY_CPU_AU1000] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1000_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1000_UART1_INT),
PORT(AU1000_UART2_PHYS_ADDR, AU1000_UART2_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1000_UART3_INT),
},
[ALCHEMY_CPU_AU1500] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1500_UART0_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1500_UART3_INT),
},
[ALCHEMY_CPU_AU1100] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1100_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1100_UART1_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1100_UART3_INT),
},
[ALCHEMY_CPU_AU1550] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1550_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1550_UART1_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1550_UART3_INT),
},
[ALCHEMY_CPU_AU1200] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1200_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1200_UART1_INT),
},
};
static struct platform_device au1xx0_uart_device = {
.name = "serial8250",
.id = PLAT8250_DEV_AU1X00,
};
static void __init alchemy_setup_uarts(int ctype)
{
unsigned int uartclk = get_au1x00_uart_baud_base() * 16;
int s = sizeof(struct plat_serial8250_port);
int c = alchemy_get_uarts(ctype);
struct plat_serial8250_port *ports;
ports = kzalloc(s * (c + 1), GFP_KERNEL);
if (!ports) {
printk(KERN_INFO "Alchemy: no memory for UART data\n");
return;
}
memcpy(ports, au1x00_uart_data[ctype], s * c);
au1xx0_uart_device.dev.platform_data = ports;
/* Fill up uartclk. */
for (s = 0; s < c; s++)
ports[s].uartclk = uartclk;
if (platform_device_register(&au1xx0_uart_device))
printk(KERN_INFO "Alchemy: failed to register UARTs\n");
}
/* OHCI (USB full speed host controller) */
static struct resource au1xxx_usb_ohci_resources[] = {
[0] = {
.start = USB_OHCI_BASE,
.end = USB_OHCI_BASE + USB_OHCI_LEN - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = FOR_PLATFORM_C_USB_HOST_INT,
.end = FOR_PLATFORM_C_USB_HOST_INT,
.flags = IORESOURCE_IRQ,
},
};
/* The dmamask must be set for OHCI to work */
static u64 ohci_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1xxx_usb_ohci_device = {
.name = "au1xxx-ohci",
.id = 0,
.dev = {
.dma_mask = &ohci_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1xxx_usb_ohci_resources),
.resource = au1xxx_usb_ohci_resources,
};
/*** AU1100 LCD controller ***/
#ifdef CONFIG_FB_AU1100
static struct resource au1100_lcd_resources[] = {
[0] = {
.start = LCD_PHYS_ADDR,
.end = LCD_PHYS_ADDR + 0x800 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1100_LCD_INT,
.end = AU1100_LCD_INT,
.flags = IORESOURCE_IRQ,
}
};
static u64 au1100_lcd_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1100_lcd_device = {
.name = "au1100-lcd",
.id = 0,
.dev = {
.dma_mask = &au1100_lcd_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1100_lcd_resources),
.resource = au1100_lcd_resources,
};
#endif
#ifdef CONFIG_SOC_AU1200
/* EHCI (USB high speed host controller) */
static struct resource au1xxx_usb_ehci_resources[] = {
[0] = {
.start = USB_EHCI_BASE,
.end = USB_EHCI_BASE + USB_EHCI_LEN - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_USB_INT,
.end = AU1200_USB_INT,
.flags = IORESOURCE_IRQ,
},
};
static u64 ehci_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1xxx_usb_ehci_device = {
.name = "au1xxx-ehci",
.id = 0,
.dev = {
.dma_mask = &ehci_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1xxx_usb_ehci_resources),
.resource = au1xxx_usb_ehci_resources,
};
/* Au1200 UDC (USB gadget controller) */
static struct resource au1xxx_usb_gdt_resources[] = {
[0] = {
.start = USB_UDC_BASE,
.end = USB_UDC_BASE + USB_UDC_LEN - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_USB_INT,
.end = AU1200_USB_INT,
.flags = IORESOURCE_IRQ,
},
};
static u64 udc_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1xxx_usb_gdt_device = {
.name = "au1xxx-udc",
.id = 0,
.dev = {
.dma_mask = &udc_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1xxx_usb_gdt_resources),
.resource = au1xxx_usb_gdt_resources,
};
/* Au1200 UOC (USB OTG controller) */
static struct resource au1xxx_usb_otg_resources[] = {
[0] = {
.start = USB_UOC_BASE,
.end = USB_UOC_BASE + USB_UOC_LEN - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_USB_INT,
.end = AU1200_USB_INT,
.flags = IORESOURCE_IRQ,
},
};
static u64 uoc_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1xxx_usb_otg_device = {
.name = "au1xxx-uoc",
.id = 0,
.dev = {
.dma_mask = &uoc_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1xxx_usb_otg_resources),
.resource = au1xxx_usb_otg_resources,
};
static struct resource au1200_lcd_resources[] = {
[0] = {
.start = LCD_PHYS_ADDR,
.end = LCD_PHYS_ADDR + 0x800 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_LCD_INT,
.end = AU1200_LCD_INT,
.flags = IORESOURCE_IRQ,
}
};
static u64 au1200_lcd_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1200_lcd_device = {
.name = "au1200-lcd",
.id = 0,
.dev = {
.dma_mask = &au1200_lcd_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1200_lcd_resources),
.resource = au1200_lcd_resources,
};
static u64 au1xxx_mmc_dmamask = DMA_BIT_MASK(32);
extern struct au1xmmc_platform_data au1xmmc_platdata[2];
static struct resource au1200_mmc0_resources[] = {
[0] = {
.start = AU1100_SD0_PHYS_ADDR,
.end = AU1100_SD0_PHYS_ADDR + 0xfff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_SD_INT,
.end = AU1200_SD_INT,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = DSCR_CMD0_SDMS_TX0,
.end = DSCR_CMD0_SDMS_TX0,
.flags = IORESOURCE_DMA,
},
[3] = {
.start = DSCR_CMD0_SDMS_RX0,
.end = DSCR_CMD0_SDMS_RX0,
.flags = IORESOURCE_DMA,
}
};
static struct platform_device au1200_mmc0_device = {
.name = "au1xxx-mmc",
.id = 0,
.dev = {
.dma_mask = &au1xxx_mmc_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
.platform_data = &au1xmmc_platdata[0],
},
.num_resources = ARRAY_SIZE(au1200_mmc0_resources),
.resource = au1200_mmc0_resources,
};
#ifndef CONFIG_MIPS_DB1200
static struct resource au1200_mmc1_resources[] = {
[0] = {
.start = AU1100_SD1_PHYS_ADDR,
.end = AU1100_SD1_PHYS_ADDR + 0xfff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_SD_INT,
.end = AU1200_SD_INT,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = DSCR_CMD0_SDMS_TX1,
.end = DSCR_CMD0_SDMS_TX1,
.flags = IORESOURCE_DMA,
},
[3] = {
.start = DSCR_CMD0_SDMS_RX1,
.end = DSCR_CMD0_SDMS_RX1,
.flags = IORESOURCE_DMA,
}
};
static struct platform_device au1200_mmc1_device = {
.name = "au1xxx-mmc",
.id = 1,
.dev = {
.dma_mask = &au1xxx_mmc_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
.platform_data = &au1xmmc_platdata[1],
},
.num_resources = ARRAY_SIZE(au1200_mmc1_resources),
.resource = au1200_mmc1_resources,
};
#endif /* #ifndef CONFIG_MIPS_DB1200 */
#endif /* #ifdef CONFIG_SOC_AU1200 */
/* All Alchemy demoboards with I2C have this #define in their headers */
#ifdef SMBUS_PSC_BASE
static struct resource pbdb_smbus_resources[] = {
{
.start = CPHYSADDR(SMBUS_PSC_BASE),
.end = CPHYSADDR(SMBUS_PSC_BASE + 0xfffff),
.flags = IORESOURCE_MEM,
},
};
static struct platform_device pbdb_smbus_device = {
.name = "au1xpsc_smbus",
.id = 0, /* bus number */
.num_resources = ARRAY_SIZE(pbdb_smbus_resources),
.resource = pbdb_smbus_resources,
};
#endif
/* Macro to help defining the Ethernet MAC resources */
#define MAC_RES_COUNT 3 /* MAC regs base, MAC enable reg, MAC INT */
#define MAC_RES(_base, _enable, _irq) \
{ \
.start = _base, \
.end = _base + 0xffff, \
.flags = IORESOURCE_MEM, \
}, \
{ \
.start = _enable, \
.end = _enable + 0x3, \
.flags = IORESOURCE_MEM, \
}, \
{ \
.start = _irq, \
.end = _irq, \
.flags = IORESOURCE_IRQ \
}
static struct resource au1xxx_eth0_resources[][MAC_RES_COUNT] __initdata = {
[ALCHEMY_CPU_AU1000] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1000_MAC0_DMA_INT)
},
[ALCHEMY_CPU_AU1500] = {
MAC_RES(AU1500_MAC0_PHYS_ADDR,
AU1500_MACEN_PHYS_ADDR,
AU1500_MAC0_DMA_INT)
},
[ALCHEMY_CPU_AU1100] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1100_MAC0_DMA_INT)
},
[ALCHEMY_CPU_AU1550] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1550_MAC0_DMA_INT)
},
};
static struct au1000_eth_platform_data au1xxx_eth0_platform_data = {
.phy1_search_mac0 = 1,
};
static struct platform_device au1xxx_eth0_device = {
.name = "au1000-eth",
.id = 0,
.num_resources = MAC_RES_COUNT,
.dev.platform_data = &au1xxx_eth0_platform_data,
};
static struct resource au1xxx_eth1_resources[][MAC_RES_COUNT] __initdata = {
[ALCHEMY_CPU_AU1000] = {
MAC_RES(AU1000_MAC1_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR + 4,
AU1000_MAC1_DMA_INT)
},
[ALCHEMY_CPU_AU1500] = {
MAC_RES(AU1500_MAC1_PHYS_ADDR,
AU1500_MACEN_PHYS_ADDR + 4,
AU1500_MAC1_DMA_INT)
},
[ALCHEMY_CPU_AU1550] = {
MAC_RES(AU1000_MAC1_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR + 4,
AU1550_MAC1_DMA_INT)
},
};
static struct au1000_eth_platform_data au1xxx_eth1_platform_data = {
.phy1_search_mac0 = 1,
};
static struct platform_device au1xxx_eth1_device = {
.name = "au1000-eth",
.id = 1,
.num_resources = MAC_RES_COUNT,
.dev.platform_data = &au1xxx_eth1_platform_data,
};
void __init au1xxx_override_eth_cfg(unsigned int port,
struct au1000_eth_platform_data *eth_data)
{
if (!eth_data || port > 1)
return;
if (port == 0)
memcpy(&au1xxx_eth0_platform_data, eth_data,
sizeof(struct au1000_eth_platform_data));
else
memcpy(&au1xxx_eth1_platform_data, eth_data,
sizeof(struct au1000_eth_platform_data));
}
static void __init alchemy_setup_macs(int ctype)
{
int ret, i;
unsigned char ethaddr[6];
struct resource *macres;
/* Handle 1st MAC */
if (alchemy_get_macs(ctype) < 1)
return;
macres = kmalloc(sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL);
if (!macres) {
printk(KERN_INFO "Alchemy: no memory for MAC0 resources\n");
return;
}
memcpy(macres, au1xxx_eth0_resources[ctype],
sizeof(struct resource) * MAC_RES_COUNT);
au1xxx_eth0_device.resource = macres;
i = prom_get_ethernet_addr(ethaddr);
if (!i && !is_valid_ether_addr(au1xxx_eth0_platform_data.mac))
memcpy(au1xxx_eth0_platform_data.mac, ethaddr, 6);
ret = platform_device_register(&au1xxx_eth0_device);
if (!ret)
printk(KERN_INFO "Alchemy: failed to register MAC0\n");
/* Handle 2nd MAC */
if (alchemy_get_macs(ctype) < 2)
return;
macres = kmalloc(sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL);
if (!macres) {
printk(KERN_INFO "Alchemy: no memory for MAC1 resources\n");
return;
}
memcpy(macres, au1xxx_eth1_resources[ctype],
sizeof(struct resource) * MAC_RES_COUNT);
au1xxx_eth1_device.resource = macres;
ethaddr[5] += 1; /* next addr for 2nd MAC */
if (!i && !is_valid_ether_addr(au1xxx_eth1_platform_data.mac))
memcpy(au1xxx_eth1_platform_data.mac, ethaddr, 6);
/* Register second MAC if enabled in pinfunc */
if (!(au_readl(SYS_PINFUNC) & (u32)SYS_PF_NI2)) {
ret = platform_device_register(&au1xxx_eth1_device);
if (ret)
printk(KERN_INFO "Alchemy: failed to register MAC1\n");
}
}
static struct platform_device *au1xxx_platform_devices[] __initdata = {
&au1xxx_usb_ohci_device,
#ifdef CONFIG_FB_AU1100
&au1100_lcd_device,
#endif
#ifdef CONFIG_SOC_AU1200
&au1xxx_usb_ehci_device,
&au1xxx_usb_gdt_device,
&au1xxx_usb_otg_device,
&au1200_lcd_device,
&au1200_mmc0_device,
#ifndef CONFIG_MIPS_DB1200
&au1200_mmc1_device,
#endif
#endif
#ifdef SMBUS_PSC_BASE
&pbdb_smbus_device,
#endif
};
static int __init au1xxx_platform_init(void)
{
int err, ctype = alchemy_get_cputype();
alchemy_setup_uarts(ctype);
alchemy_setup_macs(ctype);
err = platform_add_devices(au1xxx_platform_devices,
ARRAY_SIZE(au1xxx_platform_devices));
return err;
}
arch_initcall(au1xxx_platform_init);