kernel-fxtec-pro1x/arch/x86/kernel/amd_iommu.c
FUJITA Tomonori afa9fdc2f5 iommu: remove fullflush and nofullflush in IOMMU generic option
This patch against tip/x86/iommu virtually reverts
2842e5bf31. But just reverting the
commit breaks AMD IOMMU so this patch also includes some fixes.

The above commit adds new two options to x86 IOMMU generic kernel boot
options, fullflush and nofullflush. But such change that affects all
the IOMMUs needs more discussion (all IOMMU parties need the chance to
discuss it):

http://lkml.org/lkml/2008/9/19/106

Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-22 20:43:37 +02:00

1377 lines
34 KiB
C

/*
* Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <joerg.roedel@amd.com>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
#include <asm/iommu.h>
#include <asm/amd_iommu_types.h>
#include <asm/amd_iommu.h>
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
#define EXIT_LOOP_COUNT 10000000
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);
/*
* general struct to manage commands send to an IOMMU
*/
struct iommu_cmd {
u32 data[4];
};
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e);
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
static int iommu_has_npcache(struct amd_iommu *iommu)
{
return iommu->cap & IOMMU_CAP_NPCACHE;
}
/****************************************************************************
*
* Interrupt handling functions
*
****************************************************************************/
static void iommu_print_event(void *__evt)
{
u32 *event = __evt;
int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
u64 address = (u64)(((u64)event[3]) << 32) | event[2];
printk(KERN_ERR "AMD IOMMU: Event logged [");
switch (type) {
case EVENT_TYPE_ILL_DEV:
printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
case EVENT_TYPE_IO_FAULT:
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domid, address, flags);
break;
case EVENT_TYPE_DEV_TAB_ERR:
printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
case EVENT_TYPE_PAGE_TAB_ERR:
printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domid, address, flags);
break;
case EVENT_TYPE_ILL_CMD:
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
break;
case EVENT_TYPE_CMD_HARD_ERR:
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
"flags=0x%04x]\n", address, flags);
break;
case EVENT_TYPE_IOTLB_INV_TO:
printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
"address=0x%016llx]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address);
break;
case EVENT_TYPE_INV_DEV_REQ:
printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
default:
printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
}
}
static void iommu_poll_events(struct amd_iommu *iommu)
{
u32 head, tail;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
while (head != tail) {
iommu_print_event(iommu->evt_buf + head);
head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
}
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
spin_unlock_irqrestore(&iommu->lock, flags);
}
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
struct amd_iommu *iommu;
list_for_each_entry(iommu, &amd_iommu_list, list)
iommu_poll_events(iommu);
return IRQ_HANDLED;
}
/****************************************************************************
*
* IOMMU command queuing functions
*
****************************************************************************/
/*
* Writes the command to the IOMMUs command buffer and informs the
* hardware about the new command. Must be called with iommu->lock held.
*/
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
u32 tail, head;
u8 *target;
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
target = iommu->cmd_buf + tail;
memcpy_toio(target, cmd, sizeof(*cmd));
tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
if (tail == head)
return -ENOMEM;
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
return 0;
}
/*
* General queuing function for commands. Takes iommu->lock and calls
* __iommu_queue_command().
*/
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&iommu->lock, flags);
ret = __iommu_queue_command(iommu, cmd);
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
/*
* This function is called whenever we need to ensure that the IOMMU has
* completed execution of all commands we sent. It sends a
* COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
* us about that by writing a value to a physical address we pass with
* the command.
*/
static int iommu_completion_wait(struct amd_iommu *iommu)
{
int ret, ready = 0;
unsigned status = 0;
struct iommu_cmd cmd;
unsigned long i = 0;
memset(&cmd, 0, sizeof(cmd));
cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
iommu->need_sync = 0;
ret = iommu_queue_command(iommu, &cmd);
if (ret)
return ret;
while (!ready && (i < EXIT_LOOP_COUNT)) {
++i;
/* wait for the bit to become one */
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
}
/* set bit back to zero */
status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
return 0;
}
/*
* Command send function for invalidating a device table entry
*/
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
BUG_ON(iommu == NULL);
memset(&cmd, 0, sizeof(cmd));
CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
cmd.data[0] = devid;
iommu->need_sync = 1;
return iommu_queue_command(iommu, &cmd);
}
/*
* Generic command send function for invalidaing TLB entries
*/
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
u64 address, u16 domid, int pde, int s)
{
struct iommu_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
address &= PAGE_MASK;
CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
cmd.data[1] |= domid;
cmd.data[2] = lower_32_bits(address);
cmd.data[3] = upper_32_bits(address);
if (s) /* size bit - we flush more than one 4kb page */
cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
iommu->need_sync = 1;
return iommu_queue_command(iommu, &cmd);
}
/*
* TLB invalidation function which is called from the mapping functions.
* It invalidates a single PTE if the range to flush is within a single
* page. Otherwise it flushes the whole TLB of the IOMMU.
*/
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
u64 address, size_t size)
{
int s = 0;
unsigned pages = iommu_num_pages(address, size);
address &= PAGE_MASK;
if (pages > 1) {
/*
* If we have to flush more than one page, flush all
* TLB entries for this domain
*/
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
s = 1;
}
iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
return 0;
}
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}
/****************************************************************************
*
* The functions below are used the create the page table mappings for
* unity mapped regions.
*
****************************************************************************/
/*
* Generic mapping functions. It maps a physical address into a DMA
* address space. It allocates the page table pages if necessary.
* In the future it can be extended to a generic mapping function
* supporting all features of AMD IOMMU page tables like level skipping
* and full 64 bit address spaces.
*/
static int iommu_map(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long phys_addr,
int prot)
{
u64 __pte, *pte, *page;
bus_addr = PAGE_ALIGN(bus_addr);
phys_addr = PAGE_ALIGN(bus_addr);
/* only support 512GB address spaces for now */
if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
return -EINVAL;
pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*pte = IOMMU_L2_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*pte = IOMMU_L1_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
if (IOMMU_PTE_PRESENT(*pte))
return -EBUSY;
__pte = phys_addr | IOMMU_PTE_P;
if (prot & IOMMU_PROT_IR)
__pte |= IOMMU_PTE_IR;
if (prot & IOMMU_PROT_IW)
__pte |= IOMMU_PTE_IW;
*pte = __pte;
return 0;
}
/*
* This function checks if a specific unity mapping entry is needed for
* this specific IOMMU.
*/
static int iommu_for_unity_map(struct amd_iommu *iommu,
struct unity_map_entry *entry)
{
u16 bdf, i;
for (i = entry->devid_start; i <= entry->devid_end; ++i) {
bdf = amd_iommu_alias_table[i];
if (amd_iommu_rlookup_table[bdf] == iommu)
return 1;
}
return 0;
}
/*
* Init the unity mappings for a specific IOMMU in the system
*
* Basically iterates over all unity mapping entries and applies them to
* the default domain DMA of that IOMMU if necessary.
*/
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
struct unity_map_entry *entry;
int ret;
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
if (!iommu_for_unity_map(iommu, entry))
continue;
ret = dma_ops_unity_map(iommu->default_dom, entry);
if (ret)
return ret;
}
return 0;
}
/*
* This function actually applies the mapping to the page table of the
* dma_ops domain.
*/
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e)
{
u64 addr;
int ret;
for (addr = e->address_start; addr < e->address_end;
addr += PAGE_SIZE) {
ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
if (ret)
return ret;
/*
* if unity mapping is in aperture range mark the page
* as allocated in the aperture
*/
if (addr < dma_dom->aperture_size)
__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
}
return 0;
}
/*
* Inits the unity mappings required for a specific device
*/
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
u16 devid)
{
struct unity_map_entry *e;
int ret;
list_for_each_entry(e, &amd_iommu_unity_map, list) {
if (!(devid >= e->devid_start && devid <= e->devid_end))
continue;
ret = dma_ops_unity_map(dma_dom, e);
if (ret)
return ret;
}
return 0;
}
/****************************************************************************
*
* The next functions belong to the address allocator for the dma_ops
* interface functions. They work like the allocators in the other IOMMU
* drivers. Its basically a bitmap which marks the allocated pages in
* the aperture. Maybe it could be enhanced in the future to a more
* efficient allocator.
*
****************************************************************************/
static unsigned long dma_mask_to_pages(unsigned long mask)
{
return PAGE_ALIGN(mask) >> PAGE_SHIFT;
}
/*
* The address allocator core function.
*
* called with domain->lock held
*/
static unsigned long dma_ops_alloc_addresses(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask)
{
unsigned long limit = dma_mask_to_pages(dma_mask);
unsigned long address;
unsigned long size = dom->aperture_size >> PAGE_SHIFT;
unsigned long boundary_size;
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
PAGE_SIZE) >> PAGE_SHIFT;
limit = limit < size ? limit : size;
if (dom->next_bit >= limit) {
dom->next_bit = 0;
dom->need_flush = true;
}
address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
0 , boundary_size, align_mask);
if (address == -1) {
address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
0, boundary_size, align_mask);
dom->need_flush = true;
}
if (likely(address != -1)) {
dom->next_bit = address + pages;
address <<= PAGE_SHIFT;
} else
address = bad_dma_address;
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
return address;
}
/*
* The address free function.
*
* called with domain->lock held
*/
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
unsigned long address,
unsigned int pages)
{
address >>= PAGE_SHIFT;
iommu_area_free(dom->bitmap, address, pages);
}
/****************************************************************************
*
* The next functions belong to the domain allocation. A domain is
* allocated for every IOMMU as the default domain. If device isolation
* is enabled, every device get its own domain. The most important thing
* about domains is the page table mapping the DMA address space they
* contain.
*
****************************************************************************/
static u16 domain_id_alloc(void)
{
unsigned long flags;
int id;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
BUG_ON(id == 0);
if (id > 0 && id < MAX_DOMAIN_ID)
__set_bit(id, amd_iommu_pd_alloc_bitmap);
else
id = 0;
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return id;
}
/*
* Used to reserve address ranges in the aperture (e.g. for exclusion
* ranges.
*/
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages)
{
unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
if (start_page + pages > last_page)
pages = last_page - start_page;
iommu_area_reserve(dom->bitmap, start_page, pages);
}
static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
{
int i, j;
u64 *p1, *p2, *p3;
p1 = dma_dom->domain.pt_root;
if (!p1)
return;
for (i = 0; i < 512; ++i) {
if (!IOMMU_PTE_PRESENT(p1[i]))
continue;
p2 = IOMMU_PTE_PAGE(p1[i]);
for (j = 0; j < 512; ++i) {
if (!IOMMU_PTE_PRESENT(p2[j]))
continue;
p3 = IOMMU_PTE_PAGE(p2[j]);
free_page((unsigned long)p3);
}
free_page((unsigned long)p2);
}
free_page((unsigned long)p1);
}
/*
* Free a domain, only used if something went wrong in the
* allocation path and we need to free an already allocated page table
*/
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
if (!dom)
return;
dma_ops_free_pagetable(dom);
kfree(dom->pte_pages);
kfree(dom->bitmap);
kfree(dom);
}
/*
* Allocates a new protection domain usable for the dma_ops functions.
* It also intializes the page table and the address allocator data
* structures required for the dma_ops interface
*/
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
unsigned order)
{
struct dma_ops_domain *dma_dom;
unsigned i, num_pte_pages;
u64 *l2_pde;
u64 address;
/*
* Currently the DMA aperture must be between 32 MB and 1GB in size
*/
if ((order < 25) || (order > 30))
return NULL;
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
if (!dma_dom)
return NULL;
spin_lock_init(&dma_dom->domain.lock);
dma_dom->domain.id = domain_id_alloc();
if (dma_dom->domain.id == 0)
goto free_dma_dom;
dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
dma_dom->domain.priv = dma_dom;
if (!dma_dom->domain.pt_root)
goto free_dma_dom;
dma_dom->aperture_size = (1ULL << order);
dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
GFP_KERNEL);
if (!dma_dom->bitmap)
goto free_dma_dom;
/*
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
dma_dom->bitmap[0] = 1;
dma_dom->next_bit = 0;
dma_dom->need_flush = false;
dma_dom->target_dev = 0xffff;
/* Intialize the exclusion range if necessary */
if (iommu->exclusion_start &&
iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
int pages = iommu_num_pages(iommu->exclusion_start,
iommu->exclusion_length);
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
/*
* At the last step, build the page tables so we don't need to
* allocate page table pages in the dma_ops mapping/unmapping
* path.
*/
num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
GFP_KERNEL);
if (!dma_dom->pte_pages)
goto free_dma_dom;
l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
if (l2_pde == NULL)
goto free_dma_dom;
dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
for (i = 0; i < num_pte_pages; ++i) {
dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!dma_dom->pte_pages[i])
goto free_dma_dom;
address = virt_to_phys(dma_dom->pte_pages[i]);
l2_pde[i] = IOMMU_L1_PDE(address);
}
return dma_dom;
free_dma_dom:
dma_ops_domain_free(dma_dom);
return NULL;
}
/*
* Find out the protection domain structure for a given PCI device. This
* will give us the pointer to the page table root for example.
*/
static struct protection_domain *domain_for_device(u16 devid)
{
struct protection_domain *dom;
unsigned long flags;
read_lock_irqsave(&amd_iommu_devtable_lock, flags);
dom = amd_iommu_pd_table[devid];
read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return dom;
}
/*
* If a device is not yet associated with a domain, this function does
* assigns it visible for the hardware
*/
static void set_device_domain(struct amd_iommu *iommu,
struct protection_domain *domain,
u16 devid)
{
unsigned long flags;
u64 pte_root = virt_to_phys(domain->pt_root);
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
amd_iommu_dev_table[devid].data[2] = domain->id;
amd_iommu_pd_table[devid] = domain;
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
iommu_queue_inv_dev_entry(iommu, devid);
iommu->need_sync = 1;
}
/*****************************************************************************
*
* The next functions belong to the dma_ops mapping/unmapping code.
*
*****************************************************************************/
/*
* This function checks if the driver got a valid device from the caller to
* avoid dereferencing invalid pointers.
*/
static bool check_device(struct device *dev)
{
if (!dev || !dev->dma_mask)
return false;
return true;
}
/*
* In this function the list of preallocated protection domains is traversed to
* find the domain for a specific device
*/
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
struct dma_ops_domain *entry, *ret = NULL;
unsigned long flags;
if (list_empty(&iommu_pd_list))
return NULL;
spin_lock_irqsave(&iommu_pd_list_lock, flags);
list_for_each_entry(entry, &iommu_pd_list, list) {
if (entry->target_dev == devid) {
ret = entry;
list_del(&ret->list);
break;
}
}
spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
return ret;
}
/*
* In the dma_ops path we only have the struct device. This function
* finds the corresponding IOMMU, the protection domain and the
* requestor id for a given device.
* If the device is not yet associated with a domain this is also done
* in this function.
*/
static int get_device_resources(struct device *dev,
struct amd_iommu **iommu,
struct protection_domain **domain,
u16 *bdf)
{
struct dma_ops_domain *dma_dom;
struct pci_dev *pcidev;
u16 _bdf;
*iommu = NULL;
*domain = NULL;
*bdf = 0xffff;
if (dev->bus != &pci_bus_type)
return 0;
pcidev = to_pci_dev(dev);
_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
/* device not translated by any IOMMU in the system? */
if (_bdf > amd_iommu_last_bdf)
return 0;
*bdf = amd_iommu_alias_table[_bdf];
*iommu = amd_iommu_rlookup_table[*bdf];
if (*iommu == NULL)
return 0;
*domain = domain_for_device(*bdf);
if (*domain == NULL) {
dma_dom = find_protection_domain(*bdf);
if (!dma_dom)
dma_dom = (*iommu)->default_dom;
*domain = &dma_dom->domain;
set_device_domain(*iommu, *domain, *bdf);
printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
"device ", (*domain)->id);
print_devid(_bdf, 1);
}
return 1;
}
/*
* This is the generic map function. It maps one 4kb page at paddr to
* the given address in the DMA address space for the domain.
*/
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
struct dma_ops_domain *dom,
unsigned long address,
phys_addr_t paddr,
int direction)
{
u64 *pte, __pte;
WARN_ON(address > dom->aperture_size);
paddr &= PAGE_MASK;
pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
pte += IOMMU_PTE_L0_INDEX(address);
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
if (direction == DMA_TO_DEVICE)
__pte |= IOMMU_PTE_IR;
else if (direction == DMA_FROM_DEVICE)
__pte |= IOMMU_PTE_IW;
else if (direction == DMA_BIDIRECTIONAL)
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
WARN_ON(*pte);
*pte = __pte;
return (dma_addr_t)address;
}
/*
* The generic unmapping function for on page in the DMA address space.
*/
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
struct dma_ops_domain *dom,
unsigned long address)
{
u64 *pte;
if (address >= dom->aperture_size)
return;
WARN_ON(address & 0xfffULL || address > dom->aperture_size);
pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
pte += IOMMU_PTE_L0_INDEX(address);
WARN_ON(!*pte);
*pte = 0ULL;
}
/*
* This function contains common code for mapping of a physically
* contiguous memory region into DMA address space. It is uses by all
* mapping functions provided by this IOMMU driver.
* Must be called with the domain lock held.
*/
static dma_addr_t __map_single(struct device *dev,
struct amd_iommu *iommu,
struct dma_ops_domain *dma_dom,
phys_addr_t paddr,
size_t size,
int dir,
bool align,
u64 dma_mask)
{
dma_addr_t offset = paddr & ~PAGE_MASK;
dma_addr_t address, start;
unsigned int pages;
unsigned long align_mask = 0;
int i;
pages = iommu_num_pages(paddr, size);
paddr &= PAGE_MASK;
if (align)
align_mask = (1UL << get_order(size)) - 1;
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
dma_mask);
if (unlikely(address == bad_dma_address))
goto out;
start = address;
for (i = 0; i < pages; ++i) {
dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
paddr += PAGE_SIZE;
start += PAGE_SIZE;
}
address += offset;
if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
iommu_flush_tlb(iommu, dma_dom->domain.id);
dma_dom->need_flush = false;
} else if (unlikely(iommu_has_npcache(iommu)))
iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
out:
return address;
}
/*
* Does the reverse of the __map_single function. Must be called with
* the domain lock held too
*/
static void __unmap_single(struct amd_iommu *iommu,
struct dma_ops_domain *dma_dom,
dma_addr_t dma_addr,
size_t size,
int dir)
{
dma_addr_t i, start;
unsigned int pages;
if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
return;
pages = iommu_num_pages(dma_addr, size);
dma_addr &= PAGE_MASK;
start = dma_addr;
for (i = 0; i < pages; ++i) {
dma_ops_domain_unmap(iommu, dma_dom, start);
start += PAGE_SIZE;
}
dma_ops_free_addresses(dma_dom, dma_addr, pages);
if (amd_iommu_unmap_flush)
iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
}
/*
* The exported map_single function for dma_ops.
*/
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
size_t size, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
dma_addr_t addr;
u64 dma_mask;
if (!check_device(dev))
return bad_dma_address;
dma_mask = *dev->dma_mask;
get_device_resources(dev, &iommu, &domain, &devid);
if (iommu == NULL || domain == NULL)
/* device not handled by any AMD IOMMU */
return (dma_addr_t)paddr;
spin_lock_irqsave(&domain->lock, flags);
addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
dma_mask);
if (addr == bad_dma_address)
goto out;
if (unlikely(iommu->need_sync))
iommu_completion_wait(iommu);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return addr;
}
/*
* The exported unmap_single function for dma_ops.
*/
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
if (!check_device(dev) ||
!get_device_resources(dev, &iommu, &domain, &devid))
/* device not handled by any AMD IOMMU */
return;
spin_lock_irqsave(&domain->lock, flags);
__unmap_single(iommu, domain->priv, dma_addr, size, dir);
if (unlikely(iommu->need_sync))
iommu_completion_wait(iommu);
spin_unlock_irqrestore(&domain->lock, flags);
}
/*
* This is a special map_sg function which is used if we should map a
* device which is not handled by an AMD IOMMU in the system.
*/
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
struct scatterlist *s;
int i;
for_each_sg(sglist, s, nelems, i) {
s->dma_address = (dma_addr_t)sg_phys(s);
s->dma_length = s->length;
}
return nelems;
}
/*
* The exported map_sg function for dma_ops (handles scatter-gather
* lists).
*/
static int map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
int i;
struct scatterlist *s;
phys_addr_t paddr;
int mapped_elems = 0;
u64 dma_mask;
if (!check_device(dev))
return 0;
dma_mask = *dev->dma_mask;
get_device_resources(dev, &iommu, &domain, &devid);
if (!iommu || !domain)
return map_sg_no_iommu(dev, sglist, nelems, dir);
spin_lock_irqsave(&domain->lock, flags);
for_each_sg(sglist, s, nelems, i) {
paddr = sg_phys(s);
s->dma_address = __map_single(dev, iommu, domain->priv,
paddr, s->length, dir, false,
dma_mask);
if (s->dma_address) {
s->dma_length = s->length;
mapped_elems++;
} else
goto unmap;
}
if (unlikely(iommu->need_sync))
iommu_completion_wait(iommu);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return mapped_elems;
unmap:
for_each_sg(sglist, s, mapped_elems, i) {
if (s->dma_address)
__unmap_single(iommu, domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
mapped_elems = 0;
goto out;
}
/*
* The exported map_sg function for dma_ops (handles scatter-gather
* lists).
*/
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
struct scatterlist *s;
u16 devid;
int i;
if (!check_device(dev) ||
!get_device_resources(dev, &iommu, &domain, &devid))
return;
spin_lock_irqsave(&domain->lock, flags);
for_each_sg(sglist, s, nelems, i) {
__unmap_single(iommu, domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
if (unlikely(iommu->need_sync))
iommu_completion_wait(iommu);
spin_unlock_irqrestore(&domain->lock, flags);
}
/*
* The exported alloc_coherent function for dma_ops.
*/
static void *alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addr, gfp_t flag)
{
unsigned long flags;
void *virt_addr;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
phys_addr_t paddr;
u64 dma_mask = dev->coherent_dma_mask;
if (!check_device(dev))
return NULL;
if (!get_device_resources(dev, &iommu, &domain, &devid))
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
flag |= __GFP_ZERO;
virt_addr = (void *)__get_free_pages(flag, get_order(size));
if (!virt_addr)
return 0;
paddr = virt_to_phys(virt_addr);
if (!iommu || !domain) {
*dma_addr = (dma_addr_t)paddr;
return virt_addr;
}
if (!dma_mask)
dma_mask = *dev->dma_mask;
spin_lock_irqsave(&domain->lock, flags);
*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
size, DMA_BIDIRECTIONAL, true, dma_mask);
if (*dma_addr == bad_dma_address) {
free_pages((unsigned long)virt_addr, get_order(size));
virt_addr = NULL;
goto out;
}
if (unlikely(iommu->need_sync))
iommu_completion_wait(iommu);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return virt_addr;
}
/*
* The exported free_coherent function for dma_ops.
*/
static void free_coherent(struct device *dev, size_t size,
void *virt_addr, dma_addr_t dma_addr)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
if (!check_device(dev))
return;
get_device_resources(dev, &iommu, &domain, &devid);
if (!iommu || !domain)
goto free_mem;
spin_lock_irqsave(&domain->lock, flags);
__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
if (unlikely(iommu->need_sync))
iommu_completion_wait(iommu);
spin_unlock_irqrestore(&domain->lock, flags);
free_mem:
free_pages((unsigned long)virt_addr, get_order(size));
}
/*
* This function is called by the DMA layer to find out if we can handle a
* particular device. It is part of the dma_ops.
*/
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
u16 bdf;
struct pci_dev *pcidev;
/* No device or no PCI device */
if (!dev || dev->bus != &pci_bus_type)
return 0;
pcidev = to_pci_dev(dev);
bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
/* Out of our scope? */
if (bdf > amd_iommu_last_bdf)
return 0;
return 1;
}
/*
* The function for pre-allocating protection domains.
*
* If the driver core informs the DMA layer if a driver grabs a device
* we don't need to preallocate the protection domains anymore.
* For now we have to.
*/
void prealloc_protection_domains(void)
{
struct pci_dev *dev = NULL;
struct dma_ops_domain *dma_dom;
struct amd_iommu *iommu;
int order = amd_iommu_aperture_order;
u16 devid;
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
devid = (dev->bus->number << 8) | dev->devfn;
if (devid > amd_iommu_last_bdf)
continue;
devid = amd_iommu_alias_table[devid];
if (domain_for_device(devid))
continue;
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
continue;
dma_dom = dma_ops_domain_alloc(iommu, order);
if (!dma_dom)
continue;
init_unity_mappings_for_device(dma_dom, devid);
dma_dom->target_dev = devid;
list_add_tail(&dma_dom->list, &iommu_pd_list);
}
}
static struct dma_mapping_ops amd_iommu_dma_ops = {
.alloc_coherent = alloc_coherent,
.free_coherent = free_coherent,
.map_single = map_single,
.unmap_single = unmap_single,
.map_sg = map_sg,
.unmap_sg = unmap_sg,
.dma_supported = amd_iommu_dma_supported,
};
/*
* The function which clues the AMD IOMMU driver into dma_ops.
*/
int __init amd_iommu_init_dma_ops(void)
{
struct amd_iommu *iommu;
int order = amd_iommu_aperture_order;
int ret;
/*
* first allocate a default protection domain for every IOMMU we
* found in the system. Devices not assigned to any other
* protection domain will be assigned to the default one.
*/
list_for_each_entry(iommu, &amd_iommu_list, list) {
iommu->default_dom = dma_ops_domain_alloc(iommu, order);
if (iommu->default_dom == NULL)
return -ENOMEM;
ret = iommu_init_unity_mappings(iommu);
if (ret)
goto free_domains;
}
/*
* If device isolation is enabled, pre-allocate the protection
* domains for each device.
*/
if (amd_iommu_isolate)
prealloc_protection_domains();
iommu_detected = 1;
force_iommu = 1;
bad_dma_address = 0;
#ifdef CONFIG_GART_IOMMU
gart_iommu_aperture_disabled = 1;
gart_iommu_aperture = 0;
#endif
/* Make the driver finally visible to the drivers */
dma_ops = &amd_iommu_dma_ops;
return 0;
free_domains:
list_for_each_entry(iommu, &amd_iommu_list, list) {
if (iommu->default_dom)
dma_ops_domain_free(iommu->default_dom);
}
return ret;
}