kernel-fxtec-pro1x/fs/crypto/inline_crypt.c
Satya Tangirala d48452b710 ANDROID: fscrypt: fix DUN contiguity with inline encryption + IV_INO_LBLK_32 policies
IV_INO_LBLK_32 policies introduced the possibility that logically
contiguous data blocks might not have contiguous DUNs (because of
potential DUN wraparound). As such, whenever a page is merged into a
bio, fscrypt_mergeable_bio() must be called to check DUN contiguity.

Further, fscrypt inline encryption does not handle the case when the DUN
wraps around within a page (which can happen when the data unit size !=
PAGE_SIZE). For now, we handle that by disallowing inline encryption
with IV_INO_LBLK_32 policies when the data unit size != PAGE_SIZE (and
dropping the now redundant check for this in fscrypt_dio_supported()).

Bug: 144046242
Change-Id: I9cb414fcc284b197b9d3d1b9643029c6b875df5a
Signed-off-by: Satya Tangirala <satyat@google.com>
2020-07-14 15:48:04 +00:00

517 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Inline encryption support for fscrypt
*
* Copyright 2019 Google LLC
*/
/*
* With "inline encryption", the block layer handles the decryption/encryption
* as part of the bio, instead of the filesystem doing the crypto itself via
* crypto API. See Documentation/block/inline-encryption.rst. fscrypt still
* provides the key and IV to use.
*/
#include <linux/blk-crypto.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/keyslot-manager.h>
#include <linux/uio.h>
#include "fscrypt_private.h"
struct fscrypt_blk_crypto_key {
struct blk_crypto_key base;
int num_devs;
struct request_queue *devs[];
};
static int fscrypt_get_num_devices(struct super_block *sb)
{
if (sb->s_cop->get_num_devices)
return sb->s_cop->get_num_devices(sb);
return 1;
}
static void fscrypt_get_devices(struct super_block *sb, int num_devs,
struct request_queue **devs)
{
if (num_devs == 1)
devs[0] = bdev_get_queue(sb->s_bdev);
else
sb->s_cop->get_devices(sb, devs);
}
static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
{
struct super_block *sb = ci->ci_inode->i_sb;
unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
int ino_bits = 64, lblk_bits = 64;
if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
return offsetofend(union fscrypt_iv, nonce);
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
return sizeof(__le64);
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
return sizeof(__le32);
/* Default case: IVs are just the file logical block number */
if (sb->s_cop->get_ino_and_lblk_bits)
sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
return DIV_ROUND_UP(lblk_bits, 8);
}
/* Enable inline encryption for this file if supported. */
int fscrypt_select_encryption_impl(struct fscrypt_info *ci,
bool is_hw_wrapped_key)
{
const struct inode *inode = ci->ci_inode;
struct super_block *sb = inode->i_sb;
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
unsigned int dun_bytes;
struct request_queue **devs;
int num_devs;
int i;
/* The file must need contents encryption, not filenames encryption */
if (!S_ISREG(inode->i_mode))
return 0;
/* blk-crypto must implement the needed encryption algorithm */
if (crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
return 0;
/* The filesystem must be mounted with -o inlinecrypt */
if (!sb->s_cop->inline_crypt_enabled ||
!sb->s_cop->inline_crypt_enabled(sb))
return 0;
/*
* When a page contains multiple logically contiguous filesystem blocks,
* some filesystem code only calls fscrypt_mergeable_bio() for the first
* block in the page. This is fine for most of fscrypt's IV generation
* strategies, where contiguous blocks imply contiguous IVs. But it
* doesn't work with IV_INO_LBLK_32. For now, simply exclude
* IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption.
*/
if ((fscrypt_policy_flags(&ci->ci_policy) &
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
sb->s_blocksize != PAGE_SIZE)
return 0;
/*
* The needed encryption settings must be supported either by
* blk-crypto-fallback, or by hardware on all the filesystem's devices.
*/
if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
!is_hw_wrapped_key) {
ci->ci_inlinecrypt = true;
return 0;
}
num_devs = fscrypt_get_num_devices(sb);
devs = kmalloc_array(num_devs, sizeof(*devs), GFP_NOFS);
if (!devs)
return -ENOMEM;
fscrypt_get_devices(sb, num_devs, devs);
dun_bytes = fscrypt_get_dun_bytes(ci);
for (i = 0; i < num_devs; i++) {
if (!keyslot_manager_crypto_mode_supported(devs[i]->ksm,
crypto_mode,
dun_bytes,
sb->s_blocksize,
is_hw_wrapped_key))
goto out_free_devs;
}
ci->ci_inlinecrypt = true;
out_free_devs:
kfree(devs);
return 0;
}
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key,
unsigned int raw_key_size,
bool is_hw_wrapped,
const struct fscrypt_info *ci)
{
const struct inode *inode = ci->ci_inode;
struct super_block *sb = inode->i_sb;
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
unsigned int dun_bytes;
int num_devs;
int queue_refs = 0;
struct fscrypt_blk_crypto_key *blk_key;
int err;
int i;
num_devs = fscrypt_get_num_devices(sb);
if (WARN_ON(num_devs < 1))
return -EINVAL;
blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_NOFS);
if (!blk_key)
return -ENOMEM;
blk_key->num_devs = num_devs;
fscrypt_get_devices(sb, num_devs, blk_key->devs);
dun_bytes = fscrypt_get_dun_bytes(ci);
BUILD_BUG_ON(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE >
BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE);
err = blk_crypto_init_key(&blk_key->base, raw_key, raw_key_size,
is_hw_wrapped, crypto_mode, dun_bytes,
sb->s_blocksize);
if (err) {
fscrypt_err(inode, "error %d initializing blk-crypto key", err);
goto fail;
}
/*
* We have to start using blk-crypto on all the filesystem's devices.
* We also have to save all the request_queue's for later so that the
* key can be evicted from them. This is needed because some keys
* aren't destroyed until after the filesystem was already unmounted
* (namely, the per-mode keys in struct fscrypt_master_key).
*/
for (i = 0; i < num_devs; i++) {
if (!blk_get_queue(blk_key->devs[i])) {
fscrypt_err(inode, "couldn't get request_queue");
err = -EAGAIN;
goto fail;
}
queue_refs++;
err = blk_crypto_start_using_mode(crypto_mode, dun_bytes,
sb->s_blocksize,
is_hw_wrapped,
blk_key->devs[i]);
if (err) {
fscrypt_err(inode,
"error %d starting to use blk-crypto", err);
goto fail;
}
}
/*
* Pairs with READ_ONCE() in fscrypt_is_key_prepared(). (Only matters
* for the per-mode keys, which are shared by multiple inodes.)
*/
smp_store_release(&prep_key->blk_key, blk_key);
return 0;
fail:
for (i = 0; i < queue_refs; i++)
blk_put_queue(blk_key->devs[i]);
kzfree(blk_key);
return err;
}
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
{
struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
int i;
if (blk_key) {
for (i = 0; i < blk_key->num_devs; i++) {
blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
blk_put_queue(blk_key->devs[i]);
}
kzfree(blk_key);
}
}
int fscrypt_derive_raw_secret(struct super_block *sb,
const u8 *wrapped_key,
unsigned int wrapped_key_size,
u8 *raw_secret, unsigned int raw_secret_size)
{
struct request_queue *q;
q = sb->s_bdev->bd_queue;
if (!q->ksm)
return -EOPNOTSUPP;
return keyslot_manager_derive_raw_secret(q->ksm,
wrapped_key, wrapped_key_size,
raw_secret, raw_secret_size);
}
/**
* fscrypt_inode_uses_inline_crypto - test whether an inode uses inline
* encryption
* @inode: an inode
*
* Return: true if the inode requires file contents encryption and if the
* encryption should be done in the block layer via blk-crypto rather
* than in the filesystem layer.
*/
bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) &&
inode->i_crypt_info->ci_inlinecrypt;
}
EXPORT_SYMBOL_GPL(fscrypt_inode_uses_inline_crypto);
/**
* fscrypt_inode_uses_fs_layer_crypto - test whether an inode uses fs-layer
* encryption
* @inode: an inode
*
* Return: true if the inode requires file contents encryption and if the
* encryption should be done in the filesystem layer rather than in the
* block layer via blk-crypto.
*/
bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
{
return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) &&
!inode->i_crypt_info->ci_inlinecrypt;
}
EXPORT_SYMBOL_GPL(fscrypt_inode_uses_fs_layer_crypto);
static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
{
union fscrypt_iv iv;
int i;
fscrypt_generate_iv(&iv, lblk_num, ci);
BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
dun[i] = le64_to_cpu(iv.dun[i]);
}
/**
* fscrypt_set_bio_crypt_ctx - prepare a file contents bio for inline encryption
* @bio: a bio which will eventually be submitted to the file
* @inode: the file's inode
* @first_lblk: the first file logical block number in the I/O
* @gfp_mask: memory allocation flags - these must be a waiting mask so that
* bio_crypt_set_ctx can't fail.
*
* If the contents of the file should be encrypted (or decrypted) with inline
* encryption, then assign the appropriate encryption context to the bio.
*
* Normally the bio should be newly allocated (i.e. no pages added yet), as
* otherwise fscrypt_mergeable_bio() won't work as intended.
*
* The encryption context will be freed automatically when the bio is freed.
*
* This function also handles setting bi_skip_dm_default_key when needed.
*/
void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
u64 first_lblk, gfp_t gfp_mask)
{
const struct fscrypt_info *ci = inode->i_crypt_info;
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
if (fscrypt_inode_should_skip_dm_default_key(inode))
bio_set_skip_dm_default_key(bio);
if (!fscrypt_inode_uses_inline_crypto(inode))
return;
fscrypt_generate_dun(ci, first_lblk, dun);
bio_crypt_set_ctx(bio, &ci->ci_key.blk_key->base, dun, gfp_mask);
}
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
/* Extract the inode and logical block number from a buffer_head. */
static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
const struct inode **inode_ret,
u64 *lblk_num_ret)
{
struct page *page = bh->b_page;
const struct address_space *mapping;
const struct inode *inode;
/*
* The ext4 journal (jbd2) can submit a buffer_head it directly created
* for a non-pagecache page. fscrypt doesn't care about these.
*/
mapping = page_mapping(page);
if (!mapping)
return false;
inode = mapping->host;
*inode_ret = inode;
*lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
(bh_offset(bh) >> inode->i_blkbits);
return true;
}
/**
* fscrypt_set_bio_crypt_ctx_bh - prepare a file contents bio for inline
* encryption
* @bio: a bio which will eventually be submitted to the file
* @first_bh: the first buffer_head for which I/O will be submitted
* @gfp_mask: memory allocation flags
*
* Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
* of an inode and block number directly.
*/
void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
const struct buffer_head *first_bh,
gfp_t gfp_mask)
{
const struct inode *inode;
u64 first_lblk;
if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
}
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
/**
* fscrypt_mergeable_bio - test whether data can be added to a bio
* @bio: the bio being built up
* @inode: the inode for the next part of the I/O
* @next_lblk: the next file logical block number in the I/O
*
* When building a bio which may contain data which should undergo inline
* encryption (or decryption) via fscrypt, filesystems should call this function
* to ensure that the resulting bio contains only logically contiguous data.
* This will return false if the next part of the I/O cannot be merged with the
* bio because either the encryption key would be different or the encryption
* data unit numbers would be discontiguous.
*
* fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
*
* This function also returns false if the next part of the I/O would need to
* have a different value for the bi_skip_dm_default_key flag.
*
* Return: true iff the I/O is mergeable
*/
bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
u64 next_lblk)
{
const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
return false;
if (bio_should_skip_dm_default_key(bio) !=
fscrypt_inode_should_skip_dm_default_key(inode))
return false;
if (!bc)
return true;
/*
* Comparing the key pointers is good enough, as all I/O for each key
* uses the same pointer. I.e., there's currently no need to support
* merging requests where the keys are the same but the pointers differ.
*/
if (bc->bc_key != &inode->i_crypt_info->ci_key.blk_key->base)
return false;
fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
}
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
/**
* fscrypt_mergeable_bio_bh - test whether data can be added to a bio
* @bio: the bio being built up
* @next_bh: the next buffer_head for which I/O will be submitted
*
* Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
* an inode and block number directly.
*
* Return: true iff the I/O is mergeable
*/
bool fscrypt_mergeable_bio_bh(struct bio *bio,
const struct buffer_head *next_bh)
{
const struct inode *inode;
u64 next_lblk;
if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
return !bio->bi_crypt_context &&
!bio_should_skip_dm_default_key(bio);
return fscrypt_mergeable_bio(bio, inode, next_lblk);
}
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);
/**
* fscrypt_dio_supported() - check whether a direct I/O request is unsupported
* due to encryption constraints
* @iocb: the file and position the I/O is targeting
* @iter: the I/O data segment(s)
*
* Return: true if direct I/O is supported
*/
bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter)
{
const struct inode *inode = file_inode(iocb->ki_filp);
const unsigned int blocksize = i_blocksize(inode);
/* If the file is unencrypted, no veto from us. */
if (!fscrypt_needs_contents_encryption(inode))
return true;
/* We only support direct I/O with inline crypto, not fs-layer crypto */
if (!fscrypt_inode_uses_inline_crypto(inode))
return false;
/*
* Since the granularity of encryption is filesystem blocks, the I/O
* must be block aligned -- not just disk sector aligned.
*/
if (!IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), blocksize))
return false;
return true;
}
EXPORT_SYMBOL_GPL(fscrypt_dio_supported);
/**
* fscrypt_limit_dio_pages() - limit I/O pages to avoid discontiguous DUNs
* @inode: the file on which I/O is being done
* @pos: the file position (in bytes) at which the I/O is being done
* @nr_pages: the number of pages we want to submit starting at @pos
*
* For direct I/O: limit the number of pages that will be submitted in the bio
* targeting @pos, in order to avoid crossing a data unit number (DUN)
* discontinuity. This is only needed for certain IV generation methods.
*
* Return: the actual number of pages that can be submitted
*/
int fscrypt_limit_dio_pages(const struct inode *inode, loff_t pos, int nr_pages)
{
const struct fscrypt_info *ci = inode->i_crypt_info;
u32 dun;
if (!fscrypt_inode_uses_inline_crypto(inode))
return nr_pages;
if (nr_pages <= 1)
return nr_pages;
if (!(fscrypt_policy_flags(&ci->ci_policy) &
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))
return nr_pages;
/*
* fscrypt_select_encryption_impl() ensures that block_size == PAGE_SIZE
* when using FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32.
*/
if (WARN_ON_ONCE(i_blocksize(inode) != PAGE_SIZE))
return 1;
/* With IV_INO_LBLK_32, the DUN can wrap around from U32_MAX to 0. */
dun = ci->ci_hashed_ino + (pos >> inode->i_blkbits);
return min_t(u64, nr_pages, (u64)U32_MAX + 1 - dun);
}