kernel-fxtec-pro1x/kernel/dma/direct.c
Lendacky, Thomas 13e554fedd dma-direct: do not include SME mask in the DMA supported check
commit c92a54cfa0257e8ffd66b2a17d49e9c0bd4b769f upstream.

The dma_direct_supported() function intends to check the DMA mask against
specific values. However, the phys_to_dma() function includes the SME
encryption mask, which defeats the intended purpose of the check. This
results in drivers that support less than 48-bit DMA (SME encryption mask
is bit 47) from being able to set the DMA mask successfully when SME is
active, which results in the driver failing to initialize.

Change the function used to check the mask from phys_to_dma() to
__phys_to_dma() so that the SME encryption mask is not part of the check.

Fixes: c1d0af1a1d ("kernel/dma/direct: take DMA offset into account in dma_direct_supported")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-13 09:51:05 +01:00

214 lines
5.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DMA operations that map physical memory directly without using an IOMMU or
* flushing caches.
*/
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
#include <linux/scatterlist.h>
#include <linux/dma-contiguous.h>
#include <linux/pfn.h>
#include <linux/set_memory.h>
#define DIRECT_MAPPING_ERROR 0
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
* some use it for entirely different regions:
*/
#ifndef ARCH_ZONE_DMA_BITS
#define ARCH_ZONE_DMA_BITS 24
#endif
/*
* For AMD SEV all DMA must be to unencrypted addresses.
*/
static inline bool force_dma_unencrypted(void)
{
return sev_active();
}
static bool
check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
const char *caller)
{
if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
if (!dev->dma_mask) {
dev_err(dev,
"%s: call on device without dma_mask\n",
caller);
return false;
}
if (*dev->dma_mask >= DMA_BIT_MASK(32)) {
dev_err(dev,
"%s: overflow %pad+%zu of device mask %llx\n",
caller, &dma_addr, size, *dev->dma_mask);
}
return false;
}
return true;
}
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
dma_addr_t addr = force_dma_unencrypted() ?
__phys_to_dma(dev, phys) : phys_to_dma(dev, phys);
return addr + size - 1 <= dev->coherent_dma_mask;
}
void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
int page_order = get_order(size);
struct page *page = NULL;
void *ret;
/* we always manually zero the memory once we are done: */
gfp &= ~__GFP_ZERO;
/* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */
if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
gfp |= GFP_DMA;
if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
gfp |= GFP_DMA32;
again:
/* CMA can be used only in the context which permits sleeping */
if (gfpflags_allow_blocking(gfp)) {
page = dma_alloc_from_contiguous(dev, count, page_order,
gfp & __GFP_NOWARN);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_release_from_contiguous(dev, page, count);
page = NULL;
}
}
if (!page)
page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
__free_pages(page, page_order);
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
dev->coherent_dma_mask < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA))) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) &&
dev->coherent_dma_mask < DMA_BIT_MASK(32) &&
!(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
if (!page)
return NULL;
ret = page_address(page);
if (force_dma_unencrypted()) {
set_memory_decrypted((unsigned long)ret, 1 << page_order);
*dma_handle = __phys_to_dma(dev, page_to_phys(page));
} else {
*dma_handle = phys_to_dma(dev, page_to_phys(page));
}
memset(ret, 0, size);
return ret;
}
/*
* NOTE: this function must never look at the dma_addr argument, because we want
* to be able to use it as a helper for iommu implementations as well.
*/
void dma_direct_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned int page_order = get_order(size);
if (force_dma_unencrypted())
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
free_pages((unsigned long)cpu_addr, page_order);
}
dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset;
if (!check_addr(dev, dma_addr, size, __func__))
return DIRECT_MAPPING_ERROR;
return dma_addr;
}
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
BUG_ON(!sg_page(sg));
sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
return 0;
sg_dma_len(sg) = sg->length;
}
return nents;
}
int dma_direct_supported(struct device *dev, u64 mask)
{
#ifdef CONFIG_ZONE_DMA
/*
* This check needs to be against the actual bit mask value, so
* use __phys_to_dma() here so that the SME encryption mask isn't
* part of the check.
*/
if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)))
return 0;
#else
/*
* Because 32-bit DMA masks are so common we expect every architecture
* to be able to satisfy them - either by not supporting more physical
* memory, or by providing a ZONE_DMA32. If neither is the case, the
* architecture needs to use an IOMMU instead of the direct mapping.
*
* This check needs to be against the actual bit mask value, so
* use __phys_to_dma() here so that the SME encryption mask isn't
* part of the check.
*/
if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32)))
return 0;
#endif
/*
* Upstream PCI/PCIe bridges or SoC interconnects may not carry
* as many DMA address bits as the device itself supports.
*/
if (dev->bus_dma_mask && mask > dev->bus_dma_mask)
return 0;
return 1;
}
int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return dma_addr == DIRECT_MAPPING_ERROR;
}
const struct dma_map_ops dma_direct_ops = {
.alloc = dma_direct_alloc,
.free = dma_direct_free,
.map_page = dma_direct_map_page,
.map_sg = dma_direct_map_sg,
.dma_supported = dma_direct_supported,
.mapping_error = dma_direct_mapping_error,
};
EXPORT_SYMBOL(dma_direct_ops);