kernel-fxtec-pro1x/drivers/misc/memory_state_time.c
Arnd Bergmann 8009515632 ANDROID: memory_state_time: fix undefined behavior with missing DT properties
kernelci reports warnings about unintialized variable usage:

drivers/misc/memory_state_time.c:351:12: warning: 'lenf' is used uninitialized in this function [-Wuninitialized]
drivers/misc/memory_state_time.c:321:14: warning: 'lenb' is used uninitialized in this function [-Wuninitialized]

In both cases we try to continue without a DT property but use the
length that has not been assigned at this point. This rearranges the
code in the two functions to bail out earlier in case of an error.

The patch is needed for both android-common-4.9, 4.4 and 3.18.

Link: https://kernelci.org/build/id/591177f459b5147648b12d54/logs/
Fixes: ad3c02f8b3a5 ("ANDROID: Implement memory_state_time, used by qcom,cpubw")
Cc: James Carr <carrja@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2018-08-28 17:10:42 +05:30

462 lines
11 KiB
C

/* drivers/misc/memory_state_time.c
*
* Copyright (C) 2016 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/hashtable.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/memory-state-time.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/time.h>
#include <linux/timekeeping.h>
#include <linux/workqueue.h>
#define KERNEL_ATTR_RO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
#define KERNEL_ATTR_RW(_name) \
static struct kobj_attribute _name##_attr = \
__ATTR(_name, 0644, _name##_show, _name##_store)
#define FREQ_HASH_BITS 4
DECLARE_HASHTABLE(freq_hash_table, FREQ_HASH_BITS);
static DEFINE_MUTEX(mem_lock);
#define TAG "memory_state_time"
#define BW_NODE "/soc/memory-state-time"
#define FREQ_TBL "freq-tbl"
#define BW_TBL "bw-buckets"
#define NUM_SOURCES "num-sources"
#define LOWEST_FREQ 2
static int curr_bw;
static int curr_freq;
static u32 *bw_buckets;
static u32 *freq_buckets;
static int num_freqs;
static int num_buckets;
static int registered_bw_sources;
static u64 last_update;
static bool init_success;
static struct workqueue_struct *memory_wq;
static u32 num_sources = 10;
static int *bandwidths;
struct freq_entry {
int freq;
u64 *buckets; /* Bandwidth buckets. */
struct hlist_node hash;
};
struct queue_container {
struct work_struct update_state;
int value;
u64 time_now;
int id;
struct mutex *lock;
};
static int find_bucket(int bw)
{
int i;
if (bw_buckets != NULL) {
for (i = 0; i < num_buckets; i++) {
if (bw_buckets[i] > bw) {
pr_debug("Found bucket %d for bandwidth %d\n",
i, bw);
return i;
}
}
return num_buckets - 1;
}
return 0;
}
static u64 get_time_diff(u64 time_now)
{
u64 ms;
ms = time_now - last_update;
last_update = time_now;
return ms;
}
static ssize_t show_stat_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
int i, j;
int len = 0;
struct freq_entry *freq_entry;
for (i = 0; i < num_freqs; i++) {
hash_for_each_possible(freq_hash_table, freq_entry, hash,
freq_buckets[i]) {
if (freq_entry->freq == freq_buckets[i]) {
len += scnprintf(buf + len, PAGE_SIZE - len,
"%d ", freq_buckets[i]);
if (len >= PAGE_SIZE)
break;
for (j = 0; j < num_buckets; j++) {
len += scnprintf(buf + len,
PAGE_SIZE - len,
"%llu ",
freq_entry->buckets[j]);
}
len += scnprintf(buf + len, PAGE_SIZE - len,
"\n");
}
}
}
pr_debug("Current Time: %llu\n", ktime_get_boot_ns());
return len;
}
KERNEL_ATTR_RO(show_stat);
static void update_table(u64 time_now)
{
struct freq_entry *freq_entry;
pr_debug("Last known bw %d freq %d\n", curr_bw, curr_freq);
hash_for_each_possible(freq_hash_table, freq_entry, hash, curr_freq) {
if (curr_freq == freq_entry->freq) {
freq_entry->buckets[find_bucket(curr_bw)]
+= get_time_diff(time_now);
break;
}
}
}
static bool freq_exists(int freq)
{
int i;
for (i = 0; i < num_freqs; i++) {
if (freq == freq_buckets[i])
return true;
}
return false;
}
static int calculate_total_bw(int bw, int index)
{
int i;
int total_bw = 0;
pr_debug("memory_state_time New bw %d for id %d\n", bw, index);
bandwidths[index] = bw;
for (i = 0; i < registered_bw_sources; i++)
total_bw += bandwidths[i];
return total_bw;
}
static void freq_update_do_work(struct work_struct *work)
{
struct queue_container *freq_state_update
= container_of(work, struct queue_container,
update_state);
if (freq_state_update) {
mutex_lock(&mem_lock);
update_table(freq_state_update->time_now);
curr_freq = freq_state_update->value;
mutex_unlock(&mem_lock);
kfree(freq_state_update);
}
}
static void bw_update_do_work(struct work_struct *work)
{
struct queue_container *bw_state_update
= container_of(work, struct queue_container,
update_state);
if (bw_state_update) {
mutex_lock(&mem_lock);
update_table(bw_state_update->time_now);
curr_bw = calculate_total_bw(bw_state_update->value,
bw_state_update->id);
mutex_unlock(&mem_lock);
kfree(bw_state_update);
}
}
static void memory_state_freq_update(struct memory_state_update_block *ub,
int value)
{
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
if (freq_exists(value) && init_success) {
struct queue_container *freq_container
= kmalloc(sizeof(struct queue_container),
GFP_KERNEL);
if (!freq_container)
return;
INIT_WORK(&freq_container->update_state,
freq_update_do_work);
freq_container->time_now = ktime_get_boot_ns();
freq_container->value = value;
pr_debug("Scheduling freq update in work queue\n");
queue_work(memory_wq, &freq_container->update_state);
} else {
pr_debug("Freq does not exist.\n");
}
}
}
static void memory_state_bw_update(struct memory_state_update_block *ub,
int value)
{
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
if (init_success) {
struct queue_container *bw_container
= kmalloc(sizeof(struct queue_container),
GFP_KERNEL);
if (!bw_container)
return;
INIT_WORK(&bw_container->update_state,
bw_update_do_work);
bw_container->time_now = ktime_get_boot_ns();
bw_container->value = value;
bw_container->id = ub->id;
pr_debug("Scheduling bandwidth update in work queue\n");
queue_work(memory_wq, &bw_container->update_state);
}
}
}
struct memory_state_update_block *memory_state_register_frequency_source(void)
{
struct memory_state_update_block *block;
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
pr_debug("Allocating frequency source\n");
block = kmalloc(sizeof(struct memory_state_update_block),
GFP_KERNEL);
if (!block)
return NULL;
block->update_call = memory_state_freq_update;
return block;
}
pr_err("Config option disabled.\n");
return NULL;
}
EXPORT_SYMBOL_GPL(memory_state_register_frequency_source);
struct memory_state_update_block *memory_state_register_bandwidth_source(void)
{
struct memory_state_update_block *block;
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
pr_debug("Allocating bandwidth source %d\n",
registered_bw_sources);
block = kmalloc(sizeof(struct memory_state_update_block),
GFP_KERNEL);
if (!block)
return NULL;
block->update_call = memory_state_bw_update;
if (registered_bw_sources < num_sources) {
block->id = registered_bw_sources++;
} else {
pr_err("Unable to allocate source; max number reached\n");
kfree(block);
return NULL;
}
return block;
}
pr_err("Config option disabled.\n");
return NULL;
}
EXPORT_SYMBOL_GPL(memory_state_register_bandwidth_source);
/* Buckets are designated by their maximum.
* Returns the buckets decided by the capability of the device.
*/
static int get_bw_buckets(struct device *dev)
{
int ret, lenb;
struct device_node *node = dev->of_node;
of_property_read_u32(node, NUM_SOURCES, &num_sources);
if (!of_find_property(node, BW_TBL, &lenb)) {
pr_err("Missing %s property\n", BW_TBL);
return -ENODATA;
}
bandwidths = devm_kzalloc(dev,
sizeof(*bandwidths) * num_sources, GFP_KERNEL);
if (!bandwidths)
return -ENOMEM;
lenb /= sizeof(*bw_buckets);
bw_buckets = devm_kzalloc(dev, lenb * sizeof(*bw_buckets),
GFP_KERNEL);
if (!bw_buckets) {
devm_kfree(dev, bandwidths);
return -ENOMEM;
}
ret = of_property_read_u32_array(node, BW_TBL, bw_buckets,
lenb);
if (ret < 0) {
devm_kfree(dev, bandwidths);
devm_kfree(dev, bw_buckets);
pr_err("Unable to read bandwidth table from device tree.\n");
return ret;
}
curr_bw = 0;
num_buckets = lenb;
return 0;
}
/* Adds struct freq_entry nodes to the hashtable for each compatible frequency.
* Returns the supported number of frequencies.
*/
static int freq_buckets_init(struct device *dev)
{
struct freq_entry *freq_entry;
int i;
int ret, lenf;
struct device_node *node = dev->of_node;
if (!of_find_property(node, FREQ_TBL, &lenf)) {
pr_err("Missing %s property\n", FREQ_TBL);
return -ENODATA;
}
lenf /= sizeof(*freq_buckets);
freq_buckets = devm_kzalloc(dev, lenf * sizeof(*freq_buckets),
GFP_KERNEL);
if (!freq_buckets)
return -ENOMEM;
pr_debug("freqs found len %d\n", lenf);
ret = of_property_read_u32_array(node, FREQ_TBL, freq_buckets,
lenf);
if (ret < 0) {
devm_kfree(dev, freq_buckets);
pr_err("Unable to read frequency table from device tree.\n");
return ret;
}
pr_debug("ret freq %d\n", ret);
num_freqs = lenf;
curr_freq = freq_buckets[LOWEST_FREQ];
for (i = 0; i < num_freqs; i++) {
freq_entry = devm_kzalloc(dev, sizeof(struct freq_entry),
GFP_KERNEL);
if (!freq_entry)
return -ENOMEM;
freq_entry->buckets = devm_kzalloc(dev, sizeof(u64)*num_buckets,
GFP_KERNEL);
if (!freq_entry->buckets) {
devm_kfree(dev, freq_entry);
return -ENOMEM;
}
pr_debug("memory_state_time Adding freq to ht %d\n",
freq_buckets[i]);
freq_entry->freq = freq_buckets[i];
hash_add(freq_hash_table, &freq_entry->hash, freq_buckets[i]);
}
return 0;
}
struct kobject *memory_kobj;
EXPORT_SYMBOL_GPL(memory_kobj);
static struct attribute *memory_attrs[] = {
&show_stat_attr.attr,
NULL
};
static struct attribute_group memory_attr_group = {
.attrs = memory_attrs,
};
static int memory_state_time_probe(struct platform_device *pdev)
{
int error;
error = get_bw_buckets(&pdev->dev);
if (error)
return error;
error = freq_buckets_init(&pdev->dev);
if (error)
return error;
last_update = ktime_get_boot_ns();
init_success = true;
pr_debug("memory_state_time initialized with num_freqs %d\n",
num_freqs);
return 0;
}
static const struct of_device_id match_table[] = {
{ .compatible = "memory-state-time" },
{}
};
static struct platform_driver memory_state_time_driver = {
.probe = memory_state_time_probe,
.driver = {
.name = "memory-state-time",
.of_match_table = match_table,
.owner = THIS_MODULE,
},
};
static int __init memory_state_time_init(void)
{
int error;
hash_init(freq_hash_table);
memory_wq = create_singlethread_workqueue("memory_wq");
if (!memory_wq) {
pr_err("Unable to create workqueue.\n");
return -EINVAL;
}
/*
* Create sys/kernel directory for memory_state_time.
*/
memory_kobj = kobject_create_and_add(TAG, kernel_kobj);
if (!memory_kobj) {
pr_err("Unable to allocate memory_kobj for sysfs directory.\n");
error = -ENOMEM;
goto wq;
}
error = sysfs_create_group(memory_kobj, &memory_attr_group);
if (error) {
pr_err("Unable to create sysfs folder.\n");
goto kobj;
}
error = platform_driver_register(&memory_state_time_driver);
if (error) {
pr_err("Unable to register memory_state_time platform driver.\n");
goto group;
}
return 0;
group: sysfs_remove_group(memory_kobj, &memory_attr_group);
kobj: kobject_put(memory_kobj);
wq: destroy_workqueue(memory_wq);
return error;
}
module_init(memory_state_time_init);