kernel-fxtec-pro1x/include/linux/backing-dev-defs.h
Linus Torvalds e2c5923c34 Merge branch 'for-4.15/block' of git://git.kernel.dk/linux-block
Pull core block layer updates from Jens Axboe:
 "This is the main pull request for block storage for 4.15-rc1.

  Nothing out of the ordinary in here, and no API changes or anything
  like that. Just various new features for drivers, core changes, etc.
  In particular, this pull request contains:

   - A patch series from Bart, closing the whole on blk/scsi-mq queue
     quescing.

   - A series from Christoph, building towards hidden gendisks (for
     multipath) and ability to move bio chains around.

   - NVMe
        - Support for native multipath for NVMe (Christoph).
        - Userspace notifications for AENs (Keith).
        - Command side-effects support (Keith).
        - SGL support (Chaitanya Kulkarni)
        - FC fixes and improvements (James Smart)
        - Lots of fixes and tweaks (Various)

   - bcache
        - New maintainer (Michael Lyle)
        - Writeback control improvements (Michael)
        - Various fixes (Coly, Elena, Eric, Liang, et al)

   - lightnvm updates, mostly centered around the pblk interface
     (Javier, Hans, and Rakesh).

   - Removal of unused bio/bvec kmap atomic interfaces (me, Christoph)

   - Writeback series that fix the much discussed hundreds of millions
     of sync-all units. This goes all the way, as discussed previously
     (me).

   - Fix for missing wakeup on writeback timer adjustments (Yafang
     Shao).

   - Fix laptop mode on blk-mq (me).

   - {mq,name} tupple lookup for IO schedulers, allowing us to have
     alias names. This means you can use 'deadline' on both !mq and on
     mq (where it's called mq-deadline). (me).

   - blktrace race fix, oopsing on sg load (me).

   - blk-mq optimizations (me).

   - Obscure waitqueue race fix for kyber (Omar).

   - NBD fixes (Josef).

   - Disable writeback throttling by default on bfq, like we do on cfq
     (Luca Miccio).

   - Series from Ming that enable us to treat flush requests on blk-mq
     like any other request. This is a really nice cleanup.

   - Series from Ming that improves merging on blk-mq with schedulers,
     getting us closer to flipping the switch on scsi-mq again.

   - BFQ updates (Paolo).

   - blk-mq atomic flags memory ordering fixes (Peter Z).

   - Loop cgroup support (Shaohua).

   - Lots of minor fixes from lots of different folks, both for core and
     driver code"

* 'for-4.15/block' of git://git.kernel.dk/linux-block: (294 commits)
  nvme: fix visibility of "uuid" ns attribute
  blk-mq: fixup some comment typos and lengths
  ide: ide-atapi: fix compile error with defining macro DEBUG
  blk-mq: improve tag waiting setup for non-shared tags
  brd: remove unused brd_mutex
  blk-mq: only run the hardware queue if IO is pending
  block: avoid null pointer dereference on null disk
  fs: guard_bio_eod() needs to consider partitions
  xtensa/simdisk: fix compile error
  nvme: expose subsys attribute to sysfs
  nvme: create 'slaves' and 'holders' entries for hidden controllers
  block: create 'slaves' and 'holders' entries for hidden gendisks
  nvme: also expose the namespace identification sysfs files for mpath nodes
  nvme: implement multipath access to nvme subsystems
  nvme: track shared namespaces
  nvme: introduce a nvme_ns_ids structure
  nvme: track subsystems
  block, nvme: Introduce blk_mq_req_flags_t
  block, scsi: Make SCSI quiesce and resume work reliably
  block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag
  ...
2017-11-14 15:32:19 -08:00

292 lines
8.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_BACKING_DEV_DEFS_H
#define __LINUX_BACKING_DEV_DEFS_H
#include <linux/list.h>
#include <linux/radix-tree.h>
#include <linux/rbtree.h>
#include <linux/spinlock.h>
#include <linux/percpu_counter.h>
#include <linux/percpu-refcount.h>
#include <linux/flex_proportions.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/kref.h>
struct page;
struct device;
struct dentry;
/*
* Bits in bdi_writeback.state
*/
enum wb_state {
WB_registered, /* bdi_register() was done */
WB_shutting_down, /* wb_shutdown() in progress */
WB_writeback_running, /* Writeback is in progress */
WB_has_dirty_io, /* Dirty inodes on ->b_{dirty|io|more_io} */
WB_start_all, /* nr_pages == 0 (all) work pending */
};
enum wb_congested_state {
WB_async_congested, /* The async (write) queue is getting full */
WB_sync_congested, /* The sync queue is getting full */
};
typedef int (congested_fn)(void *, int);
enum wb_stat_item {
WB_RECLAIMABLE,
WB_WRITEBACK,
WB_DIRTIED,
WB_WRITTEN,
NR_WB_STAT_ITEMS
};
#define WB_STAT_BATCH (8*(1+ilog2(nr_cpu_ids)))
/*
* why some writeback work was initiated
*/
enum wb_reason {
WB_REASON_BACKGROUND,
WB_REASON_VMSCAN,
WB_REASON_SYNC,
WB_REASON_PERIODIC,
WB_REASON_LAPTOP_TIMER,
WB_REASON_FREE_MORE_MEM,
WB_REASON_FS_FREE_SPACE,
/*
* There is no bdi forker thread any more and works are done
* by emergency worker, however, this is TPs userland visible
* and we'll be exposing exactly the same information,
* so it has a mismatch name.
*/
WB_REASON_FORKER_THREAD,
WB_REASON_MAX,
};
/*
* For cgroup writeback, multiple wb's may map to the same blkcg. Those
* wb's can operate mostly independently but should share the congested
* state. To facilitate such sharing, the congested state is tracked using
* the following struct which is created on demand, indexed by blkcg ID on
* its bdi, and refcounted.
*/
struct bdi_writeback_congested {
unsigned long state; /* WB_[a]sync_congested flags */
atomic_t refcnt; /* nr of attached wb's and blkg */
#ifdef CONFIG_CGROUP_WRITEBACK
struct backing_dev_info *__bdi; /* the associated bdi, set to NULL
* on bdi unregistration. For memcg-wb
* internal use only! */
int blkcg_id; /* ID of the associated blkcg */
struct rb_node rb_node; /* on bdi->cgwb_congestion_tree */
#endif
};
/*
* Each wb (bdi_writeback) can perform writeback operations, is measured
* and throttled, independently. Without cgroup writeback, each bdi
* (bdi_writeback) is served by its embedded bdi->wb.
*
* On the default hierarchy, blkcg implicitly enables memcg. This allows
* using memcg's page ownership for attributing writeback IOs, and every
* memcg - blkcg combination can be served by its own wb by assigning a
* dedicated wb to each memcg, which enables isolation across different
* cgroups and propagation of IO back pressure down from the IO layer upto
* the tasks which are generating the dirty pages to be written back.
*
* A cgroup wb is indexed on its bdi by the ID of the associated memcg,
* refcounted with the number of inodes attached to it, and pins the memcg
* and the corresponding blkcg. As the corresponding blkcg for a memcg may
* change as blkcg is disabled and enabled higher up in the hierarchy, a wb
* is tested for blkcg after lookup and removed from index on mismatch so
* that a new wb for the combination can be created.
*/
struct bdi_writeback {
struct backing_dev_info *bdi; /* our parent bdi */
unsigned long state; /* Always use atomic bitops on this */
unsigned long last_old_flush; /* last old data flush */
struct list_head b_dirty; /* dirty inodes */
struct list_head b_io; /* parked for writeback */
struct list_head b_more_io; /* parked for more writeback */
struct list_head b_dirty_time; /* time stamps are dirty */
spinlock_t list_lock; /* protects the b_* lists */
struct percpu_counter stat[NR_WB_STAT_ITEMS];
struct bdi_writeback_congested *congested;
unsigned long bw_time_stamp; /* last time write bw is updated */
unsigned long dirtied_stamp;
unsigned long written_stamp; /* pages written at bw_time_stamp */
unsigned long write_bandwidth; /* the estimated write bandwidth */
unsigned long avg_write_bandwidth; /* further smoothed write bw, > 0 */
/*
* The base dirty throttle rate, re-calculated on every 200ms.
* All the bdi tasks' dirty rate will be curbed under it.
* @dirty_ratelimit tracks the estimated @balanced_dirty_ratelimit
* in small steps and is much more smooth/stable than the latter.
*/
unsigned long dirty_ratelimit;
unsigned long balanced_dirty_ratelimit;
struct fprop_local_percpu completions;
int dirty_exceeded;
enum wb_reason start_all_reason;
spinlock_t work_lock; /* protects work_list & dwork scheduling */
struct list_head work_list;
struct delayed_work dwork; /* work item used for writeback */
unsigned long dirty_sleep; /* last wait */
struct list_head bdi_node; /* anchored at bdi->wb_list */
#ifdef CONFIG_CGROUP_WRITEBACK
struct percpu_ref refcnt; /* used only for !root wb's */
struct fprop_local_percpu memcg_completions;
struct cgroup_subsys_state *memcg_css; /* the associated memcg */
struct cgroup_subsys_state *blkcg_css; /* and blkcg */
struct list_head memcg_node; /* anchored at memcg->cgwb_list */
struct list_head blkcg_node; /* anchored at blkcg->cgwb_list */
union {
struct work_struct release_work;
struct rcu_head rcu;
};
#endif
};
struct backing_dev_info {
struct list_head bdi_list;
unsigned long ra_pages; /* max readahead in PAGE_SIZE units */
unsigned long io_pages; /* max allowed IO size */
congested_fn *congested_fn; /* Function pointer if device is md/dm */
void *congested_data; /* Pointer to aux data for congested func */
const char *name;
struct kref refcnt; /* Reference counter for the structure */
unsigned int capabilities; /* Device capabilities */
unsigned int min_ratio;
unsigned int max_ratio, max_prop_frac;
/*
* Sum of avg_write_bw of wbs with dirty inodes. > 0 if there are
* any dirty wbs, which is depended upon by bdi_has_dirty().
*/
atomic_long_t tot_write_bandwidth;
struct bdi_writeback wb; /* the root writeback info for this bdi */
struct list_head wb_list; /* list of all wbs */
#ifdef CONFIG_CGROUP_WRITEBACK
struct radix_tree_root cgwb_tree; /* radix tree of active cgroup wbs */
struct rb_root cgwb_congested_tree; /* their congested states */
#else
struct bdi_writeback_congested *wb_congested;
#endif
wait_queue_head_t wb_waitq;
struct device *dev;
struct device *owner;
struct timer_list laptop_mode_wb_timer;
#ifdef CONFIG_DEBUG_FS
struct dentry *debug_dir;
struct dentry *debug_stats;
#endif
};
enum {
BLK_RW_ASYNC = 0,
BLK_RW_SYNC = 1,
};
void clear_wb_congested(struct bdi_writeback_congested *congested, int sync);
void set_wb_congested(struct bdi_writeback_congested *congested, int sync);
static inline void clear_bdi_congested(struct backing_dev_info *bdi, int sync)
{
clear_wb_congested(bdi->wb.congested, sync);
}
static inline void set_bdi_congested(struct backing_dev_info *bdi, int sync)
{
set_wb_congested(bdi->wb.congested, sync);
}
#ifdef CONFIG_CGROUP_WRITEBACK
/**
* wb_tryget - try to increment a wb's refcount
* @wb: bdi_writeback to get
*/
static inline bool wb_tryget(struct bdi_writeback *wb)
{
if (wb != &wb->bdi->wb)
return percpu_ref_tryget(&wb->refcnt);
return true;
}
/**
* wb_get - increment a wb's refcount
* @wb: bdi_writeback to get
*/
static inline void wb_get(struct bdi_writeback *wb)
{
if (wb != &wb->bdi->wb)
percpu_ref_get(&wb->refcnt);
}
/**
* wb_put - decrement a wb's refcount
* @wb: bdi_writeback to put
*/
static inline void wb_put(struct bdi_writeback *wb)
{
if (wb != &wb->bdi->wb)
percpu_ref_put(&wb->refcnt);
}
/**
* wb_dying - is a wb dying?
* @wb: bdi_writeback of interest
*
* Returns whether @wb is unlinked and being drained.
*/
static inline bool wb_dying(struct bdi_writeback *wb)
{
return percpu_ref_is_dying(&wb->refcnt);
}
#else /* CONFIG_CGROUP_WRITEBACK */
static inline bool wb_tryget(struct bdi_writeback *wb)
{
return true;
}
static inline void wb_get(struct bdi_writeback *wb)
{
}
static inline void wb_put(struct bdi_writeback *wb)
{
}
static inline bool wb_dying(struct bdi_writeback *wb)
{
return false;
}
#endif /* CONFIG_CGROUP_WRITEBACK */
#endif /* __LINUX_BACKING_DEV_DEFS_H */