kernel-fxtec-pro1x/mm/highmem.c
Mel Gorman 5a178119b0 mm: add support for direct_IO to highmem pages
The patch "mm: add support for a filesystem to activate swap files and use
direct_IO for writing swap pages" added support for using direct_IO to
write swap pages but it is insufficient for highmem pages.

To support highmem pages, this patch kmaps() the page before calling the
direct_IO() handler.  As direct_IO deals with virtual addresses an
additional helper is necessary for get_kernel_pages() to lookup the struct
page for a kmap virtual address.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00

444 lines
11 KiB
C

/*
* High memory handling common code and variables.
*
* (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
* Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
*
*
* Redesigned the x86 32-bit VM architecture to deal with
* 64-bit physical space. With current x86 CPUs this
* means up to 64 Gigabytes physical RAM.
*
* Rewrote high memory support to move the page cache into
* high memory. Implemented permanent (schedulable) kmaps
* based on Linus' idea.
*
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
*/
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
#include <linux/kgdb.h>
#include <asm/tlbflush.h>
#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
DEFINE_PER_CPU(int, __kmap_atomic_idx);
#endif
/*
* Virtual_count is not a pure "count".
* 0 means that it is not mapped, and has not been mapped
* since a TLB flush - it is usable.
* 1 means that there are no users, but it has been mapped
* since the last TLB flush - so we can't use it.
* n means that there are (n-1) current users of it.
*/
#ifdef CONFIG_HIGHMEM
unsigned long totalhigh_pages __read_mostly;
EXPORT_SYMBOL(totalhigh_pages);
EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
unsigned int nr_free_highpages (void)
{
pg_data_t *pgdat;
unsigned int pages = 0;
for_each_online_pgdat(pgdat) {
pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
NR_FREE_PAGES);
if (zone_movable_is_highmem())
pages += zone_page_state(
&pgdat->node_zones[ZONE_MOVABLE],
NR_FREE_PAGES);
}
return pages;
}
static int pkmap_count[LAST_PKMAP];
static unsigned int last_pkmap_nr;
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
pte_t * pkmap_page_table;
static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
/*
* Most architectures have no use for kmap_high_get(), so let's abstract
* the disabling of IRQ out of the locking in that case to save on a
* potential useless overhead.
*/
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
#define lock_kmap() spin_lock_irq(&kmap_lock)
#define unlock_kmap() spin_unlock_irq(&kmap_lock)
#define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
#define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
#else
#define lock_kmap() spin_lock(&kmap_lock)
#define unlock_kmap() spin_unlock(&kmap_lock)
#define lock_kmap_any(flags) \
do { spin_lock(&kmap_lock); (void)(flags); } while (0)
#define unlock_kmap_any(flags) \
do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
#endif
struct page *kmap_to_page(void *vaddr)
{
unsigned long addr = (unsigned long)vaddr;
if (addr >= PKMAP_ADDR(0) && addr <= PKMAP_ADDR(LAST_PKMAP)) {
int i = (addr - PKMAP_ADDR(0)) >> PAGE_SHIFT;
return pte_page(pkmap_page_table[i]);
}
return virt_to_page(addr);
}
static void flush_all_zero_pkmaps(void)
{
int i;
int need_flush = 0;
flush_cache_kmaps();
for (i = 0; i < LAST_PKMAP; i++) {
struct page *page;
/*
* zero means we don't have anything to do,
* >1 means that it is still in use. Only
* a count of 1 means that it is free but
* needs to be unmapped
*/
if (pkmap_count[i] != 1)
continue;
pkmap_count[i] = 0;
/* sanity check */
BUG_ON(pte_none(pkmap_page_table[i]));
/*
* Don't need an atomic fetch-and-clear op here;
* no-one has the page mapped, and cannot get at
* its virtual address (and hence PTE) without first
* getting the kmap_lock (which is held here).
* So no dangers, even with speculative execution.
*/
page = pte_page(pkmap_page_table[i]);
pte_clear(&init_mm, (unsigned long)page_address(page),
&pkmap_page_table[i]);
set_page_address(page, NULL);
need_flush = 1;
}
if (need_flush)
flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
}
/**
* kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
*/
void kmap_flush_unused(void)
{
lock_kmap();
flush_all_zero_pkmaps();
unlock_kmap();
}
static inline unsigned long map_new_virtual(struct page *page)
{
unsigned long vaddr;
int count;
start:
count = LAST_PKMAP;
/* Find an empty entry */
for (;;) {
last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
if (!last_pkmap_nr) {
flush_all_zero_pkmaps();
count = LAST_PKMAP;
}
if (!pkmap_count[last_pkmap_nr])
break; /* Found a usable entry */
if (--count)
continue;
/*
* Sleep for somebody else to unmap their entries
*/
{
DECLARE_WAITQUEUE(wait, current);
__set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&pkmap_map_wait, &wait);
unlock_kmap();
schedule();
remove_wait_queue(&pkmap_map_wait, &wait);
lock_kmap();
/* Somebody else might have mapped it while we slept */
if (page_address(page))
return (unsigned long)page_address(page);
/* Re-start */
goto start;
}
}
vaddr = PKMAP_ADDR(last_pkmap_nr);
set_pte_at(&init_mm, vaddr,
&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
pkmap_count[last_pkmap_nr] = 1;
set_page_address(page, (void *)vaddr);
return vaddr;
}
/**
* kmap_high - map a highmem page into memory
* @page: &struct page to map
*
* Returns the page's virtual memory address.
*
* We cannot call this from interrupts, as it may block.
*/
void *kmap_high(struct page *page)
{
unsigned long vaddr;
/*
* For highmem pages, we can't trust "virtual" until
* after we have the lock.
*/
lock_kmap();
vaddr = (unsigned long)page_address(page);
if (!vaddr)
vaddr = map_new_virtual(page);
pkmap_count[PKMAP_NR(vaddr)]++;
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
unlock_kmap();
return (void*) vaddr;
}
EXPORT_SYMBOL(kmap_high);
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
/**
* kmap_high_get - pin a highmem page into memory
* @page: &struct page to pin
*
* Returns the page's current virtual memory address, or NULL if no mapping
* exists. If and only if a non null address is returned then a
* matching call to kunmap_high() is necessary.
*
* This can be called from any context.
*/
void *kmap_high_get(struct page *page)
{
unsigned long vaddr, flags;
lock_kmap_any(flags);
vaddr = (unsigned long)page_address(page);
if (vaddr) {
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
pkmap_count[PKMAP_NR(vaddr)]++;
}
unlock_kmap_any(flags);
return (void*) vaddr;
}
#endif
/**
* kunmap_high - unmap a highmem page into memory
* @page: &struct page to unmap
*
* If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
* only from user context.
*/
void kunmap_high(struct page *page)
{
unsigned long vaddr;
unsigned long nr;
unsigned long flags;
int need_wakeup;
lock_kmap_any(flags);
vaddr = (unsigned long)page_address(page);
BUG_ON(!vaddr);
nr = PKMAP_NR(vaddr);
/*
* A count must never go down to zero
* without a TLB flush!
*/
need_wakeup = 0;
switch (--pkmap_count[nr]) {
case 0:
BUG();
case 1:
/*
* Avoid an unnecessary wake_up() function call.
* The common case is pkmap_count[] == 1, but
* no waiters.
* The tasks queued in the wait-queue are guarded
* by both the lock in the wait-queue-head and by
* the kmap_lock. As the kmap_lock is held here,
* no need for the wait-queue-head's lock. Simply
* test if the queue is empty.
*/
need_wakeup = waitqueue_active(&pkmap_map_wait);
}
unlock_kmap_any(flags);
/* do wake-up, if needed, race-free outside of the spin lock */
if (need_wakeup)
wake_up(&pkmap_map_wait);
}
EXPORT_SYMBOL(kunmap_high);
#endif
#if defined(HASHED_PAGE_VIRTUAL)
#define PA_HASH_ORDER 7
/*
* Describes one page->virtual association
*/
struct page_address_map {
struct page *page;
void *virtual;
struct list_head list;
};
/*
* page_address_map freelist, allocated from page_address_maps.
*/
static struct list_head page_address_pool; /* freelist */
static spinlock_t pool_lock; /* protects page_address_pool */
/*
* Hash table bucket
*/
static struct page_address_slot {
struct list_head lh; /* List of page_address_maps */
spinlock_t lock; /* Protect this bucket's list */
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
static struct page_address_slot *page_slot(const struct page *page)
{
return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
}
/**
* page_address - get the mapped virtual address of a page
* @page: &struct page to get the virtual address of
*
* Returns the page's virtual address.
*/
void *page_address(const struct page *page)
{
unsigned long flags;
void *ret;
struct page_address_slot *pas;
if (!PageHighMem(page))
return lowmem_page_address(page);
pas = page_slot(page);
ret = NULL;
spin_lock_irqsave(&pas->lock, flags);
if (!list_empty(&pas->lh)) {
struct page_address_map *pam;
list_for_each_entry(pam, &pas->lh, list) {
if (pam->page == page) {
ret = pam->virtual;
goto done;
}
}
}
done:
spin_unlock_irqrestore(&pas->lock, flags);
return ret;
}
EXPORT_SYMBOL(page_address);
/**
* set_page_address - set a page's virtual address
* @page: &struct page to set
* @virtual: virtual address to use
*/
void set_page_address(struct page *page, void *virtual)
{
unsigned long flags;
struct page_address_slot *pas;
struct page_address_map *pam;
BUG_ON(!PageHighMem(page));
pas = page_slot(page);
if (virtual) { /* Add */
BUG_ON(list_empty(&page_address_pool));
spin_lock_irqsave(&pool_lock, flags);
pam = list_entry(page_address_pool.next,
struct page_address_map, list);
list_del(&pam->list);
spin_unlock_irqrestore(&pool_lock, flags);
pam->page = page;
pam->virtual = virtual;
spin_lock_irqsave(&pas->lock, flags);
list_add_tail(&pam->list, &pas->lh);
spin_unlock_irqrestore(&pas->lock, flags);
} else { /* Remove */
spin_lock_irqsave(&pas->lock, flags);
list_for_each_entry(pam, &pas->lh, list) {
if (pam->page == page) {
list_del(&pam->list);
spin_unlock_irqrestore(&pas->lock, flags);
spin_lock_irqsave(&pool_lock, flags);
list_add_tail(&pam->list, &page_address_pool);
spin_unlock_irqrestore(&pool_lock, flags);
goto done;
}
}
spin_unlock_irqrestore(&pas->lock, flags);
}
done:
return;
}
static struct page_address_map page_address_maps[LAST_PKMAP];
void __init page_address_init(void)
{
int i;
INIT_LIST_HEAD(&page_address_pool);
for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
list_add(&page_address_maps[i].list, &page_address_pool);
for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
INIT_LIST_HEAD(&page_address_htable[i].lh);
spin_lock_init(&page_address_htable[i].lock);
}
spin_lock_init(&pool_lock);
}
#endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */