kernel-fxtec-pro1x/sound/oss/au1550_ac97.c
Jonathan Corbet db1dd4d376 Use f_lock to protect f_flags
Traditionally, changes to struct file->f_flags have been done under BKL
protection, or with no protection at all.  This patch causes all f_flags
changes after file open/creation time to be done under protection of
f_lock.  This allows the removal of some BKL usage and fixes a number of
longstanding (if microscopic) races.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2009-03-16 08:32:27 -06:00

2131 lines
50 KiB
C

/*
* au1550_ac97.c -- Sound driver for Alchemy Au1550 MIPS Internet Edge
* Processor.
*
* Copyright 2004 Embedded Edge, LLC
* dan@embeddededge.com
*
* Mostly copied from the au1000.c driver and some from the
* PowerMac dbdma driver.
* We assume the processor can do memory coherent DMA.
*
* Ported to 2.6 by Matt Porter <mporter@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/ac97_codec.h>
#include <linux/mutex.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/hardirq.h>
#include <asm/mach-au1x00/au1xxx_psc.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1xxx.h>
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
/* misc stuff */
#define POLL_COUNT 0x50000
#define AC97_EXT_DACS (AC97_EXTID_SDAC | AC97_EXTID_CDAC | AC97_EXTID_LDAC)
/* The number of DBDMA ring descriptors to allocate. No sense making
* this too large....if you can't keep up with a few you aren't likely
* to be able to with lots of them, either.
*/
#define NUM_DBDMA_DESCRIPTORS 4
#define err(format, arg...) printk(KERN_ERR format "\n" , ## arg)
/* Boot options
* 0 = no VRA, 1 = use VRA if codec supports it
*/
static int vra = 1;
module_param(vra, bool, 0);
MODULE_PARM_DESC(vra, "if 1 use VRA if codec supports it");
static struct au1550_state {
/* soundcore stuff */
int dev_audio;
struct ac97_codec *codec;
unsigned codec_base_caps; /* AC'97 reg 00h, "Reset Register" */
unsigned codec_ext_caps; /* AC'97 reg 28h, "Extended Audio ID" */
int no_vra; /* do not use VRA */
spinlock_t lock;
struct mutex open_mutex;
struct mutex sem;
fmode_t open_mode;
wait_queue_head_t open_wait;
struct dmabuf {
u32 dmanr;
unsigned sample_rate;
unsigned src_factor;
unsigned sample_size;
int num_channels;
int dma_bytes_per_sample;
int user_bytes_per_sample;
int cnt_factor;
void *rawbuf;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
void *nextIn;
void *nextOut;
int count;
unsigned total_bytes;
unsigned error;
wait_queue_head_t wait;
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dma_fragsize;
unsigned dmasize;
unsigned dma_qcount;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned stopped:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dma_dac, dma_adc;
} au1550_state;
static unsigned
ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
static void
au1550_delay(int msec)
{
unsigned long tmo;
signed long tmo2;
if (in_interrupt())
return;
tmo = jiffies + (msec * HZ) / 1000;
for (;;) {
tmo2 = tmo - jiffies;
if (tmo2 <= 0)
break;
schedule_timeout(tmo2);
}
}
static u16
rdcodec(struct ac97_codec *codec, u8 addr)
{
struct au1550_state *s = (struct au1550_state *)codec->private_data;
unsigned long flags;
u32 cmd, val;
u16 data;
int i;
spin_lock_irqsave(&s->lock, flags);
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97STAT);
au_sync();
if (!(val & PSC_AC97STAT_CP))
break;
}
if (i == POLL_COUNT)
err("rdcodec: codec cmd pending expired!");
cmd = (u32)PSC_AC97CDC_INDX(addr);
cmd |= PSC_AC97CDC_RD; /* read command */
au_writel(cmd, PSC_AC97CDC);
au_sync();
/* now wait for the data
*/
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97STAT);
au_sync();
if (!(val & PSC_AC97STAT_CP))
break;
}
if (i == POLL_COUNT) {
err("rdcodec: read poll expired!");
data = 0;
goto out;
}
/* wait for command done?
*/
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97EVNT);
au_sync();
if (val & PSC_AC97EVNT_CD)
break;
}
if (i == POLL_COUNT) {
err("rdcodec: read cmdwait expired!");
data = 0;
goto out;
}
data = au_readl(PSC_AC97CDC) & 0xffff;
au_sync();
/* Clear command done event.
*/
au_writel(PSC_AC97EVNT_CD, PSC_AC97EVNT);
au_sync();
out:
spin_unlock_irqrestore(&s->lock, flags);
return data;
}
static void
wrcodec(struct ac97_codec *codec, u8 addr, u16 data)
{
struct au1550_state *s = (struct au1550_state *)codec->private_data;
unsigned long flags;
u32 cmd, val;
int i;
spin_lock_irqsave(&s->lock, flags);
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97STAT);
au_sync();
if (!(val & PSC_AC97STAT_CP))
break;
}
if (i == POLL_COUNT)
err("wrcodec: codec cmd pending expired!");
cmd = (u32)PSC_AC97CDC_INDX(addr);
cmd |= (u32)data;
au_writel(cmd, PSC_AC97CDC);
au_sync();
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97STAT);
au_sync();
if (!(val & PSC_AC97STAT_CP))
break;
}
if (i == POLL_COUNT)
err("wrcodec: codec cmd pending expired!");
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97EVNT);
au_sync();
if (val & PSC_AC97EVNT_CD)
break;
}
if (i == POLL_COUNT)
err("wrcodec: read cmdwait expired!");
/* Clear command done event.
*/
au_writel(PSC_AC97EVNT_CD, PSC_AC97EVNT);
au_sync();
spin_unlock_irqrestore(&s->lock, flags);
}
static void
waitcodec(struct ac97_codec *codec)
{
u16 temp;
u32 val;
int i;
/* codec_wait is used to wait for a ready state after
* an AC97C_RESET.
*/
au1550_delay(10);
/* first poll the CODEC_READY tag bit
*/
for (i = 0; i < POLL_COUNT; i++) {
val = au_readl(PSC_AC97STAT);
au_sync();
if (val & PSC_AC97STAT_CR)
break;
}
if (i == POLL_COUNT) {
err("waitcodec: CODEC_READY poll expired!");
return;
}
/* get AC'97 powerdown control/status register
*/
temp = rdcodec(codec, AC97_POWER_CONTROL);
/* If anything is powered down, power'em up
*/
if (temp & 0x7f00) {
/* Power on
*/
wrcodec(codec, AC97_POWER_CONTROL, 0);
au1550_delay(100);
/* Reread
*/
temp = rdcodec(codec, AC97_POWER_CONTROL);
}
/* Check if Codec REF,ANL,DAC,ADC ready
*/
if ((temp & 0x7f0f) != 0x000f)
err("codec reg 26 status (0x%x) not ready!!", temp);
}
/* stop the ADC before calling */
static void
set_adc_rate(struct au1550_state *s, unsigned rate)
{
struct dmabuf *adc = &s->dma_adc;
struct dmabuf *dac = &s->dma_dac;
unsigned adc_rate, dac_rate;
u16 ac97_extstat;
if (s->no_vra) {
/* calc SRC factor
*/
adc->src_factor = ((96000 / rate) + 1) >> 1;
adc->sample_rate = 48000 / adc->src_factor;
return;
}
adc->src_factor = 1;
ac97_extstat = rdcodec(s->codec, AC97_EXTENDED_STATUS);
rate = rate > 48000 ? 48000 : rate;
/* enable VRA
*/
wrcodec(s->codec, AC97_EXTENDED_STATUS,
ac97_extstat | AC97_EXTSTAT_VRA);
/* now write the sample rate
*/
wrcodec(s->codec, AC97_PCM_LR_ADC_RATE, (u16) rate);
/* read it back for actual supported rate
*/
adc_rate = rdcodec(s->codec, AC97_PCM_LR_ADC_RATE);
pr_debug("set_adc_rate: set to %d Hz\n", adc_rate);
/* some codec's don't allow unequal DAC and ADC rates, in which case
* writing one rate reg actually changes both.
*/
dac_rate = rdcodec(s->codec, AC97_PCM_FRONT_DAC_RATE);
if (dac->num_channels > 2)
wrcodec(s->codec, AC97_PCM_SURR_DAC_RATE, dac_rate);
if (dac->num_channels > 4)
wrcodec(s->codec, AC97_PCM_LFE_DAC_RATE, dac_rate);
adc->sample_rate = adc_rate;
dac->sample_rate = dac_rate;
}
/* stop the DAC before calling */
static void
set_dac_rate(struct au1550_state *s, unsigned rate)
{
struct dmabuf *dac = &s->dma_dac;
struct dmabuf *adc = &s->dma_adc;
unsigned adc_rate, dac_rate;
u16 ac97_extstat;
if (s->no_vra) {
/* calc SRC factor
*/
dac->src_factor = ((96000 / rate) + 1) >> 1;
dac->sample_rate = 48000 / dac->src_factor;
return;
}
dac->src_factor = 1;
ac97_extstat = rdcodec(s->codec, AC97_EXTENDED_STATUS);
rate = rate > 48000 ? 48000 : rate;
/* enable VRA
*/
wrcodec(s->codec, AC97_EXTENDED_STATUS,
ac97_extstat | AC97_EXTSTAT_VRA);
/* now write the sample rate
*/
wrcodec(s->codec, AC97_PCM_FRONT_DAC_RATE, (u16) rate);
/* I don't support different sample rates for multichannel,
* so make these channels the same.
*/
if (dac->num_channels > 2)
wrcodec(s->codec, AC97_PCM_SURR_DAC_RATE, (u16) rate);
if (dac->num_channels > 4)
wrcodec(s->codec, AC97_PCM_LFE_DAC_RATE, (u16) rate);
/* read it back for actual supported rate
*/
dac_rate = rdcodec(s->codec, AC97_PCM_FRONT_DAC_RATE);
pr_debug("set_dac_rate: set to %d Hz\n", dac_rate);
/* some codec's don't allow unequal DAC and ADC rates, in which case
* writing one rate reg actually changes both.
*/
adc_rate = rdcodec(s->codec, AC97_PCM_LR_ADC_RATE);
dac->sample_rate = dac_rate;
adc->sample_rate = adc_rate;
}
static void
stop_dac(struct au1550_state *s)
{
struct dmabuf *db = &s->dma_dac;
u32 stat;
unsigned long flags;
if (db->stopped)
return;
spin_lock_irqsave(&s->lock, flags);
au_writel(PSC_AC97PCR_TP, PSC_AC97PCR);
au_sync();
/* Wait for Transmit Busy to show disabled.
*/
do {
stat = au_readl(PSC_AC97STAT);
au_sync();
} while ((stat & PSC_AC97STAT_TB) != 0);
au1xxx_dbdma_reset(db->dmanr);
db->stopped = 1;
spin_unlock_irqrestore(&s->lock, flags);
}
static void
stop_adc(struct au1550_state *s)
{
struct dmabuf *db = &s->dma_adc;
unsigned long flags;
u32 stat;
if (db->stopped)
return;
spin_lock_irqsave(&s->lock, flags);
au_writel(PSC_AC97PCR_RP, PSC_AC97PCR);
au_sync();
/* Wait for Receive Busy to show disabled.
*/
do {
stat = au_readl(PSC_AC97STAT);
au_sync();
} while ((stat & PSC_AC97STAT_RB) != 0);
au1xxx_dbdma_reset(db->dmanr);
db->stopped = 1;
spin_unlock_irqrestore(&s->lock, flags);
}
static void
set_xmit_slots(int num_channels)
{
u32 ac97_config, stat;
ac97_config = au_readl(PSC_AC97CFG);
au_sync();
ac97_config &= ~(PSC_AC97CFG_TXSLOT_MASK | PSC_AC97CFG_DE_ENABLE);
au_writel(ac97_config, PSC_AC97CFG);
au_sync();
switch (num_channels) {
case 6: /* stereo with surround and center/LFE,
* slots 3,4,6,7,8,9
*/
ac97_config |= PSC_AC97CFG_TXSLOT_ENA(6);
ac97_config |= PSC_AC97CFG_TXSLOT_ENA(9);
case 4: /* stereo with surround, slots 3,4,7,8 */
ac97_config |= PSC_AC97CFG_TXSLOT_ENA(7);
ac97_config |= PSC_AC97CFG_TXSLOT_ENA(8);
case 2: /* stereo, slots 3,4 */
case 1: /* mono */
ac97_config |= PSC_AC97CFG_TXSLOT_ENA(3);
ac97_config |= PSC_AC97CFG_TXSLOT_ENA(4);
}
au_writel(ac97_config, PSC_AC97CFG);
au_sync();
ac97_config |= PSC_AC97CFG_DE_ENABLE;
au_writel(ac97_config, PSC_AC97CFG);
au_sync();
/* Wait for Device ready.
*/
do {
stat = au_readl(PSC_AC97STAT);
au_sync();
} while ((stat & PSC_AC97STAT_DR) == 0);
}
static void
set_recv_slots(int num_channels)
{
u32 ac97_config, stat;
ac97_config = au_readl(PSC_AC97CFG);
au_sync();
ac97_config &= ~(PSC_AC97CFG_RXSLOT_MASK | PSC_AC97CFG_DE_ENABLE);
au_writel(ac97_config, PSC_AC97CFG);
au_sync();
/* Always enable slots 3 and 4 (stereo). Slot 6 is
* optional Mic ADC, which we don't support yet.
*/
ac97_config |= PSC_AC97CFG_RXSLOT_ENA(3);
ac97_config |= PSC_AC97CFG_RXSLOT_ENA(4);
au_writel(ac97_config, PSC_AC97CFG);
au_sync();
ac97_config |= PSC_AC97CFG_DE_ENABLE;
au_writel(ac97_config, PSC_AC97CFG);
au_sync();
/* Wait for Device ready.
*/
do {
stat = au_readl(PSC_AC97STAT);
au_sync();
} while ((stat & PSC_AC97STAT_DR) == 0);
}
/* Hold spinlock for both start_dac() and start_adc() calls */
static void
start_dac(struct au1550_state *s)
{
struct dmabuf *db = &s->dma_dac;
if (!db->stopped)
return;
set_xmit_slots(db->num_channels);
au_writel(PSC_AC97PCR_TC, PSC_AC97PCR);
au_sync();
au_writel(PSC_AC97PCR_TS, PSC_AC97PCR);
au_sync();
au1xxx_dbdma_start(db->dmanr);
db->stopped = 0;
}
static void
start_adc(struct au1550_state *s)
{
struct dmabuf *db = &s->dma_adc;
int i;
if (!db->stopped)
return;
/* Put two buffers on the ring to get things started.
*/
for (i=0; i<2; i++) {
au1xxx_dbdma_put_dest(db->dmanr, db->nextIn, db->dma_fragsize);
db->nextIn += db->dma_fragsize;
if (db->nextIn >= db->rawbuf + db->dmasize)
db->nextIn -= db->dmasize;
}
set_recv_slots(db->num_channels);
au1xxx_dbdma_start(db->dmanr);
au_writel(PSC_AC97PCR_RC, PSC_AC97PCR);
au_sync();
au_writel(PSC_AC97PCR_RS, PSC_AC97PCR);
au_sync();
db->stopped = 0;
}
static int
prog_dmabuf(struct au1550_state *s, struct dmabuf *db)
{
unsigned user_bytes_per_sec;
unsigned bufs;
unsigned rate = db->sample_rate;
if (!db->rawbuf) {
db->ready = db->mapped = 0;
db->buforder = 5; /* 32 * PAGE_SIZE */
db->rawbuf = kmalloc((PAGE_SIZE << db->buforder), GFP_KERNEL);
if (!db->rawbuf)
return -ENOMEM;
}
db->cnt_factor = 1;
if (db->sample_size == 8)
db->cnt_factor *= 2;
if (db->num_channels == 1)
db->cnt_factor *= 2;
db->cnt_factor *= db->src_factor;
db->count = 0;
db->dma_qcount = 0;
db->nextIn = db->nextOut = db->rawbuf;
db->user_bytes_per_sample = (db->sample_size>>3) * db->num_channels;
db->dma_bytes_per_sample = 2 * ((db->num_channels == 1) ?
2 : db->num_channels);
user_bytes_per_sec = rate * db->user_bytes_per_sample;
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < user_bytes_per_sec)
db->fragshift = ld2(user_bytes_per_sec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(user_bytes_per_sec / 100 /
(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->fragsize = 1 << db->fragshift;
db->dma_fragsize = db->fragsize * db->cnt_factor;
db->numfrag = bufs / db->dma_fragsize;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->fragsize = 1 << db->fragshift;
db->dma_fragsize = db->fragsize * db->cnt_factor;
db->numfrag = bufs / db->dma_fragsize;
}
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
db->dmasize = db->dma_fragsize * db->numfrag;
memset(db->rawbuf, 0, bufs);
pr_debug("prog_dmabuf: rate=%d, samplesize=%d, channels=%d\n",
rate, db->sample_size, db->num_channels);
pr_debug("prog_dmabuf: fragsize=%d, cnt_factor=%d, dma_fragsize=%d\n",
db->fragsize, db->cnt_factor, db->dma_fragsize);
pr_debug("prog_dmabuf: numfrag=%d, dmasize=%d\n", db->numfrag, db->dmasize);
db->ready = 1;
return 0;
}
static int
prog_dmabuf_adc(struct au1550_state *s)
{
stop_adc(s);
return prog_dmabuf(s, &s->dma_adc);
}
static int
prog_dmabuf_dac(struct au1550_state *s)
{
stop_dac(s);
return prog_dmabuf(s, &s->dma_dac);
}
static void dac_dma_interrupt(int irq, void *dev_id)
{
struct au1550_state *s = (struct au1550_state *) dev_id;
struct dmabuf *db = &s->dma_dac;
u32 ac97c_stat;
spin_lock(&s->lock);
ac97c_stat = au_readl(PSC_AC97STAT);
if (ac97c_stat & (AC97C_XU | AC97C_XO | AC97C_TE))
pr_debug("AC97C status = 0x%08x\n", ac97c_stat);
db->dma_qcount--;
if (db->count >= db->fragsize) {
if (au1xxx_dbdma_put_source(db->dmanr, db->nextOut,
db->fragsize) == 0) {
err("qcount < 2 and no ring room!");
}
db->nextOut += db->fragsize;
if (db->nextOut >= db->rawbuf + db->dmasize)
db->nextOut -= db->dmasize;
db->count -= db->fragsize;
db->total_bytes += db->dma_fragsize;
db->dma_qcount++;
}
/* wake up anybody listening */
if (waitqueue_active(&db->wait))
wake_up(&db->wait);
spin_unlock(&s->lock);
}
static void adc_dma_interrupt(int irq, void *dev_id)
{
struct au1550_state *s = (struct au1550_state *)dev_id;
struct dmabuf *dp = &s->dma_adc;
u32 obytes;
char *obuf;
spin_lock(&s->lock);
/* Pull the buffer from the dma queue.
*/
au1xxx_dbdma_get_dest(dp->dmanr, (void *)(&obuf), &obytes);
if ((dp->count + obytes) > dp->dmasize) {
/* Overrun. Stop ADC and log the error
*/
spin_unlock(&s->lock);
stop_adc(s);
dp->error++;
err("adc overrun");
return;
}
/* Put a new empty buffer on the destination DMA.
*/
au1xxx_dbdma_put_dest(dp->dmanr, dp->nextIn, dp->dma_fragsize);
dp->nextIn += dp->dma_fragsize;
if (dp->nextIn >= dp->rawbuf + dp->dmasize)
dp->nextIn -= dp->dmasize;
dp->count += obytes;
dp->total_bytes += obytes;
/* wake up anybody listening
*/
if (waitqueue_active(&dp->wait))
wake_up(&dp->wait);
spin_unlock(&s->lock);
}
static loff_t
au1550_llseek(struct file *file, loff_t offset, int origin)
{
return -ESPIPE;
}
static int
au1550_open_mixdev(struct inode *inode, struct file *file)
{
file->private_data = &au1550_state;
return 0;
}
static int
au1550_release_mixdev(struct inode *inode, struct file *file)
{
return 0;
}
static int
mixdev_ioctl(struct ac97_codec *codec, unsigned int cmd,
unsigned long arg)
{
return codec->mixer_ioctl(codec, cmd, arg);
}
static int
au1550_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
struct ac97_codec *codec = s->codec;
return mixdev_ioctl(codec, cmd, arg);
}
static /*const */ struct file_operations au1550_mixer_fops = {
owner:THIS_MODULE,
llseek:au1550_llseek,
ioctl:au1550_ioctl_mixdev,
open:au1550_open_mixdev,
release:au1550_release_mixdev,
};
static int
drain_dac(struct au1550_state *s, int nonblock)
{
unsigned long flags;
int count, tmo;
if (s->dma_dac.mapped || !s->dma_dac.ready || s->dma_dac.stopped)
return 0;
for (;;) {
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= s->dma_dac.fragsize)
break;
if (signal_pending(current))
break;
if (nonblock)
return -EBUSY;
tmo = 1000 * count / (s->no_vra ?
48000 : s->dma_dac.sample_rate);
tmo /= s->dma_dac.dma_bytes_per_sample;
au1550_delay(tmo);
}
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
static inline u8 S16_TO_U8(s16 ch)
{
return (u8) (ch >> 8) + 0x80;
}
static inline s16 U8_TO_S16(u8 ch)
{
return (s16) (ch - 0x80) << 8;
}
/*
* Translates user samples to dma buffer suitable for AC'97 DAC data:
* If mono, copy left channel to right channel in dma buffer.
* If 8 bit samples, cvt to 16-bit before writing to dma buffer.
* If interpolating (no VRA), duplicate every audio frame src_factor times.
*/
static int
translate_from_user(struct dmabuf *db, char* dmabuf, char* userbuf,
int dmacount)
{
int sample, i;
int interp_bytes_per_sample;
int num_samples;
int mono = (db->num_channels == 1);
char usersample[12];
s16 ch, dmasample[6];
if (db->sample_size == 16 && !mono && db->src_factor == 1) {
/* no translation necessary, just copy
*/
if (copy_from_user(dmabuf, userbuf, dmacount))
return -EFAULT;
return dmacount;
}
interp_bytes_per_sample = db->dma_bytes_per_sample * db->src_factor;
num_samples = dmacount / interp_bytes_per_sample;
for (sample = 0; sample < num_samples; sample++) {
if (copy_from_user(usersample, userbuf,
db->user_bytes_per_sample)) {
return -EFAULT;
}
for (i = 0; i < db->num_channels; i++) {
if (db->sample_size == 8)
ch = U8_TO_S16(usersample[i]);
else
ch = *((s16 *) (&usersample[i * 2]));
dmasample[i] = ch;
if (mono)
dmasample[i + 1] = ch; /* right channel */
}
/* duplicate every audio frame src_factor times
*/
for (i = 0; i < db->src_factor; i++)
memcpy(dmabuf, dmasample, db->dma_bytes_per_sample);
userbuf += db->user_bytes_per_sample;
dmabuf += interp_bytes_per_sample;
}
return num_samples * interp_bytes_per_sample;
}
/*
* Translates AC'97 ADC samples to user buffer:
* If mono, send only left channel to user buffer.
* If 8 bit samples, cvt from 16 to 8 bit before writing to user buffer.
* If decimating (no VRA), skip over src_factor audio frames.
*/
static int
translate_to_user(struct dmabuf *db, char* userbuf, char* dmabuf,
int dmacount)
{
int sample, i;
int interp_bytes_per_sample;
int num_samples;
int mono = (db->num_channels == 1);
char usersample[12];
if (db->sample_size == 16 && !mono && db->src_factor == 1) {
/* no translation necessary, just copy
*/
if (copy_to_user(userbuf, dmabuf, dmacount))
return -EFAULT;
return dmacount;
}
interp_bytes_per_sample = db->dma_bytes_per_sample * db->src_factor;
num_samples = dmacount / interp_bytes_per_sample;
for (sample = 0; sample < num_samples; sample++) {
for (i = 0; i < db->num_channels; i++) {
if (db->sample_size == 8)
usersample[i] =
S16_TO_U8(*((s16 *) (&dmabuf[i * 2])));
else
*((s16 *) (&usersample[i * 2])) =
*((s16 *) (&dmabuf[i * 2]));
}
if (copy_to_user(userbuf, usersample,
db->user_bytes_per_sample)) {
return -EFAULT;
}
userbuf += db->user_bytes_per_sample;
dmabuf += interp_bytes_per_sample;
}
return num_samples * interp_bytes_per_sample;
}
/*
* Copy audio data to/from user buffer from/to dma buffer, taking care
* that we wrap when reading/writing the dma buffer. Returns actual byte
* count written to or read from the dma buffer.
*/
static int
copy_dmabuf_user(struct dmabuf *db, char* userbuf, int count, int to_user)
{
char *bufptr = to_user ? db->nextOut : db->nextIn;
char *bufend = db->rawbuf + db->dmasize;
int cnt, ret;
if (bufptr + count > bufend) {
int partial = (int) (bufend - bufptr);
if (to_user) {
if ((cnt = translate_to_user(db, userbuf,
bufptr, partial)) < 0)
return cnt;
ret = cnt;
if ((cnt = translate_to_user(db, userbuf + partial,
db->rawbuf,
count - partial)) < 0)
return cnt;
ret += cnt;
} else {
if ((cnt = translate_from_user(db, bufptr, userbuf,
partial)) < 0)
return cnt;
ret = cnt;
if ((cnt = translate_from_user(db, db->rawbuf,
userbuf + partial,
count - partial)) < 0)
return cnt;
ret += cnt;
}
} else {
if (to_user)
ret = translate_to_user(db, userbuf, bufptr, count);
else
ret = translate_from_user(db, bufptr, userbuf, count);
}
return ret;
}
static ssize_t
au1550_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
struct dmabuf *db = &s->dma_adc;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
int cnt, usercnt, avail;
if (db->mapped)
return -ENXIO;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
count *= db->cnt_factor;
mutex_lock(&s->sem);
add_wait_queue(&db->wait, &wait);
while (count > 0) {
/* wait for samples in ADC dma buffer
*/
do {
spin_lock_irqsave(&s->lock, flags);
if (db->stopped)
start_adc(s);
avail = db->count;
if (avail <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (avail <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
mutex_unlock(&s->sem);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out2;
}
mutex_lock(&s->sem);
}
} while (avail <= 0);
/* copy from nextOut to user
*/
if ((cnt = copy_dmabuf_user(db, buffer,
count > avail ?
avail : count, 1)) < 0) {
if (!ret)
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&s->lock, flags);
db->count -= cnt;
db->nextOut += cnt;
if (db->nextOut >= db->rawbuf + db->dmasize)
db->nextOut -= db->dmasize;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
usercnt = cnt / db->cnt_factor;
buffer += usercnt;
ret += usercnt;
} /* while (count > 0) */
out:
mutex_unlock(&s->sem);
out2:
remove_wait_queue(&db->wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
static ssize_t
au1550_write(struct file *file, const char *buffer, size_t count, loff_t * ppos)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
struct dmabuf *db = &s->dma_dac;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret = 0;
unsigned long flags;
int cnt, usercnt, avail;
pr_debug("write: count=%d\n", count);
if (db->mapped)
return -ENXIO;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
count *= db->cnt_factor;
mutex_lock(&s->sem);
add_wait_queue(&db->wait, &wait);
while (count > 0) {
/* wait for space in playback buffer
*/
do {
spin_lock_irqsave(&s->lock, flags);
avail = (int) db->dmasize - db->count;
if (avail <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (avail <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
mutex_unlock(&s->sem);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out2;
}
mutex_lock(&s->sem);
}
} while (avail <= 0);
/* copy from user to nextIn
*/
if ((cnt = copy_dmabuf_user(db, (char *) buffer,
count > avail ?
avail : count, 0)) < 0) {
if (!ret)
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&s->lock, flags);
db->count += cnt;
db->nextIn += cnt;
if (db->nextIn >= db->rawbuf + db->dmasize)
db->nextIn -= db->dmasize;
/* If the data is available, we want to keep two buffers
* on the dma queue. If the queue count reaches zero,
* we know the dma has stopped.
*/
while ((db->dma_qcount < 2) && (db->count >= db->fragsize)) {
if (au1xxx_dbdma_put_source(db->dmanr, db->nextOut,
db->fragsize) == 0) {
err("qcount < 2 and no ring room!");
}
db->nextOut += db->fragsize;
if (db->nextOut >= db->rawbuf + db->dmasize)
db->nextOut -= db->dmasize;
db->total_bytes += db->dma_fragsize;
if (db->dma_qcount == 0)
start_dac(s);
db->dma_qcount++;
}
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
usercnt = cnt / db->cnt_factor;
buffer += usercnt;
ret += usercnt;
} /* while (count > 0) */
out:
mutex_unlock(&s->sem);
out2:
remove_wait_queue(&db->wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int
au1550_poll(struct file *file, struct poll_table_struct *wait)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
if (file->f_mode & FMODE_WRITE) {
if (!s->dma_dac.ready)
return 0;
poll_wait(file, &s->dma_dac.wait, wait);
}
if (file->f_mode & FMODE_READ) {
if (!s->dma_adc.ready)
return 0;
poll_wait(file, &s->dma_adc.wait, wait);
}
spin_lock_irqsave(&s->lock, flags);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.dma_fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >=
(signed)s->dma_dac.dma_fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed) s->dma_dac.dmasize >=
s->dma_dac.count + (signed)s->dma_dac.dma_fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int
au1550_mmap(struct file *file, struct vm_area_struct *vma)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
struct dmabuf *db;
unsigned long size;
int ret = 0;
lock_kernel();
mutex_lock(&s->sem);
if (vma->vm_flags & VM_WRITE)
db = &s->dma_dac;
else if (vma->vm_flags & VM_READ)
db = &s->dma_adc;
else {
ret = -EINVAL;
goto out;
}
if (vma->vm_pgoff != 0) {
ret = -EINVAL;
goto out;
}
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder)) {
ret = -EINVAL;
goto out;
}
if (remap_pfn_range(vma, vma->vm_start, page_to_pfn(virt_to_page(db->rawbuf)),
size, vma->vm_page_prot)) {
ret = -EAGAIN;
goto out;
}
vma->vm_flags &= ~VM_IO;
db->mapped = 1;
out:
mutex_unlock(&s->sem);
unlock_kernel();
return ret;
}
#ifdef DEBUG
static struct ioctl_str_t {
unsigned int cmd;
const char *str;
} ioctl_str[] = {
{SNDCTL_DSP_RESET, "SNDCTL_DSP_RESET"},
{SNDCTL_DSP_SYNC, "SNDCTL_DSP_SYNC"},
{SNDCTL_DSP_SPEED, "SNDCTL_DSP_SPEED"},
{SNDCTL_DSP_STEREO, "SNDCTL_DSP_STEREO"},
{SNDCTL_DSP_GETBLKSIZE, "SNDCTL_DSP_GETBLKSIZE"},
{SNDCTL_DSP_SAMPLESIZE, "SNDCTL_DSP_SAMPLESIZE"},
{SNDCTL_DSP_CHANNELS, "SNDCTL_DSP_CHANNELS"},
{SOUND_PCM_WRITE_CHANNELS, "SOUND_PCM_WRITE_CHANNELS"},
{SOUND_PCM_WRITE_FILTER, "SOUND_PCM_WRITE_FILTER"},
{SNDCTL_DSP_POST, "SNDCTL_DSP_POST"},
{SNDCTL_DSP_SUBDIVIDE, "SNDCTL_DSP_SUBDIVIDE"},
{SNDCTL_DSP_SETFRAGMENT, "SNDCTL_DSP_SETFRAGMENT"},
{SNDCTL_DSP_GETFMTS, "SNDCTL_DSP_GETFMTS"},
{SNDCTL_DSP_SETFMT, "SNDCTL_DSP_SETFMT"},
{SNDCTL_DSP_GETOSPACE, "SNDCTL_DSP_GETOSPACE"},
{SNDCTL_DSP_GETISPACE, "SNDCTL_DSP_GETISPACE"},
{SNDCTL_DSP_NONBLOCK, "SNDCTL_DSP_NONBLOCK"},
{SNDCTL_DSP_GETCAPS, "SNDCTL_DSP_GETCAPS"},
{SNDCTL_DSP_GETTRIGGER, "SNDCTL_DSP_GETTRIGGER"},
{SNDCTL_DSP_SETTRIGGER, "SNDCTL_DSP_SETTRIGGER"},
{SNDCTL_DSP_GETIPTR, "SNDCTL_DSP_GETIPTR"},
{SNDCTL_DSP_GETOPTR, "SNDCTL_DSP_GETOPTR"},
{SNDCTL_DSP_MAPINBUF, "SNDCTL_DSP_MAPINBUF"},
{SNDCTL_DSP_MAPOUTBUF, "SNDCTL_DSP_MAPOUTBUF"},
{SNDCTL_DSP_SETSYNCRO, "SNDCTL_DSP_SETSYNCRO"},
{SNDCTL_DSP_SETDUPLEX, "SNDCTL_DSP_SETDUPLEX"},
{SNDCTL_DSP_GETODELAY, "SNDCTL_DSP_GETODELAY"},
{SNDCTL_DSP_GETCHANNELMASK, "SNDCTL_DSP_GETCHANNELMASK"},
{SNDCTL_DSP_BIND_CHANNEL, "SNDCTL_DSP_BIND_CHANNEL"},
{OSS_GETVERSION, "OSS_GETVERSION"},
{SOUND_PCM_READ_RATE, "SOUND_PCM_READ_RATE"},
{SOUND_PCM_READ_CHANNELS, "SOUND_PCM_READ_CHANNELS"},
{SOUND_PCM_READ_BITS, "SOUND_PCM_READ_BITS"},
{SOUND_PCM_READ_FILTER, "SOUND_PCM_READ_FILTER"}
};
#endif
static int
dma_count_done(struct dmabuf *db)
{
if (db->stopped)
return 0;
return db->dma_fragsize - au1xxx_get_dma_residue(db->dmanr);
}
static int
au1550_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int count;
int val, mapped, ret, diff;
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
#ifdef DEBUG
for (count = 0; count < ARRAY_SIZE(ioctl_str); count++) {
if (ioctl_str[count].cmd == cmd)
break;
}
if (count < ARRAY_SIZE(ioctl_str))
pr_debug("ioctl %s, arg=0x%lxn", ioctl_str[count].str, arg);
else
pr_debug("ioctl 0x%x unknown, arg=0x%lx\n", cmd, arg);
#endif
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *) arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, file->f_flags & O_NONBLOCK);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq();
s->dma_dac.count = s->dma_dac.total_bytes = 0;
s->dma_dac.nextIn = s->dma_dac.nextOut =
s->dma_dac.rawbuf;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq();
s->dma_adc.count = s->dma_adc.total_bytes = 0;
s->dma_adc.nextIn = s->dma_adc.nextOut =
s->dma_adc.rawbuf;
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, (int *) arg))
return -EFAULT;
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
set_adc_rate(s, val);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
set_dac_rate(s, val);
}
if (s->open_mode & FMODE_READ)
if ((ret = prog_dmabuf_adc(s)))
return ret;
if (s->open_mode & FMODE_WRITE)
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return put_user((file->f_mode & FMODE_READ) ?
s->dma_adc.sample_rate :
s->dma_dac.sample_rate,
(int *)arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.num_channels = val ? 2 : 1;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.num_channels = val ? 2 : 1;
if (s->codec_ext_caps & AC97_EXT_DACS) {
/* disable surround and center/lfe in AC'97
*/
u16 ext_stat = rdcodec(s->codec,
AC97_EXTENDED_STATUS);
wrcodec(s->codec, AC97_EXTENDED_STATUS,
ext_stat | (AC97_EXTSTAT_PRI |
AC97_EXTSTAT_PRJ |
AC97_EXTSTAT_PRK));
}
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != 0) {
if (file->f_mode & FMODE_READ) {
if (val < 0 || val > 2)
return -EINVAL;
stop_adc(s);
s->dma_adc.num_channels = val;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
switch (val) {
case 1:
case 2:
break;
case 3:
case 5:
return -EINVAL;
case 4:
if (!(s->codec_ext_caps &
AC97_EXTID_SDAC))
return -EINVAL;
break;
case 6:
if ((s->codec_ext_caps &
AC97_EXT_DACS) != AC97_EXT_DACS)
return -EINVAL;
break;
default:
return -EINVAL;
}
stop_dac(s);
if (val <= 2 &&
(s->codec_ext_caps & AC97_EXT_DACS)) {
/* disable surround and center/lfe
* channels in AC'97
*/
u16 ext_stat =
rdcodec(s->codec,
AC97_EXTENDED_STATUS);
wrcodec(s->codec,
AC97_EXTENDED_STATUS,
ext_stat | (AC97_EXTSTAT_PRI |
AC97_EXTSTAT_PRJ |
AC97_EXTSTAT_PRK));
} else if (val >= 4) {
/* enable surround, center/lfe
* channels in AC'97
*/
u16 ext_stat =
rdcodec(s->codec,
AC97_EXTENDED_STATUS);
ext_stat &= ~AC97_EXTSTAT_PRJ;
if (val == 6)
ext_stat &=
~(AC97_EXTSTAT_PRI |
AC97_EXTSTAT_PRK);
wrcodec(s->codec,
AC97_EXTENDED_STATUS,
ext_stat);
}
s->dma_dac.num_channels = val;
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
}
return put_user(val, (int *) arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_LE | AFMT_U8, (int *) arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt */
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != AFMT_QUERY) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
if (val == AFMT_S16_LE)
s->dma_adc.sample_size = 16;
else {
val = AFMT_U8;
s->dma_adc.sample_size = 8;
}
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
if (val == AFMT_S16_LE)
s->dma_dac.sample_size = 16;
else {
val = AFMT_U8;
s->dma_dac.sample_size = 8;
}
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
} else {
if (file->f_mode & FMODE_READ)
val = (s->dma_adc.sample_size == 16) ?
AFMT_S16_LE : AFMT_U8;
else
val = (s->dma_dac.sample_size == 16) ?
AFMT_S16_LE : AFMT_U8;
}
return put_user(val, (int *) arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
spin_lock_irqsave(&s->lock, flags);
if (file->f_mode & FMODE_READ && !s->dma_adc.stopped)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & FMODE_WRITE && !s->dma_dac.stopped)
val |= PCM_ENABLE_OUTPUT;
spin_unlock_irqrestore(&s->lock, flags);
return put_user(val, (int *) arg);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
spin_lock_irqsave(&s->lock, flags);
start_adc(s);
spin_unlock_irqrestore(&s->lock, flags);
} else
stop_adc(s);
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
spin_lock_irqsave(&s->lock, flags);
start_dac(s);
spin_unlock_irqrestore(&s->lock, flags);
} else
stop_dac(s);
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
abinfo.fragsize = s->dma_dac.fragsize;
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
count -= dma_count_done(&s->dma_dac);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
abinfo.bytes = (s->dma_dac.dmasize - count) /
s->dma_dac.cnt_factor;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
pr_debug("ioctl SNDCTL_DSP_GETOSPACE: bytes=%d, fragments=%d\n", abinfo.bytes, abinfo.fragments);
return copy_to_user((void *) arg, &abinfo,
sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
abinfo.fragsize = s->dma_adc.fragsize;
spin_lock_irqsave(&s->lock, flags);
count = s->dma_adc.count;
count += dma_count_done(&s->dma_adc);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
abinfo.bytes = count / s->dma_adc.cnt_factor;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
return copy_to_user((void *) arg, &abinfo,
sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
spin_lock(&file->f_lock);
file->f_flags |= O_NONBLOCK;
spin_unlock(&file->f_lock);
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
count -= dma_count_done(&s->dma_dac);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
count /= s->dma_dac.cnt_factor;
return put_user(count, (int *) arg);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cinfo.bytes = s->dma_adc.total_bytes;
count = s->dma_adc.count;
if (!s->dma_adc.stopped) {
diff = dma_count_done(&s->dma_adc);
count += diff;
cinfo.bytes += diff;
cinfo.ptr = virt_to_phys(s->dma_adc.nextIn) + diff -
virt_to_phys(s->dma_adc.rawbuf);
} else
cinfo.ptr = virt_to_phys(s->dma_adc.nextIn) -
virt_to_phys(s->dma_adc.rawbuf);
if (s->dma_adc.mapped)
s->dma_adc.count &= (s->dma_adc.dma_fragsize-1);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_adc.fragshift;
return copy_to_user((void *) arg, &cinfo, sizeof(cinfo));
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cinfo.bytes = s->dma_dac.total_bytes;
count = s->dma_dac.count;
if (!s->dma_dac.stopped) {
diff = dma_count_done(&s->dma_dac);
count -= diff;
cinfo.bytes += diff;
cinfo.ptr = virt_to_phys(s->dma_dac.nextOut) + diff -
virt_to_phys(s->dma_dac.rawbuf);
} else
cinfo.ptr = virt_to_phys(s->dma_dac.nextOut) -
virt_to_phys(s->dma_dac.rawbuf);
if (s->dma_dac.mapped)
s->dma_dac.count &= (s->dma_dac.dma_fragsize-1);
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_dac.fragshift;
return copy_to_user((void *) arg, &cinfo, sizeof(cinfo));
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE)
return put_user(s->dma_dac.fragsize, (int *) arg);
else
return put_user(s->dma_adc.fragsize, (int *) arg);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, (int *) arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
if (get_user(val, (int *) arg))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.subdivision = val;
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.subdivision = val;
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ?
s->dma_adc.sample_rate :
s->dma_dac.sample_rate,
(int *)arg);
case SOUND_PCM_READ_CHANNELS:
if (file->f_mode & FMODE_READ)
return put_user(s->dma_adc.num_channels, (int *)arg);
else
return put_user(s->dma_dac.num_channels, (int *)arg);
case SOUND_PCM_READ_BITS:
if (file->f_mode & FMODE_READ)
return put_user(s->dma_adc.sample_size, (int *)arg);
else
return put_user(s->dma_dac.sample_size, (int *)arg);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return mixdev_ioctl(s->codec, cmd, arg);
}
static int
au1550_open(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
DECLARE_WAITQUEUE(wait, current);
struct au1550_state *s = &au1550_state;
int ret;
#ifdef DEBUG
if (file->f_flags & O_NONBLOCK)
pr_debug("open: non-blocking\n");
else
pr_debug("open: blocking\n");
#endif
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
mutex_unlock(&s->open_mutex);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
stop_dac(s);
stop_adc(s);
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
s->dma_adc.subdivision = s->dma_adc.total_bytes = 0;
s->dma_adc.num_channels = 1;
s->dma_adc.sample_size = 8;
set_adc_rate(s, 8000);
if ((minor & 0xf) == SND_DEV_DSP16)
s->dma_adc.sample_size = 16;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
s->dma_dac.subdivision = s->dma_dac.total_bytes = 0;
s->dma_dac.num_channels = 1;
s->dma_dac.sample_size = 8;
set_dac_rate(s, 8000);
if ((minor & 0xf) == SND_DEV_DSP16)
s->dma_dac.sample_size = 16;
}
if (file->f_mode & FMODE_READ) {
if ((ret = prog_dmabuf_adc(s)))
return ret;
}
if (file->f_mode & FMODE_WRITE) {
if ((ret = prog_dmabuf_dac(s)))
return ret;
}
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
mutex_unlock(&s->open_mutex);
mutex_init(&s->sem);
return 0;
}
static int
au1550_release(struct inode *inode, struct file *file)
{
struct au1550_state *s = (struct au1550_state *)file->private_data;
lock_kernel();
if (file->f_mode & FMODE_WRITE) {
unlock_kernel();
drain_dac(s, file->f_flags & O_NONBLOCK);
lock_kernel();
}
mutex_lock(&s->open_mutex);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
kfree(s->dma_dac.rawbuf);
s->dma_dac.rawbuf = NULL;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
kfree(s->dma_adc.rawbuf);
s->dma_adc.rawbuf = NULL;
}
s->open_mode &= ((~file->f_mode) & (FMODE_READ|FMODE_WRITE));
mutex_unlock(&s->open_mutex);
wake_up(&s->open_wait);
unlock_kernel();
return 0;
}
static /*const */ struct file_operations au1550_audio_fops = {
owner: THIS_MODULE,
llseek: au1550_llseek,
read: au1550_read,
write: au1550_write,
poll: au1550_poll,
ioctl: au1550_ioctl,
mmap: au1550_mmap,
open: au1550_open,
release: au1550_release,
};
MODULE_AUTHOR("Advanced Micro Devices (AMD), dan@embeddededge.com");
MODULE_DESCRIPTION("Au1550 AC97 Audio Driver");
MODULE_LICENSE("GPL");
static int __devinit
au1550_probe(void)
{
struct au1550_state *s = &au1550_state;
int val;
memset(s, 0, sizeof(struct au1550_state));
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
mutex_init(&s->open_mutex);
spin_lock_init(&s->lock);
s->codec = ac97_alloc_codec();
if(s->codec == NULL) {
err("Out of memory");
return -1;
}
s->codec->private_data = s;
s->codec->id = 0;
s->codec->codec_read = rdcodec;
s->codec->codec_write = wrcodec;
s->codec->codec_wait = waitcodec;
if (!request_mem_region(CPHYSADDR(AC97_PSC_SEL),
0x30, "Au1550 AC97")) {
err("AC'97 ports in use");
}
/* Allocate the DMA Channels
*/
if ((s->dma_dac.dmanr = au1xxx_dbdma_chan_alloc(DBDMA_MEM_CHAN,
DBDMA_AC97_TX_CHAN, dac_dma_interrupt, (void *)s)) == 0) {
err("Can't get DAC DMA");
goto err_dma1;
}
au1xxx_dbdma_set_devwidth(s->dma_dac.dmanr, 16);
if (au1xxx_dbdma_ring_alloc(s->dma_dac.dmanr,
NUM_DBDMA_DESCRIPTORS) == 0) {
err("Can't get DAC DMA descriptors");
goto err_dma1;
}
if ((s->dma_adc.dmanr = au1xxx_dbdma_chan_alloc(DBDMA_AC97_RX_CHAN,
DBDMA_MEM_CHAN, adc_dma_interrupt, (void *)s)) == 0) {
err("Can't get ADC DMA");
goto err_dma2;
}
au1xxx_dbdma_set_devwidth(s->dma_adc.dmanr, 16);
if (au1xxx_dbdma_ring_alloc(s->dma_adc.dmanr,
NUM_DBDMA_DESCRIPTORS) == 0) {
err("Can't get ADC DMA descriptors");
goto err_dma2;
}
pr_info("DAC: DMA%d, ADC: DMA%d", DBDMA_AC97_TX_CHAN, DBDMA_AC97_RX_CHAN);
/* register devices */
if ((s->dev_audio = register_sound_dsp(&au1550_audio_fops, -1)) < 0)
goto err_dev1;
if ((s->codec->dev_mixer =
register_sound_mixer(&au1550_mixer_fops, -1)) < 0)
goto err_dev2;
/* The GPIO for the appropriate PSC was configured by the
* board specific start up.
*
* configure PSC for AC'97
*/
au_writel(0, AC97_PSC_CTRL); /* Disable PSC */
au_sync();
au_writel((PSC_SEL_CLK_SERCLK | PSC_SEL_PS_AC97MODE), AC97_PSC_SEL);
au_sync();
/* cold reset the AC'97
*/
au_writel(PSC_AC97RST_RST, PSC_AC97RST);
au_sync();
au1550_delay(10);
au_writel(0, PSC_AC97RST);
au_sync();
/* need to delay around 500msec(bleech) to give
some CODECs enough time to wakeup */
au1550_delay(500);
/* warm reset the AC'97 to start the bitclk
*/
au_writel(PSC_AC97RST_SNC, PSC_AC97RST);
au_sync();
udelay(100);
au_writel(0, PSC_AC97RST);
au_sync();
/* Enable PSC
*/
au_writel(PSC_CTRL_ENABLE, AC97_PSC_CTRL);
au_sync();
/* Wait for PSC ready.
*/
do {
val = au_readl(PSC_AC97STAT);
au_sync();
} while ((val & PSC_AC97STAT_SR) == 0);
/* Configure AC97 controller.
* Deep FIFO, 16-bit sample, DMA, make sure DMA matches fifo size.
*/
val = PSC_AC97CFG_SET_LEN(16);
val |= PSC_AC97CFG_RT_FIFO8 | PSC_AC97CFG_TT_FIFO8;
/* Enable device so we can at least
* talk over the AC-link.
*/
au_writel(val, PSC_AC97CFG);
au_writel(PSC_AC97MSK_ALLMASK, PSC_AC97MSK);
au_sync();
val |= PSC_AC97CFG_DE_ENABLE;
au_writel(val, PSC_AC97CFG);
au_sync();
/* Wait for Device ready.
*/
do {
val = au_readl(PSC_AC97STAT);
au_sync();
} while ((val & PSC_AC97STAT_DR) == 0);
/* codec init */
if (!ac97_probe_codec(s->codec))
goto err_dev3;
s->codec_base_caps = rdcodec(s->codec, AC97_RESET);
s->codec_ext_caps = rdcodec(s->codec, AC97_EXTENDED_ID);
pr_info("AC'97 Base/Extended ID = %04x/%04x",
s->codec_base_caps, s->codec_ext_caps);
if (!(s->codec_ext_caps & AC97_EXTID_VRA)) {
/* codec does not support VRA
*/
s->no_vra = 1;
} else if (!vra) {
/* Boot option says disable VRA
*/
u16 ac97_extstat = rdcodec(s->codec, AC97_EXTENDED_STATUS);
wrcodec(s->codec, AC97_EXTENDED_STATUS,
ac97_extstat & ~AC97_EXTSTAT_VRA);
s->no_vra = 1;
}
if (s->no_vra)
pr_info("no VRA, interpolating and decimating");
/* set mic to be the recording source */
val = SOUND_MASK_MIC;
mixdev_ioctl(s->codec, SOUND_MIXER_WRITE_RECSRC,
(unsigned long) &val);
return 0;
err_dev3:
unregister_sound_mixer(s->codec->dev_mixer);
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
au1xxx_dbdma_chan_free(s->dma_adc.dmanr);
err_dma2:
au1xxx_dbdma_chan_free(s->dma_dac.dmanr);
err_dma1:
release_mem_region(CPHYSADDR(AC97_PSC_SEL), 0x30);
ac97_release_codec(s->codec);
return -1;
}
static void __devinit
au1550_remove(void)
{
struct au1550_state *s = &au1550_state;
if (!s)
return;
synchronize_irq();
au1xxx_dbdma_chan_free(s->dma_adc.dmanr);
au1xxx_dbdma_chan_free(s->dma_dac.dmanr);
release_mem_region(CPHYSADDR(AC97_PSC_SEL), 0x30);
unregister_sound_dsp(s->dev_audio);
unregister_sound_mixer(s->codec->dev_mixer);
ac97_release_codec(s->codec);
}
static int __init
init_au1550(void)
{
return au1550_probe();
}
static void __exit
cleanup_au1550(void)
{
au1550_remove();
}
module_init(init_au1550);
module_exit(cleanup_au1550);
#ifndef MODULE
static int __init
au1550_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ","))) {
if (!*this_opt)
continue;
if (!strncmp(this_opt, "vra", 3)) {
vra = 1;
}
}
return 1;
}
__setup("au1550_audio=", au1550_setup);
#endif /* MODULE */