kernel-fxtec-pro1x/arch/mips/pci/pci-octeon.c
David Daney b93b2abce4 MIPS: Octeon: Rewrite DMA mapping functions.
All Octeon chips can support more than 4GB of RAM.  Also due to how Octeon
PCI is setup, even some configurations with less than 4GB of RAM will have
portions that are not accessible from 32-bit devices.

Enable the swiotlb code to handle the cases where a device cannot directly
do DMA.  This is a complete rewrite of the Octeon DMA mapping code.

Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Patchwork: http://patchwork.linux-mips.org/patch/1639/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2010-10-29 19:08:32 +01:00

721 lines
22 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2009 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/swiotlb.h>
#include <asm/time.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/pci-octeon.h>
#include <dma-coherence.h>
#define USE_OCTEON_INTERNAL_ARBITER
/*
* Octeon's PCI controller uses did=3, subdid=2 for PCI IO
* addresses. Use PCI endian swapping 1 so no address swapping is
* necessary. The Linux io routines will endian swap the data.
*/
#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
u64 octeon_bar1_pci_phys;
/**
* This is the bit decoding used for the Octeon PCI controller addresses
*/
union octeon_pci_address {
uint64_t u64;
struct {
uint64_t upper:2;
uint64_t reserved:13;
uint64_t io:1;
uint64_t did:5;
uint64_t subdid:3;
uint64_t reserved2:4;
uint64_t endian_swap:2;
uint64_t reserved3:10;
uint64_t bus:8;
uint64_t dev:5;
uint64_t func:3;
uint64_t reg:8;
} s;
};
int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
u8 slot, u8 pin);
enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
/**
* Map a PCI device to the appropriate interrupt line
*
* @dev: The Linux PCI device structure for the device to map
* @slot: The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @pin: The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* Returns Interrupt number for the device
*/
int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
if (octeon_pcibios_map_irq)
return octeon_pcibios_map_irq(dev, slot, pin);
else
panic("octeon_pcibios_map_irq not set.");
}
/*
* Called to perform platform specific PCI setup
*/
int pcibios_plat_dev_init(struct pci_dev *dev)
{
uint16_t config;
uint32_t dconfig;
int pos;
/*
* Force the Cache line setting to 64 bytes. The standard
* Linux bus scan doesn't seem to set it. Octeon really has
* 128 byte lines, but Intel bridges get really upset if you
* try and set values above 64 bytes. Value is specified in
* 32bit words.
*/
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
/* Set latency timers for all devices */
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
/* Enable reporting System errors and parity errors on all devices */
/* Enable parity checking and error reporting */
pci_read_config_word(dev, PCI_COMMAND, &config);
config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
pci_write_config_word(dev, PCI_COMMAND, config);
if (dev->subordinate) {
/* Set latency timers on sub bridges */
pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
/* More bridge error detection */
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
}
/* Enable the PCIe normal error reporting */
pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (pos) {
/* Update Device Control */
pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
/* Correctable Error Reporting */
config |= PCI_EXP_DEVCTL_CERE;
/* Non-Fatal Error Reporting */
config |= PCI_EXP_DEVCTL_NFERE;
/* Fatal Error Reporting */
config |= PCI_EXP_DEVCTL_FERE;
/* Unsupported Request */
config |= PCI_EXP_DEVCTL_URRE;
pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
}
/* Find the Advanced Error Reporting capability */
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
if (pos) {
/* Clear Uncorrectable Error Status */
pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
&dconfig);
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
dconfig);
/* Enable reporting of all uncorrectable errors */
/* Uncorrectable Error Mask - turned on bits disable errors */
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
/*
* Leave severity at HW default. This only controls if
* errors are reported as uncorrectable or
* correctable, not if the error is reported.
*/
/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
/* Clear Correctable Error Status */
pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
/* Enable reporting of all correctable errors */
/* Correctable Error Mask - turned on bits disable errors */
pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
/* Advanced Error Capabilities */
pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
/* ECRC Generation Enable */
if (config & PCI_ERR_CAP_ECRC_GENC)
config |= PCI_ERR_CAP_ECRC_GENE;
/* ECRC Check Enable */
if (config & PCI_ERR_CAP_ECRC_CHKC)
config |= PCI_ERR_CAP_ECRC_CHKE;
pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
/* Report all errors to the root complex */
pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
PCI_ERR_ROOT_CMD_COR_EN |
PCI_ERR_ROOT_CMD_NONFATAL_EN |
PCI_ERR_ROOT_CMD_FATAL_EN);
/* Clear the Root status register */
pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
}
dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
return 0;
}
/**
* Return the mapping of PCI device number to IRQ line. Each
* character in the return string represents the interrupt
* line for the device at that position. Device 1 maps to the
* first character, etc. The characters A-D are used for PCI
* interrupts.
*
* Returns PCI interrupt mapping
*/
const char *octeon_get_pci_interrupts(void)
{
/*
* Returning an empty string causes the interrupts to be
* routed based on the PCI specification. From the PCI spec:
*
* INTA# of Device Number 0 is connected to IRQW on the system
* board. (Device Number has no significance regarding being
* located on the system board or in a connector.) INTA# of
* Device Number 1 is connected to IRQX on the system
* board. INTA# of Device Number 2 is connected to IRQY on the
* system board. INTA# of Device Number 3 is connected to IRQZ
* on the system board. The table below describes how each
* agent's INTx# lines are connected to the system board
* interrupt lines. The following equation can be used to
* determine to which INTx# signal on the system board a given
* device's INTx# line(s) is connected.
*
* MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
* IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
* Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
* INTD# = 3)
*/
switch (octeon_bootinfo->board_type) {
case CVMX_BOARD_TYPE_NAO38:
/* This is really the NAC38 */
return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
case CVMX_BOARD_TYPE_EBH3100:
case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
case CVMX_BOARD_TYPE_BBGW_REF:
return "AABCD";
case CVMX_BOARD_TYPE_THUNDER:
case CVMX_BOARD_TYPE_EBH3000:
default:
return "";
}
}
/**
* Map a PCI device to the appropriate interrupt line
*
* @dev: The Linux PCI device structure for the device to map
* @slot: The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @pin: The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* Returns Interrupt number for the device
*/
int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
u8 slot, u8 pin)
{
int irq_num;
const char *interrupts;
int dev_num;
/* Get the board specific interrupt mapping */
interrupts = octeon_get_pci_interrupts();
dev_num = dev->devfn >> 3;
if (dev_num < strlen(interrupts))
irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
OCTEON_IRQ_PCI_INT0;
else
irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
return irq_num;
}
/*
* Read a value from configuration space
*/
static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
union octeon_pci_address pci_addr;
pci_addr.u64 = 0;
pci_addr.s.upper = 2;
pci_addr.s.io = 1;
pci_addr.s.did = 3;
pci_addr.s.subdid = 1;
pci_addr.s.endian_swap = 1;
pci_addr.s.bus = bus->number;
pci_addr.s.dev = devfn >> 3;
pci_addr.s.func = devfn & 0x7;
pci_addr.s.reg = reg;
#if PCI_CONFIG_SPACE_DELAY
udelay(PCI_CONFIG_SPACE_DELAY);
#endif
switch (size) {
case 4:
*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
return PCIBIOS_SUCCESSFUL;
case 2:
*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
return PCIBIOS_SUCCESSFUL;
case 1:
*val = cvmx_read64_uint8(pci_addr.u64);
return PCIBIOS_SUCCESSFUL;
}
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
/*
* Write a value to PCI configuration space
*/
static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
union octeon_pci_address pci_addr;
pci_addr.u64 = 0;
pci_addr.s.upper = 2;
pci_addr.s.io = 1;
pci_addr.s.did = 3;
pci_addr.s.subdid = 1;
pci_addr.s.endian_swap = 1;
pci_addr.s.bus = bus->number;
pci_addr.s.dev = devfn >> 3;
pci_addr.s.func = devfn & 0x7;
pci_addr.s.reg = reg;
#if PCI_CONFIG_SPACE_DELAY
udelay(PCI_CONFIG_SPACE_DELAY);
#endif
switch (size) {
case 4:
cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
return PCIBIOS_SUCCESSFUL;
case 2:
cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
return PCIBIOS_SUCCESSFUL;
case 1:
cvmx_write64_uint8(pci_addr.u64, val);
return PCIBIOS_SUCCESSFUL;
}
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
static struct pci_ops octeon_pci_ops = {
octeon_read_config,
octeon_write_config,
};
static struct resource octeon_pci_mem_resource = {
.start = 0,
.end = 0,
.name = "Octeon PCI MEM",
.flags = IORESOURCE_MEM,
};
/*
* PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
* bridge
*/
static struct resource octeon_pci_io_resource = {
.start = 0x4000,
.end = OCTEON_PCI_IOSPACE_SIZE - 1,
.name = "Octeon PCI IO",
.flags = IORESOURCE_IO,
};
static struct pci_controller octeon_pci_controller = {
.pci_ops = &octeon_pci_ops,
.mem_resource = &octeon_pci_mem_resource,
.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
.io_resource = &octeon_pci_io_resource,
.io_offset = 0,
.io_map_base = OCTEON_PCI_IOSPACE_BASE,
};
/*
* Low level initialize the Octeon PCI controller
*/
static void octeon_pci_initialize(void)
{
union cvmx_pci_cfg01 cfg01;
union cvmx_npi_ctl_status ctl_status;
union cvmx_pci_ctl_status_2 ctl_status_2;
union cvmx_pci_cfg19 cfg19;
union cvmx_pci_cfg16 cfg16;
union cvmx_pci_cfg22 cfg22;
union cvmx_pci_cfg56 cfg56;
/* Reset the PCI Bus */
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
udelay(2000); /* Hold PCI reset for 2 ms */
ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
ctl_status.s.max_word = 1;
ctl_status.s.timer = 1;
cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
/* Deassert PCI reset and advertize PCX Host Mode Device Capability
(64b) */
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
udelay(2000); /* Wait 2 ms after deasserting PCI reset */
ctl_status_2.u32 = 0;
ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
before any PCI reads. */
ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
ctl_status_2.s.bar2_enb = 1;
ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
ctl_status_2.s.bar2_esx = 1;
ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
/* BAR1 hole */
ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
ctl_status_2.s.bb1 = 1; /* BAR1 is big */
ctl_status_2.s.bb0 = 1; /* BAR0 is big */
}
octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
udelay(2000); /* Wait 2 ms before doing PCI reads */
ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
pr_notice("PCI Status: %s %s-bit\n",
ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
ctl_status_2.s.ap_64ad ? "64" : "32");
if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
union cvmx_pci_cnt_reg cnt_reg_start;
union cvmx_pci_cnt_reg cnt_reg_end;
unsigned long cycles, pci_clock;
cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
cycles = read_c0_cvmcount();
udelay(1000);
cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
cycles = read_c0_cvmcount() - cycles;
pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
(cycles / (mips_hpt_frequency / 1000000));
pr_notice("PCI Clock: %lu MHz\n", pci_clock);
}
/*
* TDOMC must be set to one in PCI mode. TDOMC should be set to 4
* in PCI-X mode to allow four oustanding splits. Otherwise,
* should not change from its reset value. Don't write PCI_CFG19
* in PCI mode (0x82000001 reset value), write it to 0x82000004
* after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
* MRBCM -> must be one.
*/
if (ctl_status_2.s.ap_pcix) {
cfg19.u32 = 0;
/*
* Target Delayed/Split request outstanding maximum
* count. [1..31] and 0=32. NOTE: If the user
* programs these bits beyond the Designed Maximum
* outstanding count, then the designed maximum table
* depth will be used instead. No additional
* Deferred/Split transactions will be accepted if
* this outstanding maximum count is
* reached. Furthermore, no additional deferred/split
* transactions will be accepted if the I/O delay/ I/O
* Split Request outstanding maximum is reached.
*/
cfg19.s.tdomc = 4;
/*
* Master Deferred Read Request Outstanding Max Count
* (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
* cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
* 5 2 110 6 3 111 7 3 For example, if these bits are
* programmed to 100, the core can support 2 DAC
* cycles, 4 SAC cycles or a combination of 1 DAC and
* 2 SAC cycles. NOTE: For the PCI-X maximum
* outstanding split transactions, refer to
* CRE0[22:20].
*/
cfg19.s.mdrrmc = 2;
/*
* Master Request (Memory Read) Byte Count/Byte Enable
* select. 0 = Byte Enables valid. In PCI mode, a
* burst transaction cannot be performed using Memory
* Read command=4?h6. 1 = DWORD Byte Count valid
* (default). In PCI Mode, the memory read byte
* enables are automatically generated by the
* core. Note: N3 Master Request transaction sizes are
* always determined through the
* am_attr[<35:32>|<7:0>] field.
*/
cfg19.s.mrbcm = 1;
octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
}
cfg01.u32 = 0;
cfg01.s.msae = 1; /* Memory Space Access Enable */
cfg01.s.me = 1; /* Master Enable */
cfg01.s.pee = 1; /* PERR# Enable */
cfg01.s.see = 1; /* System Error Enable */
cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
#ifdef USE_OCTEON_INTERNAL_ARBITER
/*
* When OCTEON is a PCI host, most systems will use OCTEON's
* internal arbiter, so must enable it before any PCI/PCI-X
* traffic can occur.
*/
{
union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
pci_int_arb_cfg.u64 = 0;
pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
}
#endif /* USE_OCTEON_INTERNAL_ARBITER */
/*
* Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
* TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
* 1..7.
*/
cfg16.u32 = 0;
cfg16.s.mltd = 1; /* Master Latency Timer Disable */
octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
/*
* Should be written to 0x4ff00. MTTV -> must be zero.
* FLUSH -> must be 1. MRV -> should be 0xFF.
*/
cfg22.u32 = 0;
/* Master Retry Value [1..255] and 0=infinite */
cfg22.s.mrv = 0xff;
/*
* AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
* N3K operation.
*/
cfg22.s.flush = 1;
octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
/*
* MOST Indicates the maximum number of outstanding splits (in -1
* notation) when OCTEON is in PCI-X mode. PCI-X performance is
* affected by the MOST selection. Should generally be written
* with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
* depending on the desired MOST of 3, 2, 1, or 0, respectively.
*/
cfg56.u32 = 0;
cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
cfg56.s.roe = 1; /* Relaxed Ordering Enable */
cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
[0=512B,1=1024B,2=2048B,3=4096B] */
cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
.. 7=32] */
octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
/*
* Affects PCI performance when OCTEON services reads to its
* BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
* 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
* PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
* these values need to be changed so they won't possibly prefetch off
* of the end of memory if PCI is DMAing a buffer at the end of
* memory. Note that these values differ from their reset values.
*/
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
}
/*
* Initialize the Octeon PCI controller
*/
static int __init octeon_pci_setup(void)
{
union cvmx_npi_mem_access_subidx mem_access;
int index;
/* Only these chips have PCI */
if (octeon_has_feature(OCTEON_FEATURE_PCIE))
return 0;
/* Point pcibios_map_irq() to the PCI version of it */
octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
/* Only use the big bars on chips that support it */
if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
else
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
/* PCI I/O and PCI MEM values */
set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
ioport_resource.start = 0;
ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
if (!octeon_is_pci_host()) {
pr_notice("Not in host mode, PCI Controller not initialized\n");
return 0;
}
pr_notice("%s Octeon big bar support\n",
(octeon_dma_bar_type ==
OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
octeon_pci_initialize();
mem_access.u64 = 0;
mem_access.s.esr = 1; /* Endian-Swap on read. */
mem_access.s.esw = 1; /* Endian-Swap on write. */
mem_access.s.nsr = 0; /* No-Snoop on read. */
mem_access.s.nsw = 0; /* No-Snoop on write. */
mem_access.s.ror = 0; /* Relax Read on read. */
mem_access.s.row = 0; /* Relax Order on write. */
mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
/*
* Remap the Octeon BAR 2 above all 32 bit devices
* (0x8000000000ul). This is done here so it is remapped
* before the readl()'s below. We don't want BAR2 overlapping
* with BAR0/BAR1 during these reads.
*/
octeon_npi_write32(CVMX_NPI_PCI_CFG08,
(u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
octeon_npi_write32(CVMX_NPI_PCI_CFG09,
(u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
/* Remap the Octeon BAR 0 to 0-2GB */
octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
/*
* Remap the Octeon BAR 1 to map 2GB-4GB (minus the
* BAR 1 hole).
*/
octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
/* BAR1 movable mappings set for identity mapping */
octeon_bar1_pci_phys = 0x80000000ull;
for (index = 0; index < 32; index++) {
union cvmx_pci_bar1_indexx bar1_index;
bar1_index.u32 = 0;
/* Address bits[35:22] sent to L2C */
bar1_index.s.addr_idx =
(octeon_bar1_pci_phys >> 22) + index;
/* Don't put PCI accesses in L2. */
bar1_index.s.ca = 1;
/* Endian Swap Mode */
bar1_index.s.end_swp = 1;
/* Set '1' when the selected address range is valid. */
bar1_index.s.addr_v = 1;
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
bar1_index.u32);
}
/* Devices go after BAR1 */
octeon_pci_mem_resource.start =
OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
octeon_pci_mem_resource.end =
octeon_pci_mem_resource.start + (1ul << 30);
} else {
/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
/* Remap the Octeon BAR 1 to map 0-128MB */
octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
/* BAR1 movable regions contiguous to cover the swiotlb */
octeon_bar1_pci_phys =
virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
for (index = 0; index < 32; index++) {
union cvmx_pci_bar1_indexx bar1_index;
bar1_index.u32 = 0;
/* Address bits[35:22] sent to L2C */
bar1_index.s.addr_idx =
(octeon_bar1_pci_phys >> 22) + index;
/* Don't put PCI accesses in L2. */
bar1_index.s.ca = 1;
/* Endian Swap Mode */
bar1_index.s.end_swp = 1;
/* Set '1' when the selected address range is valid. */
bar1_index.s.addr_v = 1;
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
bar1_index.u32);
}
/* Devices go after BAR0 */
octeon_pci_mem_resource.start =
OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
(4ul << 10);
octeon_pci_mem_resource.end =
octeon_pci_mem_resource.start + (1ul << 30);
}
register_pci_controller(&octeon_pci_controller);
/*
* Clear any errors that might be pending from before the bus
* was setup properly.
*/
cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
octeon_pci_dma_init();
return 0;
}
arch_initcall(octeon_pci_setup);