68380b5813
This allows workqueue users to run just their own pending work, rather than wait for the whole workqueue to finish running. This solves the deadlock with networking libphy that was due to other workqueue entries possibly needing a lock that was held by the routine that wanted to flush its own work. It's not wonderful: if you absolutely need to synchronize with the work function having been executed, any user strictly speaking should have its own completion tracking logic, since when we run things explicitly by hand, the generic workqueue layer can no longer help us synchronize. Also, this is strictly only usable for work that has been scheduled without any delayed timers. You can not mix the new interface with schedule_delayed_work(). But it's better than what we had currently. Acked-by: Maciej W. Rozycki <macro@linux-mips.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
195 lines
6 KiB
C
195 lines
6 KiB
C
/*
|
|
* workqueue.h --- work queue handling for Linux.
|
|
*/
|
|
|
|
#ifndef _LINUX_WORKQUEUE_H
|
|
#define _LINUX_WORKQUEUE_H
|
|
|
|
#include <linux/timer.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bitops.h>
|
|
|
|
struct workqueue_struct;
|
|
|
|
struct work_struct;
|
|
typedef void (*work_func_t)(struct work_struct *work);
|
|
|
|
struct work_struct {
|
|
/* the first word is the work queue pointer and the flags rolled into
|
|
* one */
|
|
unsigned long management;
|
|
#define WORK_STRUCT_PENDING 0 /* T if work item pending execution */
|
|
#define WORK_STRUCT_NOAUTOREL 1 /* F if work item automatically released on exec */
|
|
#define WORK_STRUCT_FLAG_MASK (3UL)
|
|
#define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
|
|
struct list_head entry;
|
|
work_func_t func;
|
|
};
|
|
|
|
struct delayed_work {
|
|
struct work_struct work;
|
|
struct timer_list timer;
|
|
};
|
|
|
|
struct execute_work {
|
|
struct work_struct work;
|
|
};
|
|
|
|
#define __WORK_INITIALIZER(n, f) { \
|
|
.management = 0, \
|
|
.entry = { &(n).entry, &(n).entry }, \
|
|
.func = (f), \
|
|
}
|
|
|
|
#define __WORK_INITIALIZER_NAR(n, f) { \
|
|
.management = (1 << WORK_STRUCT_NOAUTOREL), \
|
|
.entry = { &(n).entry, &(n).entry }, \
|
|
.func = (f), \
|
|
}
|
|
|
|
#define __DELAYED_WORK_INITIALIZER(n, f) { \
|
|
.work = __WORK_INITIALIZER((n).work, (f)), \
|
|
.timer = TIMER_INITIALIZER(NULL, 0, 0), \
|
|
}
|
|
|
|
#define __DELAYED_WORK_INITIALIZER_NAR(n, f) { \
|
|
.work = __WORK_INITIALIZER_NAR((n).work, (f)), \
|
|
.timer = TIMER_INITIALIZER(NULL, 0, 0), \
|
|
}
|
|
|
|
#define DECLARE_WORK(n, f) \
|
|
struct work_struct n = __WORK_INITIALIZER(n, f)
|
|
|
|
#define DECLARE_WORK_NAR(n, f) \
|
|
struct work_struct n = __WORK_INITIALIZER_NAR(n, f)
|
|
|
|
#define DECLARE_DELAYED_WORK(n, f) \
|
|
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f)
|
|
|
|
#define DECLARE_DELAYED_WORK_NAR(n, f) \
|
|
struct dwork_struct n = __DELAYED_WORK_INITIALIZER_NAR(n, f)
|
|
|
|
/*
|
|
* initialize a work item's function pointer
|
|
*/
|
|
#define PREPARE_WORK(_work, _func) \
|
|
do { \
|
|
(_work)->func = (_func); \
|
|
} while (0)
|
|
|
|
#define PREPARE_DELAYED_WORK(_work, _func) \
|
|
PREPARE_WORK(&(_work)->work, (_func))
|
|
|
|
/*
|
|
* initialize all of a work item in one go
|
|
*/
|
|
#define INIT_WORK(_work, _func) \
|
|
do { \
|
|
(_work)->management = 0; \
|
|
INIT_LIST_HEAD(&(_work)->entry); \
|
|
PREPARE_WORK((_work), (_func)); \
|
|
} while (0)
|
|
|
|
#define INIT_WORK_NAR(_work, _func) \
|
|
do { \
|
|
(_work)->management = (1 << WORK_STRUCT_NOAUTOREL); \
|
|
INIT_LIST_HEAD(&(_work)->entry); \
|
|
PREPARE_WORK((_work), (_func)); \
|
|
} while (0)
|
|
|
|
#define INIT_DELAYED_WORK(_work, _func) \
|
|
do { \
|
|
INIT_WORK(&(_work)->work, (_func)); \
|
|
init_timer(&(_work)->timer); \
|
|
} while (0)
|
|
|
|
#define INIT_DELAYED_WORK_NAR(_work, _func) \
|
|
do { \
|
|
INIT_WORK_NAR(&(_work)->work, (_func)); \
|
|
init_timer(&(_work)->timer); \
|
|
} while (0)
|
|
|
|
/**
|
|
* work_pending - Find out whether a work item is currently pending
|
|
* @work: The work item in question
|
|
*/
|
|
#define work_pending(work) \
|
|
test_bit(WORK_STRUCT_PENDING, &(work)->management)
|
|
|
|
/**
|
|
* delayed_work_pending - Find out whether a delayable work item is currently
|
|
* pending
|
|
* @work: The work item in question
|
|
*/
|
|
#define delayed_work_pending(work) \
|
|
test_bit(WORK_STRUCT_PENDING, &(work)->work.management)
|
|
|
|
/**
|
|
* work_release - Release a work item under execution
|
|
* @work: The work item to release
|
|
*
|
|
* This is used to release a work item that has been initialised with automatic
|
|
* release mode disabled (WORK_STRUCT_NOAUTOREL is set). This gives the work
|
|
* function the opportunity to grab auxiliary data from the container of the
|
|
* work_struct before clearing the pending bit as the work_struct may be
|
|
* subject to deallocation the moment the pending bit is cleared.
|
|
*
|
|
* In such a case, this should be called in the work function after it has
|
|
* fetched any data it may require from the containter of the work_struct.
|
|
* After this function has been called, the work_struct may be scheduled for
|
|
* further execution or it may be deallocated unless other precautions are
|
|
* taken.
|
|
*
|
|
* This should also be used to release a delayed work item.
|
|
*/
|
|
#define work_release(work) \
|
|
clear_bit(WORK_STRUCT_PENDING, &(work)->management)
|
|
|
|
|
|
extern struct workqueue_struct *__create_workqueue(const char *name,
|
|
int singlethread,
|
|
int freezeable);
|
|
#define create_workqueue(name) __create_workqueue((name), 0, 0)
|
|
#define create_freezeable_workqueue(name) __create_workqueue((name), 0, 1)
|
|
#define create_singlethread_workqueue(name) __create_workqueue((name), 1, 0)
|
|
|
|
extern void destroy_workqueue(struct workqueue_struct *wq);
|
|
|
|
extern int FASTCALL(queue_work(struct workqueue_struct *wq, struct work_struct *work));
|
|
extern int FASTCALL(queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay));
|
|
extern int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *work, unsigned long delay);
|
|
extern void FASTCALL(flush_workqueue(struct workqueue_struct *wq));
|
|
|
|
extern int FASTCALL(schedule_work(struct work_struct *work));
|
|
extern int FASTCALL(run_scheduled_work(struct work_struct *work));
|
|
extern int FASTCALL(schedule_delayed_work(struct delayed_work *work, unsigned long delay));
|
|
|
|
extern int schedule_delayed_work_on(int cpu, struct delayed_work *work, unsigned long delay);
|
|
extern int schedule_on_each_cpu(work_func_t func);
|
|
extern void flush_scheduled_work(void);
|
|
extern int current_is_keventd(void);
|
|
extern int keventd_up(void);
|
|
|
|
extern void init_workqueues(void);
|
|
void cancel_rearming_delayed_work(struct delayed_work *work);
|
|
void cancel_rearming_delayed_workqueue(struct workqueue_struct *,
|
|
struct delayed_work *);
|
|
int execute_in_process_context(work_func_t fn, struct execute_work *);
|
|
|
|
/*
|
|
* Kill off a pending schedule_delayed_work(). Note that the work callback
|
|
* function may still be running on return from cancel_delayed_work(). Run
|
|
* flush_scheduled_work() to wait on it.
|
|
*/
|
|
static inline int cancel_delayed_work(struct delayed_work *work)
|
|
{
|
|
int ret;
|
|
|
|
ret = del_timer_sync(&work->timer);
|
|
if (ret)
|
|
clear_bit(WORK_STRUCT_PENDING, &work->work.management);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|