kernel-fxtec-pro1x/include/rdma/ib_user_verbs.h
Steve Wise 00f7ec36c9 RDMA/core: Add memory management extensions support
This patch adds support for the IB "base memory management extension"
(BMME) and the equivalent iWARP operations (which the iWARP verbs
mandates all devices must implement).  The new operations are:

 - Allocate an ib_mr for use in fast register work requests.

 - Allocate/free a physical buffer lists for use in fast register work
   requests.  This allows device drivers to allocate this memory as
   needed for use in posting send requests (eg via dma_alloc_coherent).

 - New send queue work requests:
   * send with remote invalidate
   * fast register memory region
   * local invalidate memory region
   * RDMA read with invalidate local memory region (iWARP only)

Consumer interface details:

 - A new device capability flag IB_DEVICE_MEM_MGT_EXTENSIONS is added
   to indicate device support for these features.

 - New send work request opcodes IB_WR_FAST_REG_MR, IB_WR_LOCAL_INV,
   IB_WR_RDMA_READ_WITH_INV are added.

 - A new consumer API function, ib_alloc_mr() is added to allocate
   fast register memory regions.

 - New consumer API functions, ib_alloc_fast_reg_page_list() and
   ib_free_fast_reg_page_list() are added to allocate and free
   device-specific memory for fast registration page lists.

 - A new consumer API function, ib_update_fast_reg_key(), is added to
   allow the key portion of the R_Key and L_Key of a fast registration
   MR to be updated.  Consumers call this if desired before posting
   a IB_WR_FAST_REG_MR work request.

Consumers can use this as follows:

 - MR is allocated with ib_alloc_mr().

 - Page list memory is allocated with ib_alloc_fast_reg_page_list().

 - MR R_Key/L_Key "key" field is updated with ib_update_fast_reg_key().

 - MR made VALID and bound to a specific page list via
   ib_post_send(IB_WR_FAST_REG_MR)

 - MR made INVALID via ib_post_send(IB_WR_LOCAL_INV),
   ib_post_send(IB_WR_RDMA_READ_WITH_INV) or an incoming send with
   invalidate operation.

 - MR is deallocated with ib_dereg_mr()

 - page lists dealloced via ib_free_fast_reg_page_list().

Applications can allocate a fast register MR once, and then can
repeatedly bind the MR to different physical block lists (PBLs) via
posting work requests to a send queue (SQ).  For each outstanding
MR-to-PBL binding in the SQ pipe, a fast_reg_page_list needs to be
allocated (the fast_reg_page_list is owned by the low-level driver
from the consumer posting a work request until the request completes).
Thus pipelining can be achieved while still allowing device-specific
page_list processing.

The 32-bit fast register memory key/STag is composed of a 24-bit index
and an 8-bit key.  The application can change the key each time it
fast registers thus allowing more control over the peer's use of the
key/STag (ie it can effectively be changed each time the rkey is
rebound to a page list).

Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-07-14 23:48:45 -07:00

689 lines
13 KiB
C

/*
* Copyright (c) 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
* Copyright (c) 2005 PathScale, Inc. All rights reserved.
* Copyright (c) 2006 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef IB_USER_VERBS_H
#define IB_USER_VERBS_H
#include <linux/types.h>
/*
* Increment this value if any changes that break userspace ABI
* compatibility are made.
*/
#define IB_USER_VERBS_ABI_VERSION 6
enum {
IB_USER_VERBS_CMD_GET_CONTEXT,
IB_USER_VERBS_CMD_QUERY_DEVICE,
IB_USER_VERBS_CMD_QUERY_PORT,
IB_USER_VERBS_CMD_ALLOC_PD,
IB_USER_VERBS_CMD_DEALLOC_PD,
IB_USER_VERBS_CMD_CREATE_AH,
IB_USER_VERBS_CMD_MODIFY_AH,
IB_USER_VERBS_CMD_QUERY_AH,
IB_USER_VERBS_CMD_DESTROY_AH,
IB_USER_VERBS_CMD_REG_MR,
IB_USER_VERBS_CMD_REG_SMR,
IB_USER_VERBS_CMD_REREG_MR,
IB_USER_VERBS_CMD_QUERY_MR,
IB_USER_VERBS_CMD_DEREG_MR,
IB_USER_VERBS_CMD_ALLOC_MW,
IB_USER_VERBS_CMD_BIND_MW,
IB_USER_VERBS_CMD_DEALLOC_MW,
IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL,
IB_USER_VERBS_CMD_CREATE_CQ,
IB_USER_VERBS_CMD_RESIZE_CQ,
IB_USER_VERBS_CMD_DESTROY_CQ,
IB_USER_VERBS_CMD_POLL_CQ,
IB_USER_VERBS_CMD_PEEK_CQ,
IB_USER_VERBS_CMD_REQ_NOTIFY_CQ,
IB_USER_VERBS_CMD_CREATE_QP,
IB_USER_VERBS_CMD_QUERY_QP,
IB_USER_VERBS_CMD_MODIFY_QP,
IB_USER_VERBS_CMD_DESTROY_QP,
IB_USER_VERBS_CMD_POST_SEND,
IB_USER_VERBS_CMD_POST_RECV,
IB_USER_VERBS_CMD_ATTACH_MCAST,
IB_USER_VERBS_CMD_DETACH_MCAST,
IB_USER_VERBS_CMD_CREATE_SRQ,
IB_USER_VERBS_CMD_MODIFY_SRQ,
IB_USER_VERBS_CMD_QUERY_SRQ,
IB_USER_VERBS_CMD_DESTROY_SRQ,
IB_USER_VERBS_CMD_POST_SRQ_RECV
};
/*
* Make sure that all structs defined in this file remain laid out so
* that they pack the same way on 32-bit and 64-bit architectures (to
* avoid incompatibility between 32-bit userspace and 64-bit kernels).
* Specifically:
* - Do not use pointer types -- pass pointers in __u64 instead.
* - Make sure that any structure larger than 4 bytes is padded to a
* multiple of 8 bytes. Otherwise the structure size will be
* different between 32-bit and 64-bit architectures.
*/
struct ib_uverbs_async_event_desc {
__u64 element;
__u32 event_type; /* enum ib_event_type */
__u32 reserved;
};
struct ib_uverbs_comp_event_desc {
__u64 cq_handle;
};
/*
* All commands from userspace should start with a __u32 command field
* followed by __u16 in_words and out_words fields (which give the
* length of the command block and response buffer if any in 32-bit
* words). The kernel driver will read these fields first and read
* the rest of the command struct based on these value.
*/
struct ib_uverbs_cmd_hdr {
__u32 command;
__u16 in_words;
__u16 out_words;
};
struct ib_uverbs_get_context {
__u64 response;
__u64 driver_data[0];
};
struct ib_uverbs_get_context_resp {
__u32 async_fd;
__u32 num_comp_vectors;
};
struct ib_uverbs_query_device {
__u64 response;
__u64 driver_data[0];
};
struct ib_uverbs_query_device_resp {
__u64 fw_ver;
__be64 node_guid;
__be64 sys_image_guid;
__u64 max_mr_size;
__u64 page_size_cap;
__u32 vendor_id;
__u32 vendor_part_id;
__u32 hw_ver;
__u32 max_qp;
__u32 max_qp_wr;
__u32 device_cap_flags;
__u32 max_sge;
__u32 max_sge_rd;
__u32 max_cq;
__u32 max_cqe;
__u32 max_mr;
__u32 max_pd;
__u32 max_qp_rd_atom;
__u32 max_ee_rd_atom;
__u32 max_res_rd_atom;
__u32 max_qp_init_rd_atom;
__u32 max_ee_init_rd_atom;
__u32 atomic_cap;
__u32 max_ee;
__u32 max_rdd;
__u32 max_mw;
__u32 max_raw_ipv6_qp;
__u32 max_raw_ethy_qp;
__u32 max_mcast_grp;
__u32 max_mcast_qp_attach;
__u32 max_total_mcast_qp_attach;
__u32 max_ah;
__u32 max_fmr;
__u32 max_map_per_fmr;
__u32 max_srq;
__u32 max_srq_wr;
__u32 max_srq_sge;
__u16 max_pkeys;
__u8 local_ca_ack_delay;
__u8 phys_port_cnt;
__u8 reserved[4];
};
struct ib_uverbs_query_port {
__u64 response;
__u8 port_num;
__u8 reserved[7];
__u64 driver_data[0];
};
struct ib_uverbs_query_port_resp {
__u32 port_cap_flags;
__u32 max_msg_sz;
__u32 bad_pkey_cntr;
__u32 qkey_viol_cntr;
__u32 gid_tbl_len;
__u16 pkey_tbl_len;
__u16 lid;
__u16 sm_lid;
__u8 state;
__u8 max_mtu;
__u8 active_mtu;
__u8 lmc;
__u8 max_vl_num;
__u8 sm_sl;
__u8 subnet_timeout;
__u8 init_type_reply;
__u8 active_width;
__u8 active_speed;
__u8 phys_state;
__u8 reserved[3];
};
struct ib_uverbs_alloc_pd {
__u64 response;
__u64 driver_data[0];
};
struct ib_uverbs_alloc_pd_resp {
__u32 pd_handle;
};
struct ib_uverbs_dealloc_pd {
__u32 pd_handle;
};
struct ib_uverbs_reg_mr {
__u64 response;
__u64 start;
__u64 length;
__u64 hca_va;
__u32 pd_handle;
__u32 access_flags;
__u64 driver_data[0];
};
struct ib_uverbs_reg_mr_resp {
__u32 mr_handle;
__u32 lkey;
__u32 rkey;
};
struct ib_uverbs_dereg_mr {
__u32 mr_handle;
};
struct ib_uverbs_create_comp_channel {
__u64 response;
};
struct ib_uverbs_create_comp_channel_resp {
__u32 fd;
};
struct ib_uverbs_create_cq {
__u64 response;
__u64 user_handle;
__u32 cqe;
__u32 comp_vector;
__s32 comp_channel;
__u32 reserved;
__u64 driver_data[0];
};
struct ib_uverbs_create_cq_resp {
__u32 cq_handle;
__u32 cqe;
};
struct ib_uverbs_resize_cq {
__u64 response;
__u32 cq_handle;
__u32 cqe;
__u64 driver_data[0];
};
struct ib_uverbs_resize_cq_resp {
__u32 cqe;
__u32 reserved;
__u64 driver_data[0];
};
struct ib_uverbs_poll_cq {
__u64 response;
__u32 cq_handle;
__u32 ne;
};
struct ib_uverbs_wc {
__u64 wr_id;
__u32 status;
__u32 opcode;
__u32 vendor_err;
__u32 byte_len;
union {
__u32 imm_data;
__u32 invalidate_rkey;
} ex;
__u32 qp_num;
__u32 src_qp;
__u32 wc_flags;
__u16 pkey_index;
__u16 slid;
__u8 sl;
__u8 dlid_path_bits;
__u8 port_num;
__u8 reserved;
};
struct ib_uverbs_poll_cq_resp {
__u32 count;
__u32 reserved;
struct ib_uverbs_wc wc[0];
};
struct ib_uverbs_req_notify_cq {
__u32 cq_handle;
__u32 solicited_only;
};
struct ib_uverbs_destroy_cq {
__u64 response;
__u32 cq_handle;
__u32 reserved;
};
struct ib_uverbs_destroy_cq_resp {
__u32 comp_events_reported;
__u32 async_events_reported;
};
struct ib_uverbs_global_route {
__u8 dgid[16];
__u32 flow_label;
__u8 sgid_index;
__u8 hop_limit;
__u8 traffic_class;
__u8 reserved;
};
struct ib_uverbs_ah_attr {
struct ib_uverbs_global_route grh;
__u16 dlid;
__u8 sl;
__u8 src_path_bits;
__u8 static_rate;
__u8 is_global;
__u8 port_num;
__u8 reserved;
};
struct ib_uverbs_qp_attr {
__u32 qp_attr_mask;
__u32 qp_state;
__u32 cur_qp_state;
__u32 path_mtu;
__u32 path_mig_state;
__u32 qkey;
__u32 rq_psn;
__u32 sq_psn;
__u32 dest_qp_num;
__u32 qp_access_flags;
struct ib_uverbs_ah_attr ah_attr;
struct ib_uverbs_ah_attr alt_ah_attr;
/* ib_qp_cap */
__u32 max_send_wr;
__u32 max_recv_wr;
__u32 max_send_sge;
__u32 max_recv_sge;
__u32 max_inline_data;
__u16 pkey_index;
__u16 alt_pkey_index;
__u8 en_sqd_async_notify;
__u8 sq_draining;
__u8 max_rd_atomic;
__u8 max_dest_rd_atomic;
__u8 min_rnr_timer;
__u8 port_num;
__u8 timeout;
__u8 retry_cnt;
__u8 rnr_retry;
__u8 alt_port_num;
__u8 alt_timeout;
__u8 reserved[5];
};
struct ib_uverbs_create_qp {
__u64 response;
__u64 user_handle;
__u32 pd_handle;
__u32 send_cq_handle;
__u32 recv_cq_handle;
__u32 srq_handle;
__u32 max_send_wr;
__u32 max_recv_wr;
__u32 max_send_sge;
__u32 max_recv_sge;
__u32 max_inline_data;
__u8 sq_sig_all;
__u8 qp_type;
__u8 is_srq;
__u8 reserved;
__u64 driver_data[0];
};
struct ib_uverbs_create_qp_resp {
__u32 qp_handle;
__u32 qpn;
__u32 max_send_wr;
__u32 max_recv_wr;
__u32 max_send_sge;
__u32 max_recv_sge;
__u32 max_inline_data;
__u32 reserved;
};
/*
* This struct needs to remain a multiple of 8 bytes to keep the
* alignment of the modify QP parameters.
*/
struct ib_uverbs_qp_dest {
__u8 dgid[16];
__u32 flow_label;
__u16 dlid;
__u16 reserved;
__u8 sgid_index;
__u8 hop_limit;
__u8 traffic_class;
__u8 sl;
__u8 src_path_bits;
__u8 static_rate;
__u8 is_global;
__u8 port_num;
};
struct ib_uverbs_query_qp {
__u64 response;
__u32 qp_handle;
__u32 attr_mask;
__u64 driver_data[0];
};
struct ib_uverbs_query_qp_resp {
struct ib_uverbs_qp_dest dest;
struct ib_uverbs_qp_dest alt_dest;
__u32 max_send_wr;
__u32 max_recv_wr;
__u32 max_send_sge;
__u32 max_recv_sge;
__u32 max_inline_data;
__u32 qkey;
__u32 rq_psn;
__u32 sq_psn;
__u32 dest_qp_num;
__u32 qp_access_flags;
__u16 pkey_index;
__u16 alt_pkey_index;
__u8 qp_state;
__u8 cur_qp_state;
__u8 path_mtu;
__u8 path_mig_state;
__u8 sq_draining;
__u8 max_rd_atomic;
__u8 max_dest_rd_atomic;
__u8 min_rnr_timer;
__u8 port_num;
__u8 timeout;
__u8 retry_cnt;
__u8 rnr_retry;
__u8 alt_port_num;
__u8 alt_timeout;
__u8 sq_sig_all;
__u8 reserved[5];
__u64 driver_data[0];
};
struct ib_uverbs_modify_qp {
struct ib_uverbs_qp_dest dest;
struct ib_uverbs_qp_dest alt_dest;
__u32 qp_handle;
__u32 attr_mask;
__u32 qkey;
__u32 rq_psn;
__u32 sq_psn;
__u32 dest_qp_num;
__u32 qp_access_flags;
__u16 pkey_index;
__u16 alt_pkey_index;
__u8 qp_state;
__u8 cur_qp_state;
__u8 path_mtu;
__u8 path_mig_state;
__u8 en_sqd_async_notify;
__u8 max_rd_atomic;
__u8 max_dest_rd_atomic;
__u8 min_rnr_timer;
__u8 port_num;
__u8 timeout;
__u8 retry_cnt;
__u8 rnr_retry;
__u8 alt_port_num;
__u8 alt_timeout;
__u8 reserved[2];
__u64 driver_data[0];
};
struct ib_uverbs_modify_qp_resp {
};
struct ib_uverbs_destroy_qp {
__u64 response;
__u32 qp_handle;
__u32 reserved;
};
struct ib_uverbs_destroy_qp_resp {
__u32 events_reported;
};
/*
* The ib_uverbs_sge structure isn't used anywhere, since we assume
* the ib_sge structure is packed the same way on 32-bit and 64-bit
* architectures in both kernel and user space. It's just here to
* document the ABI.
*/
struct ib_uverbs_sge {
__u64 addr;
__u32 length;
__u32 lkey;
};
struct ib_uverbs_send_wr {
__u64 wr_id;
__u32 num_sge;
__u32 opcode;
__u32 send_flags;
union {
__u32 imm_data;
__u32 invalidate_rkey;
} ex;
union {
struct {
__u64 remote_addr;
__u32 rkey;
__u32 reserved;
} rdma;
struct {
__u64 remote_addr;
__u64 compare_add;
__u64 swap;
__u32 rkey;
__u32 reserved;
} atomic;
struct {
__u32 ah;
__u32 remote_qpn;
__u32 remote_qkey;
__u32 reserved;
} ud;
} wr;
};
struct ib_uverbs_post_send {
__u64 response;
__u32 qp_handle;
__u32 wr_count;
__u32 sge_count;
__u32 wqe_size;
struct ib_uverbs_send_wr send_wr[0];
};
struct ib_uverbs_post_send_resp {
__u32 bad_wr;
};
struct ib_uverbs_recv_wr {
__u64 wr_id;
__u32 num_sge;
__u32 reserved;
};
struct ib_uverbs_post_recv {
__u64 response;
__u32 qp_handle;
__u32 wr_count;
__u32 sge_count;
__u32 wqe_size;
struct ib_uverbs_recv_wr recv_wr[0];
};
struct ib_uverbs_post_recv_resp {
__u32 bad_wr;
};
struct ib_uverbs_post_srq_recv {
__u64 response;
__u32 srq_handle;
__u32 wr_count;
__u32 sge_count;
__u32 wqe_size;
struct ib_uverbs_recv_wr recv[0];
};
struct ib_uverbs_post_srq_recv_resp {
__u32 bad_wr;
};
struct ib_uverbs_create_ah {
__u64 response;
__u64 user_handle;
__u32 pd_handle;
__u32 reserved;
struct ib_uverbs_ah_attr attr;
};
struct ib_uverbs_create_ah_resp {
__u32 ah_handle;
};
struct ib_uverbs_destroy_ah {
__u32 ah_handle;
};
struct ib_uverbs_attach_mcast {
__u8 gid[16];
__u32 qp_handle;
__u16 mlid;
__u16 reserved;
__u64 driver_data[0];
};
struct ib_uverbs_detach_mcast {
__u8 gid[16];
__u32 qp_handle;
__u16 mlid;
__u16 reserved;
__u64 driver_data[0];
};
struct ib_uverbs_create_srq {
__u64 response;
__u64 user_handle;
__u32 pd_handle;
__u32 max_wr;
__u32 max_sge;
__u32 srq_limit;
__u64 driver_data[0];
};
struct ib_uverbs_create_srq_resp {
__u32 srq_handle;
__u32 max_wr;
__u32 max_sge;
__u32 reserved;
};
struct ib_uverbs_modify_srq {
__u32 srq_handle;
__u32 attr_mask;
__u32 max_wr;
__u32 srq_limit;
__u64 driver_data[0];
};
struct ib_uverbs_query_srq {
__u64 response;
__u32 srq_handle;
__u32 reserved;
__u64 driver_data[0];
};
struct ib_uverbs_query_srq_resp {
__u32 max_wr;
__u32 max_sge;
__u32 srq_limit;
__u32 reserved;
};
struct ib_uverbs_destroy_srq {
__u64 response;
__u32 srq_handle;
__u32 reserved;
};
struct ib_uverbs_destroy_srq_resp {
__u32 events_reported;
};
#endif /* IB_USER_VERBS_H */