kernel-fxtec-pro1x/mm/mlock.c
Nick Piggin b291f00039 mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.

This is achieved through various strategies:

1) add yet another page flag--PG_mlocked--to indicate that
   the page is locked for efficient testing in vmscan and,
   optionally, fault path.  This allows early culling of
   unevictable pages, preventing them from getting to
   page_referenced()/try_to_unmap().  Also allows separate
   accounting of mlock'd pages, as Nick's original patch
   did.

   Note:  Nick's original mlock patch used a PG_mlocked
   flag.  I had removed this in favor of the PG_unevictable
   flag + an mlock_count [new page struct member].  I
   restored the PG_mlocked flag to eliminate the new
   count field.

2) add the mlock/unevictable infrastructure to mm/mlock.c,
   with internal APIs in mm/internal.h.  This is a rework
   of Nick's original patch to these files, taking into
   account that mlocked pages are now kept on unevictable
   LRU list.

3) update vmscan.c:page_evictable() to check PageMlocked()
   and, if vma passed in, the vm_flags.  Note that the vma
   will only be passed in for new pages in the fault path;
   and then only if the "cull unevictable pages in fault
   path" patch is included.

4) add try_to_unlock() to rmap.c to walk a page's rmap and
   ClearPageMlocked() if no other vmas have it mlocked.
   Reuses as much of try_to_unmap() as possible.  This
   effectively replaces the use of one of the lru list links
   as an mlock count.  If this mechanism let's pages in mlocked
   vmas leak through w/o PG_mlocked set [I don't know that it
   does], we should catch them later in try_to_unmap().  One
   hopes this will be rare, as it will be relatively expensive.

Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>

splitlru: introduce __get_user_pages():

  New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
  because current get_user_pages() can't grab PROT_NONE pages theresore it
  cause PROT_NONE pages can't munlock.

[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:30 -07:00

622 lines
15 KiB
C

/*
* linux/mm/mlock.c
*
* (C) Copyright 1995 Linus Torvalds
* (C) Copyright 2002 Christoph Hellwig
*/
#include <linux/capability.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/rmap.h>
#include <linux/mmzone.h>
#include <linux/hugetlb.h>
#include "internal.h"
int can_do_mlock(void)
{
if (capable(CAP_IPC_LOCK))
return 1;
if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
return 1;
return 0;
}
EXPORT_SYMBOL(can_do_mlock);
#ifdef CONFIG_UNEVICTABLE_LRU
/*
* Mlocked pages are marked with PageMlocked() flag for efficient testing
* in vmscan and, possibly, the fault path; and to support semi-accurate
* statistics.
*
* An mlocked page [PageMlocked(page)] is unevictable. As such, it will
* be placed on the LRU "unevictable" list, rather than the [in]active lists.
* The unevictable list is an LRU sibling list to the [in]active lists.
* PageUnevictable is set to indicate the unevictable state.
*
* When lazy mlocking via vmscan, it is important to ensure that the
* vma's VM_LOCKED status is not concurrently being modified, otherwise we
* may have mlocked a page that is being munlocked. So lazy mlock must take
* the mmap_sem for read, and verify that the vma really is locked
* (see mm/rmap.c).
*/
/*
* LRU accounting for clear_page_mlock()
*/
void __clear_page_mlock(struct page *page)
{
VM_BUG_ON(!PageLocked(page));
if (!page->mapping) { /* truncated ? */
return;
}
if (!isolate_lru_page(page)) {
putback_lru_page(page);
} else {
/*
* Page not on the LRU yet. Flush all pagevecs and retry.
*/
lru_add_drain_all();
if (!isolate_lru_page(page))
putback_lru_page(page);
}
}
/*
* Mark page as mlocked if not already.
* If page on LRU, isolate and putback to move to unevictable list.
*/
void mlock_vma_page(struct page *page)
{
BUG_ON(!PageLocked(page));
if (!TestSetPageMlocked(page) && !isolate_lru_page(page))
putback_lru_page(page);
}
/*
* called from munlock()/munmap() path with page supposedly on the LRU.
*
* Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
* [in try_to_munlock()] and then attempt to isolate the page. We must
* isolate the page to keep others from messing with its unevictable
* and mlocked state while trying to munlock. However, we pre-clear the
* mlocked state anyway as we might lose the isolation race and we might
* not get another chance to clear PageMlocked. If we successfully
* isolate the page and try_to_munlock() detects other VM_LOCKED vmas
* mapping the page, it will restore the PageMlocked state, unless the page
* is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
* perhaps redundantly.
* If we lose the isolation race, and the page is mapped by other VM_LOCKED
* vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
* either of which will restore the PageMlocked state by calling
* mlock_vma_page() above, if it can grab the vma's mmap sem.
*/
static void munlock_vma_page(struct page *page)
{
BUG_ON(!PageLocked(page));
if (TestClearPageMlocked(page) && !isolate_lru_page(page)) {
try_to_munlock(page);
putback_lru_page(page);
}
}
/*
* mlock a range of pages in the vma.
*
* This takes care of making the pages present too.
*
* vma->vm_mm->mmap_sem must be held for write.
*/
static int __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start;
struct page *pages[16]; /* 16 gives a reasonable batch */
int write = !!(vma->vm_flags & VM_WRITE);
int nr_pages = (end - start) / PAGE_SIZE;
int ret;
VM_BUG_ON(start & ~PAGE_MASK || end & ~PAGE_MASK);
VM_BUG_ON(start < vma->vm_start || end > vma->vm_end);
VM_BUG_ON(!rwsem_is_locked(&vma->vm_mm->mmap_sem));
lru_add_drain_all(); /* push cached pages to LRU */
while (nr_pages > 0) {
int i;
cond_resched();
/*
* get_user_pages makes pages present if we are
* setting mlock. and this extra reference count will
* disable migration of this page. However, page may
* still be truncated out from under us.
*/
ret = get_user_pages(current, mm, addr,
min_t(int, nr_pages, ARRAY_SIZE(pages)),
write, 0, pages, NULL);
/*
* This can happen for, e.g., VM_NONLINEAR regions before
* a page has been allocated and mapped at a given offset,
* or for addresses that map beyond end of a file.
* We'll mlock the the pages if/when they get faulted in.
*/
if (ret < 0)
break;
if (ret == 0) {
/*
* We know the vma is there, so the only time
* we cannot get a single page should be an
* error (ret < 0) case.
*/
WARN_ON(1);
break;
}
lru_add_drain(); /* push cached pages to LRU */
for (i = 0; i < ret; i++) {
struct page *page = pages[i];
lock_page(page);
/*
* Because we lock page here and migration is blocked
* by the elevated reference, we need only check for
* page truncation (file-cache only).
*/
if (page->mapping)
mlock_vma_page(page);
unlock_page(page);
put_page(page); /* ref from get_user_pages() */
/*
* here we assume that get_user_pages() has given us
* a list of virtually contiguous pages.
*/
addr += PAGE_SIZE; /* for next get_user_pages() */
nr_pages--;
}
}
lru_add_drain_all(); /* to update stats */
return 0; /* count entire vma as locked_vm */
}
/*
* private structure for munlock page table walk
*/
struct munlock_page_walk {
struct vm_area_struct *vma;
pmd_t *pmd; /* for migration_entry_wait() */
};
/*
* munlock normal pages for present ptes
*/
static int __munlock_pte_handler(pte_t *ptep, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct munlock_page_walk *mpw = walk->private;
swp_entry_t entry;
struct page *page;
pte_t pte;
retry:
pte = *ptep;
/*
* If it's a swap pte, we might be racing with page migration.
*/
if (unlikely(!pte_present(pte))) {
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (is_migration_entry(entry)) {
migration_entry_wait(mpw->vma->vm_mm, mpw->pmd, addr);
goto retry;
}
goto out;
}
page = vm_normal_page(mpw->vma, addr, pte);
if (!page)
goto out;
lock_page(page);
if (!page->mapping) {
unlock_page(page);
goto retry;
}
munlock_vma_page(page);
unlock_page(page);
out:
return 0;
}
/*
* Save pmd for pte handler for waiting on migration entries
*/
static int __munlock_pmd_handler(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct munlock_page_walk *mpw = walk->private;
mpw->pmd = pmd;
return 0;
}
/*
* munlock a range of pages in the vma using standard page table walk.
*
* vma->vm_mm->mmap_sem must be held for write.
*/
static void __munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
struct munlock_page_walk mpw = {
.vma = vma,
};
struct mm_walk munlock_page_walk = {
.pmd_entry = __munlock_pmd_handler,
.pte_entry = __munlock_pte_handler,
.private = &mpw,
.mm = mm,
};
VM_BUG_ON(start & ~PAGE_MASK || end & ~PAGE_MASK);
VM_BUG_ON(!rwsem_is_locked(&vma->vm_mm->mmap_sem));
VM_BUG_ON(start < vma->vm_start);
VM_BUG_ON(end > vma->vm_end);
lru_add_drain_all(); /* push cached pages to LRU */
walk_page_range(start, end, &munlock_page_walk);
lru_add_drain_all(); /* to update stats */
}
#else /* CONFIG_UNEVICTABLE_LRU */
/*
* Just make pages present if VM_LOCKED. No-op if unlocking.
*/
static int __mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
if (vma->vm_flags & VM_LOCKED)
make_pages_present(start, end);
return 0;
}
/*
* munlock a range of pages in the vma -- no-op.
*/
static void __munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_UNEVICTABLE_LRU */
/*
* mlock all pages in this vma range. For mmap()/mremap()/...
*/
int mlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
int nr_pages = (end - start) / PAGE_SIZE;
BUG_ON(!(vma->vm_flags & VM_LOCKED));
/*
* filter unlockable vmas
*/
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
goto no_mlock;
if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current)))
return __mlock_vma_pages_range(vma, start, end);
/*
* User mapped kernel pages or huge pages:
* make these pages present to populate the ptes, but
* fall thru' to reset VM_LOCKED--no need to unlock, and
* return nr_pages so these don't get counted against task's
* locked limit. huge pages are already counted against
* locked vm limit.
*/
make_pages_present(start, end);
no_mlock:
vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
return nr_pages; /* pages NOT mlocked */
}
/*
* munlock all pages in vma. For munmap() and exit().
*/
void munlock_vma_pages_all(struct vm_area_struct *vma)
{
vma->vm_flags &= ~VM_LOCKED;
__munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
}
/*
* mlock_fixup - handle mlock[all]/munlock[all] requests.
*
* Filters out "special" vmas -- VM_LOCKED never gets set for these, and
* munlock is a no-op. However, for some special vmas, we go ahead and
* populate the ptes via make_pages_present().
*
* For vmas that pass the filters, merge/split as appropriate.
*/
static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
unsigned long start, unsigned long end, unsigned int newflags)
{
struct mm_struct *mm = vma->vm_mm;
pgoff_t pgoff;
int nr_pages;
int ret = 0;
int lock = newflags & VM_LOCKED;
if (newflags == vma->vm_flags ||
(vma->vm_flags & (VM_IO | VM_PFNMAP)))
goto out; /* don't set VM_LOCKED, don't count */
if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current)) {
if (lock)
make_pages_present(start, end);
goto out; /* don't set VM_LOCKED, don't count */
}
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
vma->vm_file, pgoff, vma_policy(vma));
if (*prev) {
vma = *prev;
goto success;
}
if (start != vma->vm_start) {
ret = split_vma(mm, vma, start, 1);
if (ret)
goto out;
}
if (end != vma->vm_end) {
ret = split_vma(mm, vma, end, 0);
if (ret)
goto out;
}
success:
/*
* Keep track of amount of locked VM.
*/
nr_pages = (end - start) >> PAGE_SHIFT;
if (!lock)
nr_pages = -nr_pages;
mm->locked_vm += nr_pages;
/*
* vm_flags is protected by the mmap_sem held in write mode.
* It's okay if try_to_unmap_one unmaps a page just after we
* set VM_LOCKED, __mlock_vma_pages_range will bring it back.
*/
vma->vm_flags = newflags;
if (lock) {
ret = __mlock_vma_pages_range(vma, start, end);
if (ret > 0) {
mm->locked_vm -= ret;
ret = 0;
}
} else
__munlock_vma_pages_range(vma, start, end);
out:
*prev = vma;
return ret;
}
static int do_mlock(unsigned long start, size_t len, int on)
{
unsigned long nstart, end, tmp;
struct vm_area_struct * vma, * prev;
int error;
len = PAGE_ALIGN(len);
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
vma = find_vma_prev(current->mm, start, &prev);
if (!vma || vma->vm_start > start)
return -ENOMEM;
if (start > vma->vm_start)
prev = vma;
for (nstart = start ; ; ) {
unsigned int newflags;
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
newflags = vma->vm_flags | VM_LOCKED;
if (!on)
newflags &= ~VM_LOCKED;
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
break;
nstart = tmp;
if (nstart < prev->vm_end)
nstart = prev->vm_end;
if (nstart >= end)
break;
vma = prev->vm_next;
if (!vma || vma->vm_start != nstart) {
error = -ENOMEM;
break;
}
}
return error;
}
asmlinkage long sys_mlock(unsigned long start, size_t len)
{
unsigned long locked;
unsigned long lock_limit;
int error = -ENOMEM;
if (!can_do_mlock())
return -EPERM;
down_write(&current->mm->mmap_sem);
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
start &= PAGE_MASK;
locked = len >> PAGE_SHIFT;
locked += current->mm->locked_vm;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
/* check against resource limits */
if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
error = do_mlock(start, len, 1);
up_write(&current->mm->mmap_sem);
return error;
}
asmlinkage long sys_munlock(unsigned long start, size_t len)
{
int ret;
down_write(&current->mm->mmap_sem);
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
start &= PAGE_MASK;
ret = do_mlock(start, len, 0);
up_write(&current->mm->mmap_sem);
return ret;
}
static int do_mlockall(int flags)
{
struct vm_area_struct * vma, * prev = NULL;
unsigned int def_flags = 0;
if (flags & MCL_FUTURE)
def_flags = VM_LOCKED;
current->mm->def_flags = def_flags;
if (flags == MCL_FUTURE)
goto out;
for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
unsigned int newflags;
newflags = vma->vm_flags | VM_LOCKED;
if (!(flags & MCL_CURRENT))
newflags &= ~VM_LOCKED;
/* Ignore errors */
mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
}
out:
return 0;
}
asmlinkage long sys_mlockall(int flags)
{
unsigned long lock_limit;
int ret = -EINVAL;
if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
goto out;
ret = -EPERM;
if (!can_do_mlock())
goto out;
down_write(&current->mm->mmap_sem);
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
lock_limit >>= PAGE_SHIFT;
ret = -ENOMEM;
if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
capable(CAP_IPC_LOCK))
ret = do_mlockall(flags);
up_write(&current->mm->mmap_sem);
out:
return ret;
}
asmlinkage long sys_munlockall(void)
{
int ret;
down_write(&current->mm->mmap_sem);
ret = do_mlockall(0);
up_write(&current->mm->mmap_sem);
return ret;
}
/*
* Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
* shm segments) get accounted against the user_struct instead.
*/
static DEFINE_SPINLOCK(shmlock_user_lock);
int user_shm_lock(size_t size, struct user_struct *user)
{
unsigned long lock_limit, locked;
int allowed = 0;
locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
if (lock_limit == RLIM_INFINITY)
allowed = 1;
lock_limit >>= PAGE_SHIFT;
spin_lock(&shmlock_user_lock);
if (!allowed &&
locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
goto out;
get_uid(user);
user->locked_shm += locked;
allowed = 1;
out:
spin_unlock(&shmlock_user_lock);
return allowed;
}
void user_shm_unlock(size_t size, struct user_struct *user)
{
spin_lock(&shmlock_user_lock);
user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
spin_unlock(&shmlock_user_lock);
free_uid(user);
}