kernel-fxtec-pro1x/fs/pipe.c
Al Viro f0d1bec9d5 new helper: copy_page_from_iter()
parallel to copy_page_to_iter().  pipe_write() switched to it (and became
->write_iter()).

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-05-06 17:39:42 -04:00

1128 lines
25 KiB
C

/*
* linux/fs/pipe.c
*
* Copyright (C) 1991, 1992, 1999 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/log2.h>
#include <linux/mount.h>
#include <linux/magic.h>
#include <linux/pipe_fs_i.h>
#include <linux/uio.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/audit.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <linux/aio.h>
#include <asm/uaccess.h>
#include <asm/ioctls.h>
#include "internal.h"
/*
* The max size that a non-root user is allowed to grow the pipe. Can
* be set by root in /proc/sys/fs/pipe-max-size
*/
unsigned int pipe_max_size = 1048576;
/*
* Minimum pipe size, as required by POSIX
*/
unsigned int pipe_min_size = PAGE_SIZE;
/*
* We use a start+len construction, which provides full use of the
* allocated memory.
* -- Florian Coosmann (FGC)
*
* Reads with count = 0 should always return 0.
* -- Julian Bradfield 1999-06-07.
*
* FIFOs and Pipes now generate SIGIO for both readers and writers.
* -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
*
* pipe_read & write cleanup
* -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
*/
static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
{
if (pipe->files)
mutex_lock_nested(&pipe->mutex, subclass);
}
void pipe_lock(struct pipe_inode_info *pipe)
{
/*
* pipe_lock() nests non-pipe inode locks (for writing to a file)
*/
pipe_lock_nested(pipe, I_MUTEX_PARENT);
}
EXPORT_SYMBOL(pipe_lock);
void pipe_unlock(struct pipe_inode_info *pipe)
{
if (pipe->files)
mutex_unlock(&pipe->mutex);
}
EXPORT_SYMBOL(pipe_unlock);
static inline void __pipe_lock(struct pipe_inode_info *pipe)
{
mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
}
static inline void __pipe_unlock(struct pipe_inode_info *pipe)
{
mutex_unlock(&pipe->mutex);
}
void pipe_double_lock(struct pipe_inode_info *pipe1,
struct pipe_inode_info *pipe2)
{
BUG_ON(pipe1 == pipe2);
if (pipe1 < pipe2) {
pipe_lock_nested(pipe1, I_MUTEX_PARENT);
pipe_lock_nested(pipe2, I_MUTEX_CHILD);
} else {
pipe_lock_nested(pipe2, I_MUTEX_PARENT);
pipe_lock_nested(pipe1, I_MUTEX_CHILD);
}
}
/* Drop the inode semaphore and wait for a pipe event, atomically */
void pipe_wait(struct pipe_inode_info *pipe)
{
DEFINE_WAIT(wait);
/*
* Pipes are system-local resources, so sleeping on them
* is considered a noninteractive wait:
*/
prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
pipe_unlock(pipe);
schedule();
finish_wait(&pipe->wait, &wait);
pipe_lock(pipe);
}
static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct page *page = buf->page;
/*
* If nobody else uses this page, and we don't already have a
* temporary page, let's keep track of it as a one-deep
* allocation cache. (Otherwise just release our reference to it)
*/
if (page_count(page) == 1 && !pipe->tmp_page)
pipe->tmp_page = page;
else
page_cache_release(page);
}
/**
* generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to attempt to steal
*
* Description:
* This function attempts to steal the &struct page attached to
* @buf. If successful, this function returns 0 and returns with
* the page locked. The caller may then reuse the page for whatever
* he wishes; the typical use is insertion into a different file
* page cache.
*/
int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct page *page = buf->page;
/*
* A reference of one is golden, that means that the owner of this
* page is the only one holding a reference to it. lock the page
* and return OK.
*/
if (page_count(page) == 1) {
lock_page(page);
return 0;
}
return 1;
}
EXPORT_SYMBOL(generic_pipe_buf_steal);
/**
* generic_pipe_buf_get - get a reference to a &struct pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to get a reference to
*
* Description:
* This function grabs an extra reference to @buf. It's used in
* in the tee() system call, when we duplicate the buffers in one
* pipe into another.
*/
void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
{
page_cache_get(buf->page);
}
EXPORT_SYMBOL(generic_pipe_buf_get);
/**
* generic_pipe_buf_confirm - verify contents of the pipe buffer
* @info: the pipe that the buffer belongs to
* @buf: the buffer to confirm
*
* Description:
* This function does nothing, because the generic pipe code uses
* pages that are always good when inserted into the pipe.
*/
int generic_pipe_buf_confirm(struct pipe_inode_info *info,
struct pipe_buffer *buf)
{
return 0;
}
EXPORT_SYMBOL(generic_pipe_buf_confirm);
/**
* generic_pipe_buf_release - put a reference to a &struct pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to put a reference to
*
* Description:
* This function releases a reference to @buf.
*/
void generic_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
page_cache_release(buf->page);
}
EXPORT_SYMBOL(generic_pipe_buf_release);
static const struct pipe_buf_operations anon_pipe_buf_ops = {
.can_merge = 1,
.confirm = generic_pipe_buf_confirm,
.release = anon_pipe_buf_release,
.steal = generic_pipe_buf_steal,
.get = generic_pipe_buf_get,
};
static const struct pipe_buf_operations packet_pipe_buf_ops = {
.can_merge = 0,
.confirm = generic_pipe_buf_confirm,
.release = anon_pipe_buf_release,
.steal = generic_pipe_buf_steal,
.get = generic_pipe_buf_get,
};
static ssize_t
pipe_read(struct kiocb *iocb, struct iov_iter *to)
{
size_t total_len = iov_iter_count(to);
struct file *filp = iocb->ki_filp;
struct pipe_inode_info *pipe = filp->private_data;
int do_wakeup;
ssize_t ret;
/* Null read succeeds. */
if (unlikely(total_len == 0))
return 0;
do_wakeup = 0;
ret = 0;
__pipe_lock(pipe);
for (;;) {
int bufs = pipe->nrbufs;
if (bufs) {
int curbuf = pipe->curbuf;
struct pipe_buffer *buf = pipe->bufs + curbuf;
const struct pipe_buf_operations *ops = buf->ops;
size_t chars = buf->len;
size_t written;
int error;
if (chars > total_len)
chars = total_len;
error = ops->confirm(pipe, buf);
if (error) {
if (!ret)
ret = error;
break;
}
written = copy_page_to_iter(buf->page, buf->offset, chars, to);
if (unlikely(written < chars)) {
if (!ret)
ret = -EFAULT;
break;
}
ret += chars;
buf->offset += chars;
buf->len -= chars;
/* Was it a packet buffer? Clean up and exit */
if (buf->flags & PIPE_BUF_FLAG_PACKET) {
total_len = chars;
buf->len = 0;
}
if (!buf->len) {
buf->ops = NULL;
ops->release(pipe, buf);
curbuf = (curbuf + 1) & (pipe->buffers - 1);
pipe->curbuf = curbuf;
pipe->nrbufs = --bufs;
do_wakeup = 1;
}
total_len -= chars;
if (!total_len)
break; /* common path: read succeeded */
}
if (bufs) /* More to do? */
continue;
if (!pipe->writers)
break;
if (!pipe->waiting_writers) {
/* syscall merging: Usually we must not sleep
* if O_NONBLOCK is set, or if we got some data.
* But if a writer sleeps in kernel space, then
* we can wait for that data without violating POSIX.
*/
if (ret)
break;
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
pipe_wait(pipe);
}
__pipe_unlock(pipe);
/* Signal writers asynchronously that there is more room. */
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
if (ret > 0)
file_accessed(filp);
return ret;
}
static inline int is_packetized(struct file *file)
{
return (file->f_flags & O_DIRECT) != 0;
}
static ssize_t
pipe_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *filp = iocb->ki_filp;
struct pipe_inode_info *pipe = filp->private_data;
ssize_t ret = 0;
int do_wakeup = 0;
size_t total_len = iov_iter_count(from);
ssize_t chars;
/* Null write succeeds. */
if (unlikely(total_len == 0))
return 0;
__pipe_lock(pipe);
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
goto out;
}
/* We try to merge small writes */
chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
if (pipe->nrbufs && chars != 0) {
int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
(pipe->buffers - 1);
struct pipe_buffer *buf = pipe->bufs + lastbuf;
const struct pipe_buf_operations *ops = buf->ops;
int offset = buf->offset + buf->len;
if (ops->can_merge && offset + chars <= PAGE_SIZE) {
int error = ops->confirm(pipe, buf);
if (error)
goto out;
ret = copy_page_from_iter(buf->page, offset, chars, from);
if (unlikely(ret < chars)) {
error = -EFAULT;
goto out;
}
do_wakeup = 1;
buf->len += chars;
ret = chars;
if (!iov_iter_count(from))
goto out;
}
}
for (;;) {
int bufs;
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
if (!ret)
ret = -EPIPE;
break;
}
bufs = pipe->nrbufs;
if (bufs < pipe->buffers) {
int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
struct pipe_buffer *buf = pipe->bufs + newbuf;
struct page *page = pipe->tmp_page;
int copied;
if (!page) {
page = alloc_page(GFP_HIGHUSER);
if (unlikely(!page)) {
ret = ret ? : -ENOMEM;
break;
}
pipe->tmp_page = page;
}
/* Always wake up, even if the copy fails. Otherwise
* we lock up (O_NONBLOCK-)readers that sleep due to
* syscall merging.
* FIXME! Is this really true?
*/
do_wakeup = 1;
copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
if (!ret)
ret = -EFAULT;
break;
}
ret += copied;
/* Insert it into the buffer array */
buf->page = page;
buf->ops = &anon_pipe_buf_ops;
buf->offset = 0;
buf->len = copied;
buf->flags = 0;
if (is_packetized(filp)) {
buf->ops = &packet_pipe_buf_ops;
buf->flags = PIPE_BUF_FLAG_PACKET;
}
pipe->nrbufs = ++bufs;
pipe->tmp_page = NULL;
if (!iov_iter_count(from))
break;
}
if (bufs < pipe->buffers)
continue;
if (filp->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
do_wakeup = 0;
}
pipe->waiting_writers++;
pipe_wait(pipe);
pipe->waiting_writers--;
}
out:
__pipe_unlock(pipe);
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
}
if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
int err = file_update_time(filp);
if (err)
ret = err;
sb_end_write(file_inode(filp)->i_sb);
}
return ret;
}
static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct pipe_inode_info *pipe = filp->private_data;
int count, buf, nrbufs;
switch (cmd) {
case FIONREAD:
__pipe_lock(pipe);
count = 0;
buf = pipe->curbuf;
nrbufs = pipe->nrbufs;
while (--nrbufs >= 0) {
count += pipe->bufs[buf].len;
buf = (buf+1) & (pipe->buffers - 1);
}
__pipe_unlock(pipe);
return put_user(count, (int __user *)arg);
default:
return -ENOIOCTLCMD;
}
}
/* No kernel lock held - fine */
static unsigned int
pipe_poll(struct file *filp, poll_table *wait)
{
unsigned int mask;
struct pipe_inode_info *pipe = filp->private_data;
int nrbufs;
poll_wait(filp, &pipe->wait, wait);
/* Reading only -- no need for acquiring the semaphore. */
nrbufs = pipe->nrbufs;
mask = 0;
if (filp->f_mode & FMODE_READ) {
mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
if (!pipe->writers && filp->f_version != pipe->w_counter)
mask |= POLLHUP;
}
if (filp->f_mode & FMODE_WRITE) {
mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
/*
* Most Unices do not set POLLERR for FIFOs but on Linux they
* behave exactly like pipes for poll().
*/
if (!pipe->readers)
mask |= POLLERR;
}
return mask;
}
static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
{
int kill = 0;
spin_lock(&inode->i_lock);
if (!--pipe->files) {
inode->i_pipe = NULL;
kill = 1;
}
spin_unlock(&inode->i_lock);
if (kill)
free_pipe_info(pipe);
}
static int
pipe_release(struct inode *inode, struct file *file)
{
struct pipe_inode_info *pipe = file->private_data;
__pipe_lock(pipe);
if (file->f_mode & FMODE_READ)
pipe->readers--;
if (file->f_mode & FMODE_WRITE)
pipe->writers--;
if (pipe->readers || pipe->writers) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
__pipe_unlock(pipe);
put_pipe_info(inode, pipe);
return 0;
}
static int
pipe_fasync(int fd, struct file *filp, int on)
{
struct pipe_inode_info *pipe = filp->private_data;
int retval = 0;
__pipe_lock(pipe);
if (filp->f_mode & FMODE_READ)
retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
if (retval < 0 && (filp->f_mode & FMODE_READ))
/* this can happen only if on == T */
fasync_helper(-1, filp, 0, &pipe->fasync_readers);
}
__pipe_unlock(pipe);
return retval;
}
struct pipe_inode_info *alloc_pipe_info(void)
{
struct pipe_inode_info *pipe;
pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
if (pipe) {
pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
if (pipe->bufs) {
init_waitqueue_head(&pipe->wait);
pipe->r_counter = pipe->w_counter = 1;
pipe->buffers = PIPE_DEF_BUFFERS;
mutex_init(&pipe->mutex);
return pipe;
}
kfree(pipe);
}
return NULL;
}
void free_pipe_info(struct pipe_inode_info *pipe)
{
int i;
for (i = 0; i < pipe->buffers; i++) {
struct pipe_buffer *buf = pipe->bufs + i;
if (buf->ops)
buf->ops->release(pipe, buf);
}
if (pipe->tmp_page)
__free_page(pipe->tmp_page);
kfree(pipe->bufs);
kfree(pipe);
}
static struct vfsmount *pipe_mnt __read_mostly;
/*
* pipefs_dname() is called from d_path().
*/
static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
dentry->d_inode->i_ino);
}
static const struct dentry_operations pipefs_dentry_operations = {
.d_dname = pipefs_dname,
};
static struct inode * get_pipe_inode(void)
{
struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
struct pipe_inode_info *pipe;
if (!inode)
goto fail_inode;
inode->i_ino = get_next_ino();
pipe = alloc_pipe_info();
if (!pipe)
goto fail_iput;
inode->i_pipe = pipe;
pipe->files = 2;
pipe->readers = pipe->writers = 1;
inode->i_fop = &pipefifo_fops;
/*
* Mark the inode dirty from the very beginning,
* that way it will never be moved to the dirty
* list because "mark_inode_dirty()" will think
* that it already _is_ on the dirty list.
*/
inode->i_state = I_DIRTY;
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
return inode;
fail_iput:
iput(inode);
fail_inode:
return NULL;
}
int create_pipe_files(struct file **res, int flags)
{
int err;
struct inode *inode = get_pipe_inode();
struct file *f;
struct path path;
static struct qstr name = { .name = "" };
if (!inode)
return -ENFILE;
err = -ENOMEM;
path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
if (!path.dentry)
goto err_inode;
path.mnt = mntget(pipe_mnt);
d_instantiate(path.dentry, inode);
err = -ENFILE;
f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
if (IS_ERR(f))
goto err_dentry;
f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
f->private_data = inode->i_pipe;
res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
if (IS_ERR(res[0]))
goto err_file;
path_get(&path);
res[0]->private_data = inode->i_pipe;
res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
res[1] = f;
return 0;
err_file:
put_filp(f);
err_dentry:
free_pipe_info(inode->i_pipe);
path_put(&path);
return err;
err_inode:
free_pipe_info(inode->i_pipe);
iput(inode);
return err;
}
static int __do_pipe_flags(int *fd, struct file **files, int flags)
{
int error;
int fdw, fdr;
if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
return -EINVAL;
error = create_pipe_files(files, flags);
if (error)
return error;
error = get_unused_fd_flags(flags);
if (error < 0)
goto err_read_pipe;
fdr = error;
error = get_unused_fd_flags(flags);
if (error < 0)
goto err_fdr;
fdw = error;
audit_fd_pair(fdr, fdw);
fd[0] = fdr;
fd[1] = fdw;
return 0;
err_fdr:
put_unused_fd(fdr);
err_read_pipe:
fput(files[0]);
fput(files[1]);
return error;
}
int do_pipe_flags(int *fd, int flags)
{
struct file *files[2];
int error = __do_pipe_flags(fd, files, flags);
if (!error) {
fd_install(fd[0], files[0]);
fd_install(fd[1], files[1]);
}
return error;
}
/*
* sys_pipe() is the normal C calling standard for creating
* a pipe. It's not the way Unix traditionally does this, though.
*/
SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
{
struct file *files[2];
int fd[2];
int error;
error = __do_pipe_flags(fd, files, flags);
if (!error) {
if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
fput(files[0]);
fput(files[1]);
put_unused_fd(fd[0]);
put_unused_fd(fd[1]);
error = -EFAULT;
} else {
fd_install(fd[0], files[0]);
fd_install(fd[1], files[1]);
}
}
return error;
}
SYSCALL_DEFINE1(pipe, int __user *, fildes)
{
return sys_pipe2(fildes, 0);
}
static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
{
int cur = *cnt;
while (cur == *cnt) {
pipe_wait(pipe);
if (signal_pending(current))
break;
}
return cur == *cnt ? -ERESTARTSYS : 0;
}
static void wake_up_partner(struct pipe_inode_info *pipe)
{
wake_up_interruptible(&pipe->wait);
}
static int fifo_open(struct inode *inode, struct file *filp)
{
struct pipe_inode_info *pipe;
bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
int ret;
filp->f_version = 0;
spin_lock(&inode->i_lock);
if (inode->i_pipe) {
pipe = inode->i_pipe;
pipe->files++;
spin_unlock(&inode->i_lock);
} else {
spin_unlock(&inode->i_lock);
pipe = alloc_pipe_info();
if (!pipe)
return -ENOMEM;
pipe->files = 1;
spin_lock(&inode->i_lock);
if (unlikely(inode->i_pipe)) {
inode->i_pipe->files++;
spin_unlock(&inode->i_lock);
free_pipe_info(pipe);
pipe = inode->i_pipe;
} else {
inode->i_pipe = pipe;
spin_unlock(&inode->i_lock);
}
}
filp->private_data = pipe;
/* OK, we have a pipe and it's pinned down */
__pipe_lock(pipe);
/* We can only do regular read/write on fifos */
filp->f_mode &= (FMODE_READ | FMODE_WRITE);
switch (filp->f_mode) {
case FMODE_READ:
/*
* O_RDONLY
* POSIX.1 says that O_NONBLOCK means return with the FIFO
* opened, even when there is no process writing the FIFO.
*/
pipe->r_counter++;
if (pipe->readers++ == 0)
wake_up_partner(pipe);
if (!is_pipe && !pipe->writers) {
if ((filp->f_flags & O_NONBLOCK)) {
/* suppress POLLHUP until we have
* seen a writer */
filp->f_version = pipe->w_counter;
} else {
if (wait_for_partner(pipe, &pipe->w_counter))
goto err_rd;
}
}
break;
case FMODE_WRITE:
/*
* O_WRONLY
* POSIX.1 says that O_NONBLOCK means return -1 with
* errno=ENXIO when there is no process reading the FIFO.
*/
ret = -ENXIO;
if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
goto err;
pipe->w_counter++;
if (!pipe->writers++)
wake_up_partner(pipe);
if (!is_pipe && !pipe->readers) {
if (wait_for_partner(pipe, &pipe->r_counter))
goto err_wr;
}
break;
case FMODE_READ | FMODE_WRITE:
/*
* O_RDWR
* POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
* This implementation will NEVER block on a O_RDWR open, since
* the process can at least talk to itself.
*/
pipe->readers++;
pipe->writers++;
pipe->r_counter++;
pipe->w_counter++;
if (pipe->readers == 1 || pipe->writers == 1)
wake_up_partner(pipe);
break;
default:
ret = -EINVAL;
goto err;
}
/* Ok! */
__pipe_unlock(pipe);
return 0;
err_rd:
if (!--pipe->readers)
wake_up_interruptible(&pipe->wait);
ret = -ERESTARTSYS;
goto err;
err_wr:
if (!--pipe->writers)
wake_up_interruptible(&pipe->wait);
ret = -ERESTARTSYS;
goto err;
err:
__pipe_unlock(pipe);
put_pipe_info(inode, pipe);
return ret;
}
const struct file_operations pipefifo_fops = {
.open = fifo_open,
.llseek = no_llseek,
.read = new_sync_read,
.read_iter = pipe_read,
.write = new_sync_write,
.write_iter = pipe_write,
.poll = pipe_poll,
.unlocked_ioctl = pipe_ioctl,
.release = pipe_release,
.fasync = pipe_fasync,
};
/*
* Allocate a new array of pipe buffers and copy the info over. Returns the
* pipe size if successful, or return -ERROR on error.
*/
static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
{
struct pipe_buffer *bufs;
/*
* We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
* expect a lot of shrink+grow operations, just free and allocate
* again like we would do for growing. If the pipe currently
* contains more buffers than arg, then return busy.
*/
if (nr_pages < pipe->nrbufs)
return -EBUSY;
bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
if (unlikely(!bufs))
return -ENOMEM;
/*
* The pipe array wraps around, so just start the new one at zero
* and adjust the indexes.
*/
if (pipe->nrbufs) {
unsigned int tail;
unsigned int head;
tail = pipe->curbuf + pipe->nrbufs;
if (tail < pipe->buffers)
tail = 0;
else
tail &= (pipe->buffers - 1);
head = pipe->nrbufs - tail;
if (head)
memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
if (tail)
memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
}
pipe->curbuf = 0;
kfree(pipe->bufs);
pipe->bufs = bufs;
pipe->buffers = nr_pages;
return nr_pages * PAGE_SIZE;
}
/*
* Currently we rely on the pipe array holding a power-of-2 number
* of pages.
*/
static inline unsigned int round_pipe_size(unsigned int size)
{
unsigned long nr_pages;
nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
}
/*
* This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
* will return an error.
*/
int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
if (ret < 0 || !write)
return ret;
pipe_max_size = round_pipe_size(pipe_max_size);
return ret;
}
/*
* After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
* location, so checking ->i_pipe is not enough to verify that this is a
* pipe.
*/
struct pipe_inode_info *get_pipe_info(struct file *file)
{
return file->f_op == &pipefifo_fops ? file->private_data : NULL;
}
long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pipe_inode_info *pipe;
long ret;
pipe = get_pipe_info(file);
if (!pipe)
return -EBADF;
__pipe_lock(pipe);
switch (cmd) {
case F_SETPIPE_SZ: {
unsigned int size, nr_pages;
size = round_pipe_size(arg);
nr_pages = size >> PAGE_SHIFT;
ret = -EINVAL;
if (!nr_pages)
goto out;
if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
ret = -EPERM;
goto out;
}
ret = pipe_set_size(pipe, nr_pages);
break;
}
case F_GETPIPE_SZ:
ret = pipe->buffers * PAGE_SIZE;
break;
default:
ret = -EINVAL;
break;
}
out:
__pipe_unlock(pipe);
return ret;
}
static const struct super_operations pipefs_ops = {
.destroy_inode = free_inode_nonrcu,
.statfs = simple_statfs,
};
/*
* pipefs should _never_ be mounted by userland - too much of security hassle,
* no real gain from having the whole whorehouse mounted. So we don't need
* any operations on the root directory. However, we need a non-trivial
* d_name - pipe: will go nicely and kill the special-casing in procfs.
*/
static struct dentry *pipefs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
&pipefs_dentry_operations, PIPEFS_MAGIC);
}
static struct file_system_type pipe_fs_type = {
.name = "pipefs",
.mount = pipefs_mount,
.kill_sb = kill_anon_super,
};
static int __init init_pipe_fs(void)
{
int err = register_filesystem(&pipe_fs_type);
if (!err) {
pipe_mnt = kern_mount(&pipe_fs_type);
if (IS_ERR(pipe_mnt)) {
err = PTR_ERR(pipe_mnt);
unregister_filesystem(&pipe_fs_type);
}
}
return err;
}
fs_initcall(init_pipe_fs);