kernel-fxtec-pro1x/arch/powerpc/platforms/pseries/eeh_event.c
Gavin Shan 40a7cd9219 powerpc/eeh: Replace pci_dn with eeh_dev for EEH aux components
The original EEH implementation is heavily depending on struct pci_dn.
We have to put EEH related information to pci_dn. Actually, we could
split struct pci_dn so that the EEH sensitive information to form an
individual struct, then EEH looks more independent.

The patch replaces pci_dn with eeh_dev for EEH aux components like
event and driver. Also, the eeh_event struct has been adjusted for
a little bit since eeh_dev has linked the associated FDT (Flat Device
Tree) node and PCI device. It's not necessary for eeh_event struct to
trace FDT node and PCI device. We can just simply to trace eeh_dev in
eeh_event.

The patch also renames function pcid_name() to eeh_pcid_name(), which
should be missed in the previous patch where the EEH aux components
have been cleaned up.

Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-03-09 11:39:46 +11:00

159 lines
4.5 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Copyright (c) 2005 Linas Vepstas <linas@linas.org>
*/
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <asm/eeh_event.h>
#include <asm/ppc-pci.h>
/** Overview:
* EEH error states may be detected within exception handlers;
* however, the recovery processing needs to occur asynchronously
* in a normal kernel context and not an interrupt context.
* This pair of routines creates an event and queues it onto a
* work-queue, where a worker thread can drive recovery.
*/
/* EEH event workqueue setup. */
static DEFINE_SPINLOCK(eeh_eventlist_lock);
LIST_HEAD(eeh_eventlist);
static void eeh_thread_launcher(struct work_struct *);
DECLARE_WORK(eeh_event_wq, eeh_thread_launcher);
/* Serialize reset sequences for a given pci device */
DEFINE_MUTEX(eeh_event_mutex);
/**
* eeh_event_handler - Dispatch EEH events.
* @dummy - unused
*
* The detection of a frozen slot can occur inside an interrupt,
* where it can be hard to do anything about it. The goal of this
* routine is to pull these detection events out of the context
* of the interrupt handler, and re-dispatch them for processing
* at a later time in a normal context.
*/
static int eeh_event_handler(void * dummy)
{
unsigned long flags;
struct eeh_event *event;
struct eeh_dev *edev;
daemonize("eehd");
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&eeh_eventlist_lock, flags);
event = NULL;
/* Unqueue the event, get ready to process. */
if (!list_empty(&eeh_eventlist)) {
event = list_entry(eeh_eventlist.next, struct eeh_event, list);
list_del(&event->list);
}
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
if (event == NULL)
return 0;
/* Serialize processing of EEH events */
mutex_lock(&eeh_event_mutex);
edev = event->edev;
eeh_mark_slot(eeh_dev_to_of_node(edev), EEH_MODE_RECOVERING);
printk(KERN_INFO "EEH: Detected PCI bus error on device %s\n",
eeh_pci_name(edev->pdev));
edev = handle_eeh_events(event);
eeh_clear_slot(eeh_dev_to_of_node(edev), EEH_MODE_RECOVERING);
pci_dev_put(edev->pdev);
kfree(event);
mutex_unlock(&eeh_event_mutex);
/* If there are no new errors after an hour, clear the counter. */
if (edev && edev->freeze_count>0) {
msleep_interruptible(3600*1000);
if (edev->freeze_count>0)
edev->freeze_count--;
}
return 0;
}
/**
* eeh_thread_launcher - Start kernel thread to handle EEH events
* @dummy - unused
*
* This routine is called to start the kernel thread for processing
* EEH event.
*/
static void eeh_thread_launcher(struct work_struct *dummy)
{
if (kernel_thread(eeh_event_handler, NULL, CLONE_KERNEL) < 0)
printk(KERN_ERR "Failed to start EEH daemon\n");
}
/**
* eeh_send_failure_event - Generate a PCI error event
* @edev: EEH device
*
* This routine can be called within an interrupt context;
* the actual event will be delivered in a normal context
* (from a workqueue).
*/
int eeh_send_failure_event(struct eeh_dev *edev)
{
unsigned long flags;
struct eeh_event *event;
struct device_node *dn = eeh_dev_to_of_node(edev);
const char *location;
if (!mem_init_done) {
printk(KERN_ERR "EEH: event during early boot not handled\n");
location = of_get_property(dn, "ibm,loc-code", NULL);
printk(KERN_ERR "EEH: device node = %s\n", dn->full_name);
printk(KERN_ERR "EEH: PCI location = %s\n", location);
return 1;
}
event = kmalloc(sizeof(*event), GFP_ATOMIC);
if (event == NULL) {
printk(KERN_ERR "EEH: out of memory, event not handled\n");
return 1;
}
if (edev->pdev)
pci_dev_get(edev->pdev);
event->edev = edev;
/* We may or may not be called in an interrupt context */
spin_lock_irqsave(&eeh_eventlist_lock, flags);
list_add(&event->list, &eeh_eventlist);
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
schedule_work(&eeh_event_wq);
return 0;
}