c67fe3752a
Jim Schutt reported a problem that pointed at compaction contending
heavily on locks. The workload is straight-forward and in his own words;
The systems in question have 24 SAS drives spread across 3 HBAs,
running 24 Ceph OSD instances, one per drive. FWIW these servers
are dual-socket Intel 5675 Xeons w/48 GB memory. I've got ~160
Ceph Linux clients doing dd simultaneously to a Ceph file system
backed by 12 of these servers.
Early in the test everything looks fine
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
31 15 0 287216 576 38606628 0 0 2 1158 2 14 1 3 95 0 0
27 15 0 225288 576 38583384 0 0 18 2222016 203357 134876 11 56 17 15 0
28 17 0 219256 576 38544736 0 0 11 2305932 203141 146296 11 49 23 17 0
6 18 0 215596 576 38552872 0 0 7 2363207 215264 166502 12 45 22 20 0
22 18 0 226984 576 38596404 0 0 3 2445741 223114 179527 12 43 23 22 0
and then it goes to pot
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
163 8 0 464308 576 36791368 0 0 11 22210 866 536 3 13 79 4 0
207 14 0 917752 576 36181928 0 0 712 1345376 134598 47367 7 90 1 2 0
123 12 0 685516 576 36296148 0 0 429 1386615 158494 60077 8 84 5 3 0
123 12 0 598572 576 36333728 0 0 1107 1233281 147542 62351 7 84 5 4 0
622 7 0 660768 576 36118264 0 0 557 1345548 151394 59353 7 85 4 3 0
223 11 0 283960 576 36463868 0 0 46 1107160 121846 33006 6 93 1 1 0
Note that system CPU usage is very high blocks being written out has
dropped by 42%. He analysed this with perf and found
perf record -g -a sleep 10
perf report --sort symbol --call-graph fractal,5
34.63% [k] _raw_spin_lock_irqsave
|
|--97.30%-- isolate_freepages
| compaction_alloc
| unmap_and_move
| migrate_pages
| compact_zone
| compact_zone_order
| try_to_compact_pages
| __alloc_pages_direct_compact
| __alloc_pages_slowpath
| __alloc_pages_nodemask
| alloc_pages_vma
| do_huge_pmd_anonymous_page
| handle_mm_fault
| do_page_fault
| page_fault
| |
| |--87.39%-- skb_copy_datagram_iovec
| | tcp_recvmsg
| | inet_recvmsg
| | sock_recvmsg
| | sys_recvfrom
| | system_call
| | __recv
| | |
| | --100.00%-- (nil)
| |
| --12.61%-- memcpy
--2.70%-- [...]
There was other data but primarily it is all showing that compaction is
contended heavily on the zone->lock and zone->lru_lock.
commit [b2eef8c0
: mm: compaction: minimise the time IRQs are disabled
while isolating pages for migration] noted that it was possible for
migration to hold the lru_lock for an excessive amount of time. Very
broadly speaking this patch expands the concept.
This patch introduces compact_checklock_irqsave() to check if a lock
is contended or the process needs to be scheduled. If either condition
is true then async compaction is aborted and the caller is informed.
The page allocator will fail a THP allocation if compaction failed due
to contention. This patch also introduces compact_trylock_irqsave()
which will acquire the lock only if it is not contended and the process
does not need to schedule.
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1022 lines
27 KiB
C
1022 lines
27 KiB
C
/*
|
|
* linux/mm/compaction.c
|
|
*
|
|
* Memory compaction for the reduction of external fragmentation. Note that
|
|
* this heavily depends upon page migration to do all the real heavy
|
|
* lifting
|
|
*
|
|
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
|
|
*/
|
|
#include <linux/swap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/sysfs.h>
|
|
#include "internal.h"
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/compaction.h>
|
|
|
|
static unsigned long release_freepages(struct list_head *freelist)
|
|
{
|
|
struct page *page, *next;
|
|
unsigned long count = 0;
|
|
|
|
list_for_each_entry_safe(page, next, freelist, lru) {
|
|
list_del(&page->lru);
|
|
__free_page(page);
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void map_pages(struct list_head *list)
|
|
{
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, list, lru) {
|
|
arch_alloc_page(page, 0);
|
|
kernel_map_pages(page, 1, 1);
|
|
}
|
|
}
|
|
|
|
static inline bool migrate_async_suitable(int migratetype)
|
|
{
|
|
return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
|
|
}
|
|
|
|
/*
|
|
* Compaction requires the taking of some coarse locks that are potentially
|
|
* very heavily contended. Check if the process needs to be scheduled or
|
|
* if the lock is contended. For async compaction, back out in the event
|
|
* if contention is severe. For sync compaction, schedule.
|
|
*
|
|
* Returns true if the lock is held.
|
|
* Returns false if the lock is released and compaction should abort
|
|
*/
|
|
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
|
|
bool locked, struct compact_control *cc)
|
|
{
|
|
if (need_resched() || spin_is_contended(lock)) {
|
|
if (locked) {
|
|
spin_unlock_irqrestore(lock, *flags);
|
|
locked = false;
|
|
}
|
|
|
|
/* async aborts if taking too long or contended */
|
|
if (!cc->sync) {
|
|
if (cc->contended)
|
|
*cc->contended = true;
|
|
return false;
|
|
}
|
|
|
|
cond_resched();
|
|
if (fatal_signal_pending(current))
|
|
return false;
|
|
}
|
|
|
|
if (!locked)
|
|
spin_lock_irqsave(lock, *flags);
|
|
return true;
|
|
}
|
|
|
|
static inline bool compact_trylock_irqsave(spinlock_t *lock,
|
|
unsigned long *flags, struct compact_control *cc)
|
|
{
|
|
return compact_checklock_irqsave(lock, flags, false, cc);
|
|
}
|
|
|
|
/*
|
|
* Isolate free pages onto a private freelist. Caller must hold zone->lock.
|
|
* If @strict is true, will abort returning 0 on any invalid PFNs or non-free
|
|
* pages inside of the pageblock (even though it may still end up isolating
|
|
* some pages).
|
|
*/
|
|
static unsigned long isolate_freepages_block(unsigned long blockpfn,
|
|
unsigned long end_pfn,
|
|
struct list_head *freelist,
|
|
bool strict)
|
|
{
|
|
int nr_scanned = 0, total_isolated = 0;
|
|
struct page *cursor;
|
|
|
|
cursor = pfn_to_page(blockpfn);
|
|
|
|
/* Isolate free pages. This assumes the block is valid */
|
|
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
|
|
int isolated, i;
|
|
struct page *page = cursor;
|
|
|
|
if (!pfn_valid_within(blockpfn)) {
|
|
if (strict)
|
|
return 0;
|
|
continue;
|
|
}
|
|
nr_scanned++;
|
|
|
|
if (!PageBuddy(page)) {
|
|
if (strict)
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
/* Found a free page, break it into order-0 pages */
|
|
isolated = split_free_page(page);
|
|
if (!isolated && strict)
|
|
return 0;
|
|
total_isolated += isolated;
|
|
for (i = 0; i < isolated; i++) {
|
|
list_add(&page->lru, freelist);
|
|
page++;
|
|
}
|
|
|
|
/* If a page was split, advance to the end of it */
|
|
if (isolated) {
|
|
blockpfn += isolated - 1;
|
|
cursor += isolated - 1;
|
|
}
|
|
}
|
|
|
|
trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
|
|
return total_isolated;
|
|
}
|
|
|
|
/**
|
|
* isolate_freepages_range() - isolate free pages.
|
|
* @start_pfn: The first PFN to start isolating.
|
|
* @end_pfn: The one-past-last PFN.
|
|
*
|
|
* Non-free pages, invalid PFNs, or zone boundaries within the
|
|
* [start_pfn, end_pfn) range are considered errors, cause function to
|
|
* undo its actions and return zero.
|
|
*
|
|
* Otherwise, function returns one-past-the-last PFN of isolated page
|
|
* (which may be greater then end_pfn if end fell in a middle of
|
|
* a free page).
|
|
*/
|
|
unsigned long
|
|
isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long isolated, pfn, block_end_pfn, flags;
|
|
struct zone *zone = NULL;
|
|
LIST_HEAD(freelist);
|
|
|
|
if (pfn_valid(start_pfn))
|
|
zone = page_zone(pfn_to_page(start_pfn));
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
|
|
if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
|
|
break;
|
|
|
|
/*
|
|
* On subsequent iterations ALIGN() is actually not needed,
|
|
* but we keep it that we not to complicate the code.
|
|
*/
|
|
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
block_end_pfn = min(block_end_pfn, end_pfn);
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
isolated = isolate_freepages_block(pfn, block_end_pfn,
|
|
&freelist, true);
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
/*
|
|
* In strict mode, isolate_freepages_block() returns 0 if
|
|
* there are any holes in the block (ie. invalid PFNs or
|
|
* non-free pages).
|
|
*/
|
|
if (!isolated)
|
|
break;
|
|
|
|
/*
|
|
* If we managed to isolate pages, it is always (1 << n) *
|
|
* pageblock_nr_pages for some non-negative n. (Max order
|
|
* page may span two pageblocks).
|
|
*/
|
|
}
|
|
|
|
/* split_free_page does not map the pages */
|
|
map_pages(&freelist);
|
|
|
|
if (pfn < end_pfn) {
|
|
/* Loop terminated early, cleanup. */
|
|
release_freepages(&freelist);
|
|
return 0;
|
|
}
|
|
|
|
/* We don't use freelists for anything. */
|
|
return pfn;
|
|
}
|
|
|
|
/* Update the number of anon and file isolated pages in the zone */
|
|
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
|
|
{
|
|
struct page *page;
|
|
unsigned int count[2] = { 0, };
|
|
|
|
list_for_each_entry(page, &cc->migratepages, lru)
|
|
count[!!page_is_file_cache(page)]++;
|
|
|
|
/* If locked we can use the interrupt unsafe versions */
|
|
if (locked) {
|
|
__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
|
|
__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
|
|
} else {
|
|
mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
|
|
mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
|
|
}
|
|
}
|
|
|
|
/* Similar to reclaim, but different enough that they don't share logic */
|
|
static bool too_many_isolated(struct zone *zone)
|
|
{
|
|
unsigned long active, inactive, isolated;
|
|
|
|
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
|
|
zone_page_state(zone, NR_INACTIVE_ANON);
|
|
active = zone_page_state(zone, NR_ACTIVE_FILE) +
|
|
zone_page_state(zone, NR_ACTIVE_ANON);
|
|
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
|
|
zone_page_state(zone, NR_ISOLATED_ANON);
|
|
|
|
return isolated > (inactive + active) / 2;
|
|
}
|
|
|
|
/**
|
|
* isolate_migratepages_range() - isolate all migrate-able pages in range.
|
|
* @zone: Zone pages are in.
|
|
* @cc: Compaction control structure.
|
|
* @low_pfn: The first PFN of the range.
|
|
* @end_pfn: The one-past-the-last PFN of the range.
|
|
*
|
|
* Isolate all pages that can be migrated from the range specified by
|
|
* [low_pfn, end_pfn). Returns zero if there is a fatal signal
|
|
* pending), otherwise PFN of the first page that was not scanned
|
|
* (which may be both less, equal to or more then end_pfn).
|
|
*
|
|
* Assumes that cc->migratepages is empty and cc->nr_migratepages is
|
|
* zero.
|
|
*
|
|
* Apart from cc->migratepages and cc->nr_migratetypes this function
|
|
* does not modify any cc's fields, in particular it does not modify
|
|
* (or read for that matter) cc->migrate_pfn.
|
|
*/
|
|
unsigned long
|
|
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
|
|
unsigned long low_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long last_pageblock_nr = 0, pageblock_nr;
|
|
unsigned long nr_scanned = 0, nr_isolated = 0;
|
|
struct list_head *migratelist = &cc->migratepages;
|
|
isolate_mode_t mode = 0;
|
|
struct lruvec *lruvec;
|
|
unsigned long flags;
|
|
bool locked;
|
|
|
|
/*
|
|
* Ensure that there are not too many pages isolated from the LRU
|
|
* list by either parallel reclaimers or compaction. If there are,
|
|
* delay for some time until fewer pages are isolated
|
|
*/
|
|
while (unlikely(too_many_isolated(zone))) {
|
|
/* async migration should just abort */
|
|
if (!cc->sync)
|
|
return 0;
|
|
|
|
congestion_wait(BLK_RW_ASYNC, HZ/10);
|
|
|
|
if (fatal_signal_pending(current))
|
|
return 0;
|
|
}
|
|
|
|
/* Time to isolate some pages for migration */
|
|
cond_resched();
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
locked = true;
|
|
for (; low_pfn < end_pfn; low_pfn++) {
|
|
struct page *page;
|
|
|
|
/* give a chance to irqs before checking need_resched() */
|
|
if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
locked = false;
|
|
}
|
|
|
|
/* Check if it is ok to still hold the lock */
|
|
locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
|
|
locked, cc);
|
|
if (!locked)
|
|
break;
|
|
|
|
/*
|
|
* migrate_pfn does not necessarily start aligned to a
|
|
* pageblock. Ensure that pfn_valid is called when moving
|
|
* into a new MAX_ORDER_NR_PAGES range in case of large
|
|
* memory holes within the zone
|
|
*/
|
|
if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
|
|
if (!pfn_valid(low_pfn)) {
|
|
low_pfn += MAX_ORDER_NR_PAGES - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!pfn_valid_within(low_pfn))
|
|
continue;
|
|
nr_scanned++;
|
|
|
|
/*
|
|
* Get the page and ensure the page is within the same zone.
|
|
* See the comment in isolate_freepages about overlapping
|
|
* nodes. It is deliberate that the new zone lock is not taken
|
|
* as memory compaction should not move pages between nodes.
|
|
*/
|
|
page = pfn_to_page(low_pfn);
|
|
if (page_zone(page) != zone)
|
|
continue;
|
|
|
|
/* Skip if free */
|
|
if (PageBuddy(page))
|
|
continue;
|
|
|
|
/*
|
|
* For async migration, also only scan in MOVABLE blocks. Async
|
|
* migration is optimistic to see if the minimum amount of work
|
|
* satisfies the allocation
|
|
*/
|
|
pageblock_nr = low_pfn >> pageblock_order;
|
|
if (!cc->sync && last_pageblock_nr != pageblock_nr &&
|
|
!migrate_async_suitable(get_pageblock_migratetype(page))) {
|
|
low_pfn += pageblock_nr_pages;
|
|
low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
|
|
last_pageblock_nr = pageblock_nr;
|
|
continue;
|
|
}
|
|
|
|
if (!PageLRU(page))
|
|
continue;
|
|
|
|
/*
|
|
* PageLRU is set, and lru_lock excludes isolation,
|
|
* splitting and collapsing (collapsing has already
|
|
* happened if PageLRU is set).
|
|
*/
|
|
if (PageTransHuge(page)) {
|
|
low_pfn += (1 << compound_order(page)) - 1;
|
|
continue;
|
|
}
|
|
|
|
if (!cc->sync)
|
|
mode |= ISOLATE_ASYNC_MIGRATE;
|
|
|
|
lruvec = mem_cgroup_page_lruvec(page, zone);
|
|
|
|
/* Try isolate the page */
|
|
if (__isolate_lru_page(page, mode) != 0)
|
|
continue;
|
|
|
|
VM_BUG_ON(PageTransCompound(page));
|
|
|
|
/* Successfully isolated */
|
|
del_page_from_lru_list(page, lruvec, page_lru(page));
|
|
list_add(&page->lru, migratelist);
|
|
cc->nr_migratepages++;
|
|
nr_isolated++;
|
|
|
|
/* Avoid isolating too much */
|
|
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
|
|
++low_pfn;
|
|
break;
|
|
}
|
|
}
|
|
|
|
acct_isolated(zone, locked, cc);
|
|
|
|
if (locked)
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
|
|
trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
|
|
|
|
return low_pfn;
|
|
}
|
|
|
|
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
/* Returns true if the page is within a block suitable for migration to */
|
|
static bool suitable_migration_target(struct page *page)
|
|
{
|
|
|
|
int migratetype = get_pageblock_migratetype(page);
|
|
|
|
/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
|
|
if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
|
|
return false;
|
|
|
|
/* If the page is a large free page, then allow migration */
|
|
if (PageBuddy(page) && page_order(page) >= pageblock_order)
|
|
return true;
|
|
|
|
/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
|
|
if (migrate_async_suitable(migratetype))
|
|
return true;
|
|
|
|
/* Otherwise skip the block */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns the start pfn of the last page block in a zone. This is the starting
|
|
* point for full compaction of a zone. Compaction searches for free pages from
|
|
* the end of each zone, while isolate_freepages_block scans forward inside each
|
|
* page block.
|
|
*/
|
|
static unsigned long start_free_pfn(struct zone *zone)
|
|
{
|
|
unsigned long free_pfn;
|
|
free_pfn = zone->zone_start_pfn + zone->spanned_pages;
|
|
free_pfn &= ~(pageblock_nr_pages-1);
|
|
return free_pfn;
|
|
}
|
|
|
|
/*
|
|
* Based on information in the current compact_control, find blocks
|
|
* suitable for isolating free pages from and then isolate them.
|
|
*/
|
|
static void isolate_freepages(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
struct page *page;
|
|
unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
|
|
unsigned long flags;
|
|
int nr_freepages = cc->nr_freepages;
|
|
struct list_head *freelist = &cc->freepages;
|
|
|
|
/*
|
|
* Initialise the free scanner. The starting point is where we last
|
|
* scanned from (or the end of the zone if starting). The low point
|
|
* is the end of the pageblock the migration scanner is using.
|
|
*/
|
|
pfn = cc->free_pfn;
|
|
low_pfn = cc->migrate_pfn + pageblock_nr_pages;
|
|
|
|
/*
|
|
* Take care that if the migration scanner is at the end of the zone
|
|
* that the free scanner does not accidentally move to the next zone
|
|
* in the next isolation cycle.
|
|
*/
|
|
high_pfn = min(low_pfn, pfn);
|
|
|
|
zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
|
|
|
|
/*
|
|
* Isolate free pages until enough are available to migrate the
|
|
* pages on cc->migratepages. We stop searching if the migrate
|
|
* and free page scanners meet or enough free pages are isolated.
|
|
*/
|
|
for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
|
|
pfn -= pageblock_nr_pages) {
|
|
unsigned long isolated;
|
|
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
/*
|
|
* Check for overlapping nodes/zones. It's possible on some
|
|
* configurations to have a setup like
|
|
* node0 node1 node0
|
|
* i.e. it's possible that all pages within a zones range of
|
|
* pages do not belong to a single zone.
|
|
*/
|
|
page = pfn_to_page(pfn);
|
|
if (page_zone(page) != zone)
|
|
continue;
|
|
|
|
/* Check the block is suitable for migration */
|
|
if (!suitable_migration_target(page))
|
|
continue;
|
|
|
|
/*
|
|
* Found a block suitable for isolating free pages from. Now
|
|
* we disabled interrupts, double check things are ok and
|
|
* isolate the pages. This is to minimise the time IRQs
|
|
* are disabled
|
|
*/
|
|
isolated = 0;
|
|
|
|
/*
|
|
* The zone lock must be held to isolate freepages. This
|
|
* unfortunately this is a very coarse lock and can be
|
|
* heavily contended if there are parallel allocations
|
|
* or parallel compactions. For async compaction do not
|
|
* spin on the lock
|
|
*/
|
|
if (!compact_trylock_irqsave(&zone->lock, &flags, cc))
|
|
break;
|
|
if (suitable_migration_target(page)) {
|
|
end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
|
|
isolated = isolate_freepages_block(pfn, end_pfn,
|
|
freelist, false);
|
|
nr_freepages += isolated;
|
|
}
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
/*
|
|
* Record the highest PFN we isolated pages from. When next
|
|
* looking for free pages, the search will restart here as
|
|
* page migration may have returned some pages to the allocator
|
|
*/
|
|
if (isolated) {
|
|
high_pfn = max(high_pfn, pfn);
|
|
|
|
/*
|
|
* If the free scanner has wrapped, update
|
|
* compact_cached_free_pfn to point to the highest
|
|
* pageblock with free pages. This reduces excessive
|
|
* scanning of full pageblocks near the end of the
|
|
* zone
|
|
*/
|
|
if (cc->order > 0 && cc->wrapped)
|
|
zone->compact_cached_free_pfn = high_pfn;
|
|
}
|
|
}
|
|
|
|
/* split_free_page does not map the pages */
|
|
map_pages(freelist);
|
|
|
|
cc->free_pfn = high_pfn;
|
|
cc->nr_freepages = nr_freepages;
|
|
|
|
/* If compact_cached_free_pfn is reset then set it now */
|
|
if (cc->order > 0 && !cc->wrapped &&
|
|
zone->compact_cached_free_pfn == start_free_pfn(zone))
|
|
zone->compact_cached_free_pfn = high_pfn;
|
|
}
|
|
|
|
/*
|
|
* This is a migrate-callback that "allocates" freepages by taking pages
|
|
* from the isolated freelists in the block we are migrating to.
|
|
*/
|
|
static struct page *compaction_alloc(struct page *migratepage,
|
|
unsigned long data,
|
|
int **result)
|
|
{
|
|
struct compact_control *cc = (struct compact_control *)data;
|
|
struct page *freepage;
|
|
|
|
/* Isolate free pages if necessary */
|
|
if (list_empty(&cc->freepages)) {
|
|
isolate_freepages(cc->zone, cc);
|
|
|
|
if (list_empty(&cc->freepages))
|
|
return NULL;
|
|
}
|
|
|
|
freepage = list_entry(cc->freepages.next, struct page, lru);
|
|
list_del(&freepage->lru);
|
|
cc->nr_freepages--;
|
|
|
|
return freepage;
|
|
}
|
|
|
|
/*
|
|
* We cannot control nr_migratepages and nr_freepages fully when migration is
|
|
* running as migrate_pages() has no knowledge of compact_control. When
|
|
* migration is complete, we count the number of pages on the lists by hand.
|
|
*/
|
|
static void update_nr_listpages(struct compact_control *cc)
|
|
{
|
|
int nr_migratepages = 0;
|
|
int nr_freepages = 0;
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, &cc->migratepages, lru)
|
|
nr_migratepages++;
|
|
list_for_each_entry(page, &cc->freepages, lru)
|
|
nr_freepages++;
|
|
|
|
cc->nr_migratepages = nr_migratepages;
|
|
cc->nr_freepages = nr_freepages;
|
|
}
|
|
|
|
/* possible outcome of isolate_migratepages */
|
|
typedef enum {
|
|
ISOLATE_ABORT, /* Abort compaction now */
|
|
ISOLATE_NONE, /* No pages isolated, continue scanning */
|
|
ISOLATE_SUCCESS, /* Pages isolated, migrate */
|
|
} isolate_migrate_t;
|
|
|
|
/*
|
|
* Isolate all pages that can be migrated from the block pointed to by
|
|
* the migrate scanner within compact_control.
|
|
*/
|
|
static isolate_migrate_t isolate_migratepages(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
unsigned long low_pfn, end_pfn;
|
|
|
|
/* Do not scan outside zone boundaries */
|
|
low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
|
|
|
|
/* Only scan within a pageblock boundary */
|
|
end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
|
|
|
|
/* Do not cross the free scanner or scan within a memory hole */
|
|
if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
|
|
cc->migrate_pfn = end_pfn;
|
|
return ISOLATE_NONE;
|
|
}
|
|
|
|
/* Perform the isolation */
|
|
low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
|
|
if (!low_pfn)
|
|
return ISOLATE_ABORT;
|
|
|
|
cc->migrate_pfn = low_pfn;
|
|
|
|
return ISOLATE_SUCCESS;
|
|
}
|
|
|
|
static int compact_finished(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
unsigned int order;
|
|
unsigned long watermark;
|
|
|
|
if (fatal_signal_pending(current))
|
|
return COMPACT_PARTIAL;
|
|
|
|
/*
|
|
* A full (order == -1) compaction run starts at the beginning and
|
|
* end of a zone; it completes when the migrate and free scanner meet.
|
|
* A partial (order > 0) compaction can start with the free scanner
|
|
* at a random point in the zone, and may have to restart.
|
|
*/
|
|
if (cc->free_pfn <= cc->migrate_pfn) {
|
|
if (cc->order > 0 && !cc->wrapped) {
|
|
/* We started partway through; restart at the end. */
|
|
unsigned long free_pfn = start_free_pfn(zone);
|
|
zone->compact_cached_free_pfn = free_pfn;
|
|
cc->free_pfn = free_pfn;
|
|
cc->wrapped = 1;
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
return COMPACT_COMPLETE;
|
|
}
|
|
|
|
/* We wrapped around and ended up where we started. */
|
|
if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
|
|
return COMPACT_COMPLETE;
|
|
|
|
/*
|
|
* order == -1 is expected when compacting via
|
|
* /proc/sys/vm/compact_memory
|
|
*/
|
|
if (cc->order == -1)
|
|
return COMPACT_CONTINUE;
|
|
|
|
/* Compaction run is not finished if the watermark is not met */
|
|
watermark = low_wmark_pages(zone);
|
|
watermark += (1 << cc->order);
|
|
|
|
if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
|
|
return COMPACT_CONTINUE;
|
|
|
|
/* Direct compactor: Is a suitable page free? */
|
|
for (order = cc->order; order < MAX_ORDER; order++) {
|
|
/* Job done if page is free of the right migratetype */
|
|
if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
|
|
return COMPACT_PARTIAL;
|
|
|
|
/* Job done if allocation would set block type */
|
|
if (order >= pageblock_order && zone->free_area[order].nr_free)
|
|
return COMPACT_PARTIAL;
|
|
}
|
|
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* compaction_suitable: Is this suitable to run compaction on this zone now?
|
|
* Returns
|
|
* COMPACT_SKIPPED - If there are too few free pages for compaction
|
|
* COMPACT_PARTIAL - If the allocation would succeed without compaction
|
|
* COMPACT_CONTINUE - If compaction should run now
|
|
*/
|
|
unsigned long compaction_suitable(struct zone *zone, int order)
|
|
{
|
|
int fragindex;
|
|
unsigned long watermark;
|
|
|
|
/*
|
|
* order == -1 is expected when compacting via
|
|
* /proc/sys/vm/compact_memory
|
|
*/
|
|
if (order == -1)
|
|
return COMPACT_CONTINUE;
|
|
|
|
/*
|
|
* Watermarks for order-0 must be met for compaction. Note the 2UL.
|
|
* This is because during migration, copies of pages need to be
|
|
* allocated and for a short time, the footprint is higher
|
|
*/
|
|
watermark = low_wmark_pages(zone) + (2UL << order);
|
|
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
|
|
return COMPACT_SKIPPED;
|
|
|
|
/*
|
|
* fragmentation index determines if allocation failures are due to
|
|
* low memory or external fragmentation
|
|
*
|
|
* index of -1000 implies allocations might succeed depending on
|
|
* watermarks
|
|
* index towards 0 implies failure is due to lack of memory
|
|
* index towards 1000 implies failure is due to fragmentation
|
|
*
|
|
* Only compact if a failure would be due to fragmentation.
|
|
*/
|
|
fragindex = fragmentation_index(zone, order);
|
|
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
|
|
return COMPACT_SKIPPED;
|
|
|
|
if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
|
|
0, 0))
|
|
return COMPACT_PARTIAL;
|
|
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
|
|
static int compact_zone(struct zone *zone, struct compact_control *cc)
|
|
{
|
|
int ret;
|
|
|
|
ret = compaction_suitable(zone, cc->order);
|
|
switch (ret) {
|
|
case COMPACT_PARTIAL:
|
|
case COMPACT_SKIPPED:
|
|
/* Compaction is likely to fail */
|
|
return ret;
|
|
case COMPACT_CONTINUE:
|
|
/* Fall through to compaction */
|
|
;
|
|
}
|
|
|
|
/* Setup to move all movable pages to the end of the zone */
|
|
cc->migrate_pfn = zone->zone_start_pfn;
|
|
|
|
if (cc->order > 0) {
|
|
/* Incremental compaction. Start where the last one stopped. */
|
|
cc->free_pfn = zone->compact_cached_free_pfn;
|
|
cc->start_free_pfn = cc->free_pfn;
|
|
} else {
|
|
/* Order == -1 starts at the end of the zone. */
|
|
cc->free_pfn = start_free_pfn(zone);
|
|
}
|
|
|
|
migrate_prep_local();
|
|
|
|
while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
|
|
unsigned long nr_migrate, nr_remaining;
|
|
int err;
|
|
|
|
switch (isolate_migratepages(zone, cc)) {
|
|
case ISOLATE_ABORT:
|
|
ret = COMPACT_PARTIAL;
|
|
goto out;
|
|
case ISOLATE_NONE:
|
|
continue;
|
|
case ISOLATE_SUCCESS:
|
|
;
|
|
}
|
|
|
|
nr_migrate = cc->nr_migratepages;
|
|
err = migrate_pages(&cc->migratepages, compaction_alloc,
|
|
(unsigned long)cc, false,
|
|
cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
|
|
update_nr_listpages(cc);
|
|
nr_remaining = cc->nr_migratepages;
|
|
|
|
count_vm_event(COMPACTBLOCKS);
|
|
count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
|
|
if (nr_remaining)
|
|
count_vm_events(COMPACTPAGEFAILED, nr_remaining);
|
|
trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
|
|
nr_remaining);
|
|
|
|
/* Release LRU pages not migrated */
|
|
if (err) {
|
|
putback_lru_pages(&cc->migratepages);
|
|
cc->nr_migratepages = 0;
|
|
if (err == -ENOMEM) {
|
|
ret = COMPACT_PARTIAL;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* Release free pages and check accounting */
|
|
cc->nr_freepages -= release_freepages(&cc->freepages);
|
|
VM_BUG_ON(cc->nr_freepages != 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long compact_zone_order(struct zone *zone,
|
|
int order, gfp_t gfp_mask,
|
|
bool sync, bool *contended)
|
|
{
|
|
struct compact_control cc = {
|
|
.nr_freepages = 0,
|
|
.nr_migratepages = 0,
|
|
.order = order,
|
|
.migratetype = allocflags_to_migratetype(gfp_mask),
|
|
.zone = zone,
|
|
.sync = sync,
|
|
.contended = contended,
|
|
};
|
|
INIT_LIST_HEAD(&cc.freepages);
|
|
INIT_LIST_HEAD(&cc.migratepages);
|
|
|
|
return compact_zone(zone, &cc);
|
|
}
|
|
|
|
int sysctl_extfrag_threshold = 500;
|
|
|
|
/**
|
|
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
|
|
* @zonelist: The zonelist used for the current allocation
|
|
* @order: The order of the current allocation
|
|
* @gfp_mask: The GFP mask of the current allocation
|
|
* @nodemask: The allowed nodes to allocate from
|
|
* @sync: Whether migration is synchronous or not
|
|
*
|
|
* This is the main entry point for direct page compaction.
|
|
*/
|
|
unsigned long try_to_compact_pages(struct zonelist *zonelist,
|
|
int order, gfp_t gfp_mask, nodemask_t *nodemask,
|
|
bool sync, bool *contended)
|
|
{
|
|
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
|
|
int may_enter_fs = gfp_mask & __GFP_FS;
|
|
int may_perform_io = gfp_mask & __GFP_IO;
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
int rc = COMPACT_SKIPPED;
|
|
|
|
/*
|
|
* Check whether it is worth even starting compaction. The order check is
|
|
* made because an assumption is made that the page allocator can satisfy
|
|
* the "cheaper" orders without taking special steps
|
|
*/
|
|
if (!order || !may_enter_fs || !may_perform_io)
|
|
return rc;
|
|
|
|
count_vm_event(COMPACTSTALL);
|
|
|
|
/* Compact each zone in the list */
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
|
|
nodemask) {
|
|
int status;
|
|
|
|
status = compact_zone_order(zone, order, gfp_mask, sync,
|
|
contended);
|
|
rc = max(status, rc);
|
|
|
|
/* If a normal allocation would succeed, stop compacting */
|
|
if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Compact all zones within a node */
|
|
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
|
|
{
|
|
int zoneid;
|
|
struct zone *zone;
|
|
|
|
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
|
|
|
|
zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
cc->nr_freepages = 0;
|
|
cc->nr_migratepages = 0;
|
|
cc->zone = zone;
|
|
INIT_LIST_HEAD(&cc->freepages);
|
|
INIT_LIST_HEAD(&cc->migratepages);
|
|
|
|
if (cc->order == -1 || !compaction_deferred(zone, cc->order))
|
|
compact_zone(zone, cc);
|
|
|
|
if (cc->order > 0) {
|
|
int ok = zone_watermark_ok(zone, cc->order,
|
|
low_wmark_pages(zone), 0, 0);
|
|
if (ok && cc->order >= zone->compact_order_failed)
|
|
zone->compact_order_failed = cc->order + 1;
|
|
/* Currently async compaction is never deferred. */
|
|
else if (!ok && cc->sync)
|
|
defer_compaction(zone, cc->order);
|
|
}
|
|
|
|
VM_BUG_ON(!list_empty(&cc->freepages));
|
|
VM_BUG_ON(!list_empty(&cc->migratepages));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int compact_pgdat(pg_data_t *pgdat, int order)
|
|
{
|
|
struct compact_control cc = {
|
|
.order = order,
|
|
.sync = false,
|
|
};
|
|
|
|
return __compact_pgdat(pgdat, &cc);
|
|
}
|
|
|
|
static int compact_node(int nid)
|
|
{
|
|
struct compact_control cc = {
|
|
.order = -1,
|
|
.sync = true,
|
|
};
|
|
|
|
return __compact_pgdat(NODE_DATA(nid), &cc);
|
|
}
|
|
|
|
/* Compact all nodes in the system */
|
|
static int compact_nodes(void)
|
|
{
|
|
int nid;
|
|
|
|
/* Flush pending updates to the LRU lists */
|
|
lru_add_drain_all();
|
|
|
|
for_each_online_node(nid)
|
|
compact_node(nid);
|
|
|
|
return COMPACT_COMPLETE;
|
|
}
|
|
|
|
/* The written value is actually unused, all memory is compacted */
|
|
int sysctl_compact_memory;
|
|
|
|
/* This is the entry point for compacting all nodes via /proc/sys/vm */
|
|
int sysctl_compaction_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
if (write)
|
|
return compact_nodes();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sysctl_extfrag_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
|
|
ssize_t sysfs_compact_node(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int nid = dev->id;
|
|
|
|
if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
|
|
/* Flush pending updates to the LRU lists */
|
|
lru_add_drain_all();
|
|
|
|
compact_node(nid);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
|
|
|
|
int compaction_register_node(struct node *node)
|
|
{
|
|
return device_create_file(&node->dev, &dev_attr_compact);
|
|
}
|
|
|
|
void compaction_unregister_node(struct node *node)
|
|
{
|
|
return device_remove_file(&node->dev, &dev_attr_compact);
|
|
}
|
|
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
|
|
|
|
#endif /* CONFIG_COMPACTION */
|