kernel-fxtec-pro1x/drivers/hwmon/smm665.c
Axel Lin 781126a0c8 hwmon: (smm665) Convert to devm_hwmon_device_register_with_groups
Use ATTRIBUTE_GROUPS macro and devm_hwmon_device_register_with_groups() to
simplify the code a bit.

Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2014-08-04 07:01:37 -07:00

709 lines
20 KiB
C

/*
* Driver for SMM665 Power Controller / Monitor
*
* Copyright (C) 2010 Ericsson AB.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This driver should also work for SMM465, SMM764, and SMM766, but is untested
* for those chips. Only monitoring functionality is implemented.
*
* Datasheets:
* http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
* http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
/* Internal reference voltage (VREF, x 1000 */
#define SMM665_VREF_ADC_X1000 1250
/* module parameters */
static int vref = SMM665_VREF_ADC_X1000;
module_param(vref, int, 0);
MODULE_PARM_DESC(vref, "Reference voltage in mV");
enum chips { smm465, smm665, smm665c, smm764, smm766 };
/*
* ADC channel addresses
*/
#define SMM665_MISC16_ADC_DATA_A 0x00
#define SMM665_MISC16_ADC_DATA_B 0x01
#define SMM665_MISC16_ADC_DATA_C 0x02
#define SMM665_MISC16_ADC_DATA_D 0x03
#define SMM665_MISC16_ADC_DATA_E 0x04
#define SMM665_MISC16_ADC_DATA_F 0x05
#define SMM665_MISC16_ADC_DATA_VDD 0x06
#define SMM665_MISC16_ADC_DATA_12V 0x07
#define SMM665_MISC16_ADC_DATA_INT_TEMP 0x08
#define SMM665_MISC16_ADC_DATA_AIN1 0x09
#define SMM665_MISC16_ADC_DATA_AIN2 0x0a
/*
* Command registers
*/
#define SMM665_MISC8_CMD_STS 0x80
#define SMM665_MISC8_STATUS1 0x81
#define SMM665_MISC8_STATUSS2 0x82
#define SMM665_MISC8_IO_POLARITY 0x83
#define SMM665_MISC8_PUP_POLARITY 0x84
#define SMM665_MISC8_ADOC_STATUS1 0x85
#define SMM665_MISC8_ADOC_STATUS2 0x86
#define SMM665_MISC8_WRITE_PROT 0x87
#define SMM665_MISC8_STS_TRACK 0x88
/*
* Configuration registers and register groups
*/
#define SMM665_ADOC_ENABLE 0x0d
#define SMM665_LIMIT_BASE 0x80 /* First limit register */
/*
* Limit register bit masks
*/
#define SMM665_TRIGGER_RST 0x8000
#define SMM665_TRIGGER_HEALTHY 0x4000
#define SMM665_TRIGGER_POWEROFF 0x2000
#define SMM665_TRIGGER_SHUTDOWN 0x1000
#define SMM665_ADC_MASK 0x03ff
#define smm665_is_critical(lim) ((lim) & (SMM665_TRIGGER_RST \
| SMM665_TRIGGER_POWEROFF \
| SMM665_TRIGGER_SHUTDOWN))
/*
* Fault register bit definitions
* Values are merged from status registers 1/2,
* with status register 1 providing the upper 8 bits.
*/
#define SMM665_FAULT_A 0x0001
#define SMM665_FAULT_B 0x0002
#define SMM665_FAULT_C 0x0004
#define SMM665_FAULT_D 0x0008
#define SMM665_FAULT_E 0x0010
#define SMM665_FAULT_F 0x0020
#define SMM665_FAULT_VDD 0x0040
#define SMM665_FAULT_12V 0x0080
#define SMM665_FAULT_TEMP 0x0100
#define SMM665_FAULT_AIN1 0x0200
#define SMM665_FAULT_AIN2 0x0400
/*
* I2C Register addresses
*
* The configuration register needs to be the configured base register.
* The command/status register address is derived from it.
*/
#define SMM665_REGMASK 0x78
#define SMM665_CMDREG_BASE 0x48
#define SMM665_CONFREG_BASE 0x50
/*
* Equations given by chip manufacturer to calculate voltage/temperature values
* vref = Reference voltage on VREF_ADC pin (module parameter)
* adc = 10bit ADC value read back from registers
*/
/* Voltage A-F and VDD */
#define SMM665_VMON_ADC_TO_VOLTS(adc) ((adc) * vref / 256)
/* Voltage 12VIN */
#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
/* Voltage AIN1, AIN2 */
#define SMM665_AIN_ADC_TO_VOLTS(adc) ((adc) * vref / 512)
/* Temp Sensor */
#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ? \
((int)(adc) * 1000 / 4) : \
(((int)(adc) - 0x400) * 1000 / 4))
#define SMM665_NUM_ADC 11
/*
* Chip dependent ADC conversion time, in uS
*/
#define SMM665_ADC_WAIT_SMM665 70
#define SMM665_ADC_WAIT_SMM766 185
struct smm665_data {
enum chips type;
int conversion_time; /* ADC conversion time */
struct i2c_client *client;
struct mutex update_lock;
bool valid;
unsigned long last_updated; /* in jiffies */
u16 adc[SMM665_NUM_ADC]; /* adc values (raw) */
u16 faults; /* fault status */
/* The following values are in mV */
int critical_min_limit[SMM665_NUM_ADC];
int alarm_min_limit[SMM665_NUM_ADC];
int critical_max_limit[SMM665_NUM_ADC];
int alarm_max_limit[SMM665_NUM_ADC];
struct i2c_client *cmdreg;
};
/*
* smm665_read16()
*
* Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
*/
static int smm665_read16(struct i2c_client *client, int reg)
{
int rv, val;
rv = i2c_smbus_read_byte_data(client, reg);
if (rv < 0)
return rv;
val = rv << 8;
rv = i2c_smbus_read_byte_data(client, reg + 1);
if (rv < 0)
return rv;
val |= rv;
return val;
}
/*
* Read adc value.
*/
static int smm665_read_adc(struct smm665_data *data, int adc)
{
struct i2c_client *client = data->cmdreg;
int rv;
int radc;
/*
* Algorithm for reading ADC, per SMM665 datasheet
*
* {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
* [wait conversion time]
* {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
*
* To implement the first part of this exchange,
* do a full read transaction and expect a failure/Nack.
* This sets up the address pointer on the SMM665
* and starts the ADC conversion.
* Then do a two-byte read transaction.
*/
rv = i2c_smbus_read_byte_data(client, adc << 3);
if (rv != -ENXIO) {
/*
* We expect ENXIO to reflect NACK
* (per Documentation/i2c/fault-codes).
* Everything else is an error.
*/
dev_dbg(&client->dev,
"Unexpected return code %d when setting ADC index", rv);
return (rv < 0) ? rv : -EIO;
}
udelay(data->conversion_time);
/*
* Now read two bytes.
*
* Neither i2c_smbus_read_byte() nor
* i2c_smbus_read_block_data() worked here,
* so use i2c_smbus_read_word_swapped() instead.
* We could also try to use i2c_master_recv(),
* but that is not always supported.
*/
rv = i2c_smbus_read_word_swapped(client, 0);
if (rv < 0) {
dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
return rv;
}
/*
* Validate/verify readback adc channel (in bit 11..14).
*/
radc = (rv >> 11) & 0x0f;
if (radc != adc) {
dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
adc, radc);
return -EIO;
}
return rv & SMM665_ADC_MASK;
}
static struct smm665_data *smm665_update_device(struct device *dev)
{
struct smm665_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
struct smm665_data *ret = data;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
int i, val;
/*
* read status registers
*/
val = smm665_read16(client, SMM665_MISC8_STATUS1);
if (unlikely(val < 0)) {
ret = ERR_PTR(val);
goto abort;
}
data->faults = val;
/* Read adc registers */
for (i = 0; i < SMM665_NUM_ADC; i++) {
val = smm665_read_adc(data, i);
if (unlikely(val < 0)) {
ret = ERR_PTR(val);
goto abort;
}
data->adc[i] = val;
}
data->last_updated = jiffies;
data->valid = 1;
}
abort:
mutex_unlock(&data->update_lock);
return ret;
}
/* Return converted value from given adc */
static int smm665_convert(u16 adcval, int index)
{
int val = 0;
switch (index) {
case SMM665_MISC16_ADC_DATA_12V:
val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
break;
case SMM665_MISC16_ADC_DATA_VDD:
case SMM665_MISC16_ADC_DATA_A:
case SMM665_MISC16_ADC_DATA_B:
case SMM665_MISC16_ADC_DATA_C:
case SMM665_MISC16_ADC_DATA_D:
case SMM665_MISC16_ADC_DATA_E:
case SMM665_MISC16_ADC_DATA_F:
val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
break;
case SMM665_MISC16_ADC_DATA_AIN1:
case SMM665_MISC16_ADC_DATA_AIN2:
val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
break;
case SMM665_MISC16_ADC_DATA_INT_TEMP:
val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
break;
default:
/* If we get here, the developer messed up */
WARN_ON_ONCE(1);
break;
}
return val;
}
static int smm665_get_min(struct device *dev, int index)
{
struct smm665_data *data = dev_get_drvdata(dev);
return data->alarm_min_limit[index];
}
static int smm665_get_max(struct device *dev, int index)
{
struct smm665_data *data = dev_get_drvdata(dev);
return data->alarm_max_limit[index];
}
static int smm665_get_lcrit(struct device *dev, int index)
{
struct smm665_data *data = dev_get_drvdata(dev);
return data->critical_min_limit[index];
}
static int smm665_get_crit(struct device *dev, int index)
{
struct smm665_data *data = dev_get_drvdata(dev);
return data->critical_max_limit[index];
}
static ssize_t smm665_show_crit_alarm(struct device *dev,
struct device_attribute *da, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct smm665_data *data = smm665_update_device(dev);
int val = 0;
if (IS_ERR(data))
return PTR_ERR(data);
if (data->faults & (1 << attr->index))
val = 1;
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t smm665_show_input(struct device *dev,
struct device_attribute *da, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct smm665_data *data = smm665_update_device(dev);
int adc = attr->index;
int val;
if (IS_ERR(data))
return PTR_ERR(data);
val = smm665_convert(data->adc[adc], adc);
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
#define SMM665_SHOW(what) \
static ssize_t smm665_show_##what(struct device *dev, \
struct device_attribute *da, char *buf) \
{ \
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
const int val = smm665_get_##what(dev, attr->index); \
return snprintf(buf, PAGE_SIZE, "%d\n", val); \
}
SMM665_SHOW(min);
SMM665_SHOW(max);
SMM665_SHOW(lcrit);
SMM665_SHOW(crit);
/*
* These macros are used below in constructing device attribute objects
* for use with sysfs_create_group() to make a sysfs device file
* for each register.
*/
#define SMM665_ATTR(name, type, cmd_idx) \
static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
smm665_show_##type, NULL, cmd_idx)
/* Construct a sensor_device_attribute structure for each register */
/* Input voltages */
SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
/* Input voltages min */
SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
/* Input voltages max */
SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
/* Input voltages lcrit */
SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
/* Input voltages crit */
SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
/* critical alarms */
SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
/* Temperature */
SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
/*
* Finally, construct an array of pointers to members of the above objects,
* as required for sysfs_create_group()
*/
static struct attribute *smm665_attrs[] = {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_lcrit.dev_attr.attr,
&sensor_dev_attr_in1_crit.dev_attr.attr,
&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_lcrit.dev_attr.attr,
&sensor_dev_attr_in2_crit.dev_attr.attr,
&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_lcrit.dev_attr.attr,
&sensor_dev_attr_in3_crit.dev_attr.attr,
&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_lcrit.dev_attr.attr,
&sensor_dev_attr_in4_crit.dev_attr.attr,
&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_lcrit.dev_attr.attr,
&sensor_dev_attr_in5_crit.dev_attr.attr,
&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in6_lcrit.dev_attr.attr,
&sensor_dev_attr_in6_crit.dev_attr.attr,
&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in7_lcrit.dev_attr.attr,
&sensor_dev_attr_in7_crit.dev_attr.attr,
&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in8_lcrit.dev_attr.attr,
&sensor_dev_attr_in8_crit.dev_attr.attr,
&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in9_min.dev_attr.attr,
&sensor_dev_attr_in9_max.dev_attr.attr,
&sensor_dev_attr_in9_lcrit.dev_attr.attr,
&sensor_dev_attr_in9_crit.dev_attr.attr,
&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in10_min.dev_attr.attr,
&sensor_dev_attr_in10_max.dev_attr.attr,
&sensor_dev_attr_in10_lcrit.dev_attr.attr,
&sensor_dev_attr_in10_crit.dev_attr.attr,
&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(smm665);
static int smm665_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = client->adapter;
struct smm665_data *data;
struct device *hwmon_dev;
int i, ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
| I2C_FUNC_SMBUS_WORD_DATA))
return -ENODEV;
if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
return -ENODEV;
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
data->client = client;
data->type = id->driver_data;
data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
| SMM665_CMDREG_BASE);
if (!data->cmdreg)
return -ENOMEM;
switch (data->type) {
case smm465:
case smm665:
data->conversion_time = SMM665_ADC_WAIT_SMM665;
break;
case smm665c:
case smm764:
case smm766:
data->conversion_time = SMM665_ADC_WAIT_SMM766;
break;
}
ret = -ENODEV;
if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
goto out_unregister;
/*
* Read limits.
*
* Limit registers start with register SMM665_LIMIT_BASE.
* Each channel uses 8 registers, providing four limit values
* per channel. Each limit value requires two registers, with the
* high byte in the first register and the low byte in the second
* register. The first two limits are under limit values, followed
* by two over limit values.
*
* Limit register order matches the ADC register order, so we use
* ADC register defines throughout the code to index limit registers.
*
* We save the first retrieved value both as "critical" and "alarm"
* value. The second value overwrites either the critical or the
* alarm value, depending on its configuration. This ensures that both
* critical and alarm values are initialized, even if both registers are
* configured as critical or non-critical.
*/
for (i = 0; i < SMM665_NUM_ADC; i++) {
int val;
val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
if (unlikely(val < 0))
goto out_unregister;
data->critical_min_limit[i] = data->alarm_min_limit[i]
= smm665_convert(val, i);
val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
if (unlikely(val < 0))
goto out_unregister;
if (smm665_is_critical(val))
data->critical_min_limit[i] = smm665_convert(val, i);
else
data->alarm_min_limit[i] = smm665_convert(val, i);
val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
if (unlikely(val < 0))
goto out_unregister;
data->critical_max_limit[i] = data->alarm_max_limit[i]
= smm665_convert(val, i);
val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
if (unlikely(val < 0))
goto out_unregister;
if (smm665_is_critical(val))
data->critical_max_limit[i] = smm665_convert(val, i);
else
data->alarm_max_limit[i] = smm665_convert(val, i);
}
hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
client->name, data,
smm665_groups);
if (IS_ERR(hwmon_dev)) {
ret = PTR_ERR(hwmon_dev);
goto out_unregister;
}
return 0;
out_unregister:
i2c_unregister_device(data->cmdreg);
return ret;
}
static int smm665_remove(struct i2c_client *client)
{
struct smm665_data *data = i2c_get_clientdata(client);
i2c_unregister_device(data->cmdreg);
return 0;
}
static const struct i2c_device_id smm665_id[] = {
{"smm465", smm465},
{"smm665", smm665},
{"smm665c", smm665c},
{"smm764", smm764},
{"smm766", smm766},
{}
};
MODULE_DEVICE_TABLE(i2c, smm665_id);
/* This is the driver that will be inserted */
static struct i2c_driver smm665_driver = {
.driver = {
.name = "smm665",
},
.probe = smm665_probe,
.remove = smm665_remove,
.id_table = smm665_id,
};
module_i2c_driver(smm665_driver);
MODULE_AUTHOR("Guenter Roeck");
MODULE_DESCRIPTION("SMM665 driver");
MODULE_LICENSE("GPL");