kernel-fxtec-pro1x/drivers/input/input.c
Dmitry Torokhov 0fbf87caf7 Input: add semaphore and user count to input_dev structure;
serialize open and close calls and ensure that device's
       open and close methods are only called when first user
       opens it or last user closes it.

Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
2005-05-29 02:29:25 -05:00

771 lines
18 KiB
C

/*
* The input core
*
* Copyright (c) 1999-2002 Vojtech Pavlik
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/input.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/major.h>
#include <linux/proc_fs.h>
#include <linux/kobject_uevent.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/device.h>
#include <linux/devfs_fs_kernel.h>
MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
MODULE_DESCRIPTION("Input core");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(input_register_device);
EXPORT_SYMBOL(input_unregister_device);
EXPORT_SYMBOL(input_register_handler);
EXPORT_SYMBOL(input_unregister_handler);
EXPORT_SYMBOL(input_grab_device);
EXPORT_SYMBOL(input_release_device);
EXPORT_SYMBOL(input_open_device);
EXPORT_SYMBOL(input_close_device);
EXPORT_SYMBOL(input_accept_process);
EXPORT_SYMBOL(input_flush_device);
EXPORT_SYMBOL(input_event);
EXPORT_SYMBOL(input_class);
#define INPUT_DEVICES 256
static LIST_HEAD(input_dev_list);
static LIST_HEAD(input_handler_list);
static struct input_handler *input_table[8];
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *proc_bus_input_dir;
static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
static int input_devices_state;
#endif
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
{
struct input_handle *handle;
if (type > EV_MAX || !test_bit(type, dev->evbit))
return;
add_input_randomness(type, code, value);
switch (type) {
case EV_SYN:
switch (code) {
case SYN_CONFIG:
if (dev->event) dev->event(dev, type, code, value);
break;
case SYN_REPORT:
if (dev->sync) return;
dev->sync = 1;
break;
}
break;
case EV_KEY:
if (code > KEY_MAX || !test_bit(code, dev->keybit) || !!test_bit(code, dev->key) == value)
return;
if (value == 2)
break;
change_bit(code, dev->key);
if (test_bit(EV_REP, dev->evbit) && dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && dev->timer.data && value) {
dev->repeat_key = code;
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
}
break;
case EV_ABS:
if (code > ABS_MAX || !test_bit(code, dev->absbit))
return;
if (dev->absfuzz[code]) {
if ((value > dev->abs[code] - (dev->absfuzz[code] >> 1)) &&
(value < dev->abs[code] + (dev->absfuzz[code] >> 1)))
return;
if ((value > dev->abs[code] - dev->absfuzz[code]) &&
(value < dev->abs[code] + dev->absfuzz[code]))
value = (dev->abs[code] * 3 + value) >> 2;
if ((value > dev->abs[code] - (dev->absfuzz[code] << 1)) &&
(value < dev->abs[code] + (dev->absfuzz[code] << 1)))
value = (dev->abs[code] + value) >> 1;
}
if (dev->abs[code] == value)
return;
dev->abs[code] = value;
break;
case EV_REL:
if (code > REL_MAX || !test_bit(code, dev->relbit) || (value == 0))
return;
break;
case EV_MSC:
if (code > MSC_MAX || !test_bit(code, dev->mscbit))
return;
if (dev->event) dev->event(dev, type, code, value);
break;
case EV_LED:
if (code > LED_MAX || !test_bit(code, dev->ledbit) || !!test_bit(code, dev->led) == value)
return;
change_bit(code, dev->led);
if (dev->event) dev->event(dev, type, code, value);
break;
case EV_SND:
if (code > SND_MAX || !test_bit(code, dev->sndbit))
return;
if (dev->event) dev->event(dev, type, code, value);
break;
case EV_REP:
if (code > REP_MAX || value < 0 || dev->rep[code] == value) return;
dev->rep[code] = value;
if (dev->event) dev->event(dev, type, code, value);
break;
case EV_FF:
if (dev->event) dev->event(dev, type, code, value);
break;
}
if (type != EV_SYN)
dev->sync = 0;
if (dev->grab)
dev->grab->handler->event(dev->grab, type, code, value);
else
list_for_each_entry(handle, &dev->h_list, d_node)
if (handle->open)
handle->handler->event(handle, type, code, value);
}
static void input_repeat_key(unsigned long data)
{
struct input_dev *dev = (void *) data;
if (!test_bit(dev->repeat_key, dev->key))
return;
input_event(dev, EV_KEY, dev->repeat_key, 2);
input_sync(dev);
if (dev->rep[REP_PERIOD])
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_PERIOD]));
}
int input_accept_process(struct input_handle *handle, struct file *file)
{
if (handle->dev->accept)
return handle->dev->accept(handle->dev, file);
return 0;
}
int input_grab_device(struct input_handle *handle)
{
if (handle->dev->grab)
return -EBUSY;
handle->dev->grab = handle;
return 0;
}
void input_release_device(struct input_handle *handle)
{
if (handle->dev->grab == handle)
handle->dev->grab = NULL;
}
int input_open_device(struct input_handle *handle)
{
struct input_dev *dev = handle->dev;
int err;
err = down_interruptible(&dev->sem);
if (err)
return err;
handle->open++;
if (!dev->users++ && dev->open)
err = dev->open(dev);
if (err)
handle->open--;
up(&dev->sem);
return err;
}
int input_flush_device(struct input_handle* handle, struct file* file)
{
if (handle->dev->flush)
return handle->dev->flush(handle->dev, file);
return 0;
}
void input_close_device(struct input_handle *handle)
{
struct input_dev *dev = handle->dev;
input_release_device(handle);
down(&dev->sem);
if (!--dev->users && dev->close)
dev->close(dev);
handle->open--;
up(&dev->sem);
}
static void input_link_handle(struct input_handle *handle)
{
list_add_tail(&handle->d_node, &handle->dev->h_list);
list_add_tail(&handle->h_node, &handle->handler->h_list);
}
#define MATCH_BIT(bit, max) \
for (i = 0; i < NBITS(max); i++) \
if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
break; \
if (i != NBITS(max)) \
continue;
static struct input_device_id *input_match_device(struct input_device_id *id, struct input_dev *dev)
{
int i;
for (; id->flags || id->driver_info; id++) {
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
if (id->id.bustype != dev->id.bustype)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
if (id->id.vendor != dev->id.vendor)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
if (id->id.product != dev->id.product)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
if (id->id.version != dev->id.version)
continue;
MATCH_BIT(evbit, EV_MAX);
MATCH_BIT(keybit, KEY_MAX);
MATCH_BIT(relbit, REL_MAX);
MATCH_BIT(absbit, ABS_MAX);
MATCH_BIT(mscbit, MSC_MAX);
MATCH_BIT(ledbit, LED_MAX);
MATCH_BIT(sndbit, SND_MAX);
MATCH_BIT(ffbit, FF_MAX);
return id;
}
return NULL;
}
/*
* Input hotplugging interface - loading event handlers based on
* device bitfields.
*/
#ifdef CONFIG_HOTPLUG
/*
* Input hotplugging invokes what /proc/sys/kernel/hotplug says
* (normally /sbin/hotplug) when input devices get added or removed.
*
* This invokes a user mode policy agent, typically helping to load driver
* or other modules, configure the device, and more. Drivers can provide
* a MODULE_DEVICE_TABLE to help with module loading subtasks.
*
*/
#define SPRINTF_BIT_A(bit, name, max) \
do { \
envp[i++] = scratch; \
scratch += sprintf(scratch, name); \
for (j = NBITS(max) - 1; j >= 0; j--) \
if (dev->bit[j]) break; \
for (; j >= 0; j--) \
scratch += sprintf(scratch, "%lx ", dev->bit[j]); \
scratch++; \
} while (0)
#define SPRINTF_BIT_A2(bit, name, max, ev) \
do { \
if (test_bit(ev, dev->evbit)) \
SPRINTF_BIT_A(bit, name, max); \
} while (0)
static void input_call_hotplug(char *verb, struct input_dev *dev)
{
char *argv[3], **envp, *buf, *scratch;
int i = 0, j, value;
if (!hotplug_path[0]) {
printk(KERN_ERR "input.c: calling hotplug without a hotplug agent defined\n");
return;
}
if (in_interrupt()) {
printk(KERN_ERR "input.c: calling hotplug from interrupt\n");
return;
}
if (!current->fs->root) {
printk(KERN_WARNING "input.c: calling hotplug without valid filesystem\n");
return;
}
if (!(envp = (char **) kmalloc(20 * sizeof(char *), GFP_KERNEL))) {
printk(KERN_ERR "input.c: not enough memory allocating hotplug environment\n");
return;
}
if (!(buf = kmalloc(1024, GFP_KERNEL))) {
kfree (envp);
printk(KERN_ERR "input.c: not enough memory allocating hotplug environment\n");
return;
}
argv[0] = hotplug_path;
argv[1] = "input";
argv[2] = NULL;
envp[i++] = "HOME=/";
envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
scratch = buf;
envp[i++] = scratch;
scratch += sprintf(scratch, "ACTION=%s", verb) + 1;
envp[i++] = scratch;
scratch += sprintf(scratch, "PRODUCT=%x/%x/%x/%x",
dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version) + 1;
if (dev->name) {
envp[i++] = scratch;
scratch += sprintf(scratch, "NAME=%s", dev->name) + 1;
}
if (dev->phys) {
envp[i++] = scratch;
scratch += sprintf(scratch, "PHYS=%s", dev->phys) + 1;
}
SPRINTF_BIT_A(evbit, "EV=", EV_MAX);
SPRINTF_BIT_A2(keybit, "KEY=", KEY_MAX, EV_KEY);
SPRINTF_BIT_A2(relbit, "REL=", REL_MAX, EV_REL);
SPRINTF_BIT_A2(absbit, "ABS=", ABS_MAX, EV_ABS);
SPRINTF_BIT_A2(mscbit, "MSC=", MSC_MAX, EV_MSC);
SPRINTF_BIT_A2(ledbit, "LED=", LED_MAX, EV_LED);
SPRINTF_BIT_A2(sndbit, "SND=", SND_MAX, EV_SND);
SPRINTF_BIT_A2(ffbit, "FF=", FF_MAX, EV_FF);
envp[i++] = NULL;
#ifdef INPUT_DEBUG
printk(KERN_DEBUG "input.c: calling %s %s [%s %s %s %s %s]\n",
argv[0], argv[1], envp[0], envp[1], envp[2], envp[3], envp[4]);
#endif
value = call_usermodehelper(argv [0], argv, envp, 0);
kfree(buf);
kfree(envp);
#ifdef INPUT_DEBUG
if (value != 0)
printk(KERN_DEBUG "input.c: hotplug returned %d\n", value);
#endif
}
#endif
void input_register_device(struct input_dev *dev)
{
struct input_handle *handle;
struct input_handler *handler;
struct input_device_id *id;
set_bit(EV_SYN, dev->evbit);
init_MUTEX(&dev->sem);
/*
* If delay and period are pre-set by the driver, then autorepeating
* is handled by the driver itself and we don't do it in input.c.
*/
init_timer(&dev->timer);
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
dev->timer.data = (long) dev;
dev->timer.function = input_repeat_key;
dev->rep[REP_DELAY] = 250;
dev->rep[REP_PERIOD] = 33;
}
INIT_LIST_HEAD(&dev->h_list);
list_add_tail(&dev->node, &input_dev_list);
list_for_each_entry(handler, &input_handler_list, node)
if (!handler->blacklist || !input_match_device(handler->blacklist, dev))
if ((id = input_match_device(handler->id_table, dev)))
if ((handle = handler->connect(handler, dev, id)))
input_link_handle(handle);
#ifdef CONFIG_HOTPLUG
input_call_hotplug("add", dev);
#endif
#ifdef CONFIG_PROC_FS
input_devices_state++;
wake_up(&input_devices_poll_wait);
#endif
}
void input_unregister_device(struct input_dev *dev)
{
struct list_head * node, * next;
if (!dev) return;
del_timer_sync(&dev->timer);
list_for_each_safe(node, next, &dev->h_list) {
struct input_handle * handle = to_handle(node);
list_del_init(&handle->d_node);
list_del_init(&handle->h_node);
handle->handler->disconnect(handle);
}
#ifdef CONFIG_HOTPLUG
input_call_hotplug("remove", dev);
#endif
list_del_init(&dev->node);
#ifdef CONFIG_PROC_FS
input_devices_state++;
wake_up(&input_devices_poll_wait);
#endif
}
void input_register_handler(struct input_handler *handler)
{
struct input_dev *dev;
struct input_handle *handle;
struct input_device_id *id;
if (!handler) return;
INIT_LIST_HEAD(&handler->h_list);
if (handler->fops != NULL)
input_table[handler->minor >> 5] = handler;
list_add_tail(&handler->node, &input_handler_list);
list_for_each_entry(dev, &input_dev_list, node)
if (!handler->blacklist || !input_match_device(handler->blacklist, dev))
if ((id = input_match_device(handler->id_table, dev)))
if ((handle = handler->connect(handler, dev, id)))
input_link_handle(handle);
#ifdef CONFIG_PROC_FS
input_devices_state++;
wake_up(&input_devices_poll_wait);
#endif
}
void input_unregister_handler(struct input_handler *handler)
{
struct list_head * node, * next;
list_for_each_safe(node, next, &handler->h_list) {
struct input_handle * handle = to_handle_h(node);
list_del_init(&handle->h_node);
list_del_init(&handle->d_node);
handler->disconnect(handle);
}
list_del_init(&handler->node);
if (handler->fops != NULL)
input_table[handler->minor >> 5] = NULL;
#ifdef CONFIG_PROC_FS
input_devices_state++;
wake_up(&input_devices_poll_wait);
#endif
}
static int input_open_file(struct inode *inode, struct file *file)
{
struct input_handler *handler = input_table[iminor(inode) >> 5];
struct file_operations *old_fops, *new_fops = NULL;
int err;
/* No load-on-demand here? */
if (!handler || !(new_fops = fops_get(handler->fops)))
return -ENODEV;
/*
* That's _really_ odd. Usually NULL ->open means "nothing special",
* not "no device". Oh, well...
*/
if (!new_fops->open) {
fops_put(new_fops);
return -ENODEV;
}
old_fops = file->f_op;
file->f_op = new_fops;
err = new_fops->open(inode, file);
if (err) {
fops_put(file->f_op);
file->f_op = fops_get(old_fops);
}
fops_put(old_fops);
return err;
}
static struct file_operations input_fops = {
.owner = THIS_MODULE,
.open = input_open_file,
};
#ifdef CONFIG_PROC_FS
#define SPRINTF_BIT_B(bit, name, max) \
do { \
len += sprintf(buf + len, "B: %s", name); \
for (i = NBITS(max) - 1; i >= 0; i--) \
if (dev->bit[i]) break; \
for (; i >= 0; i--) \
len += sprintf(buf + len, "%lx ", dev->bit[i]); \
len += sprintf(buf + len, "\n"); \
} while (0)
#define SPRINTF_BIT_B2(bit, name, max, ev) \
do { \
if (test_bit(ev, dev->evbit)) \
SPRINTF_BIT_B(bit, name, max); \
} while (0)
static unsigned int input_devices_poll(struct file *file, poll_table *wait)
{
int state = input_devices_state;
poll_wait(file, &input_devices_poll_wait, wait);
if (state != input_devices_state)
return POLLIN | POLLRDNORM;
return 0;
}
static int input_devices_read(char *buf, char **start, off_t pos, int count, int *eof, void *data)
{
struct input_dev *dev;
struct input_handle *handle;
off_t at = 0;
int i, len, cnt = 0;
list_for_each_entry(dev, &input_dev_list, node) {
len = sprintf(buf, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
len += sprintf(buf + len, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
len += sprintf(buf + len, "P: Phys=%s\n", dev->phys ? dev->phys : "");
len += sprintf(buf + len, "H: Handlers=");
list_for_each_entry(handle, &dev->h_list, d_node)
len += sprintf(buf + len, "%s ", handle->name);
len += sprintf(buf + len, "\n");
SPRINTF_BIT_B(evbit, "EV=", EV_MAX);
SPRINTF_BIT_B2(keybit, "KEY=", KEY_MAX, EV_KEY);
SPRINTF_BIT_B2(relbit, "REL=", REL_MAX, EV_REL);
SPRINTF_BIT_B2(absbit, "ABS=", ABS_MAX, EV_ABS);
SPRINTF_BIT_B2(mscbit, "MSC=", MSC_MAX, EV_MSC);
SPRINTF_BIT_B2(ledbit, "LED=", LED_MAX, EV_LED);
SPRINTF_BIT_B2(sndbit, "SND=", SND_MAX, EV_SND);
SPRINTF_BIT_B2(ffbit, "FF=", FF_MAX, EV_FF);
len += sprintf(buf + len, "\n");
at += len;
if (at >= pos) {
if (!*start) {
*start = buf + (pos - (at - len));
cnt = at - pos;
} else cnt += len;
buf += len;
if (cnt >= count)
break;
}
}
if (&dev->node == &input_dev_list)
*eof = 1;
return (count > cnt) ? cnt : count;
}
static int input_handlers_read(char *buf, char **start, off_t pos, int count, int *eof, void *data)
{
struct input_handler *handler;
off_t at = 0;
int len = 0, cnt = 0;
int i = 0;
list_for_each_entry(handler, &input_handler_list, node) {
if (handler->fops)
len = sprintf(buf, "N: Number=%d Name=%s Minor=%d\n",
i++, handler->name, handler->minor);
else
len = sprintf(buf, "N: Number=%d Name=%s\n",
i++, handler->name);
at += len;
if (at >= pos) {
if (!*start) {
*start = buf + (pos - (at - len));
cnt = at - pos;
} else cnt += len;
buf += len;
if (cnt >= count)
break;
}
}
if (&handler->node == &input_handler_list)
*eof = 1;
return (count > cnt) ? cnt : count;
}
static int __init input_proc_init(void)
{
struct proc_dir_entry *entry;
proc_bus_input_dir = proc_mkdir("input", proc_bus);
if (proc_bus_input_dir == NULL)
return -ENOMEM;
proc_bus_input_dir->owner = THIS_MODULE;
entry = create_proc_read_entry("devices", 0, proc_bus_input_dir, input_devices_read, NULL);
if (entry == NULL) {
remove_proc_entry("input", proc_bus);
return -ENOMEM;
}
entry->owner = THIS_MODULE;
entry->proc_fops->poll = input_devices_poll;
entry = create_proc_read_entry("handlers", 0, proc_bus_input_dir, input_handlers_read, NULL);
if (entry == NULL) {
remove_proc_entry("devices", proc_bus_input_dir);
remove_proc_entry("input", proc_bus);
return -ENOMEM;
}
entry->owner = THIS_MODULE;
return 0;
}
#else /* !CONFIG_PROC_FS */
static inline int input_proc_init(void) { return 0; }
#endif
struct class_simple *input_class;
static int __init input_init(void)
{
int retval = -ENOMEM;
input_class = class_simple_create(THIS_MODULE, "input");
if (IS_ERR(input_class))
return PTR_ERR(input_class);
input_proc_init();
retval = register_chrdev(INPUT_MAJOR, "input", &input_fops);
if (retval) {
printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
remove_proc_entry("devices", proc_bus_input_dir);
remove_proc_entry("handlers", proc_bus_input_dir);
remove_proc_entry("input", proc_bus);
class_simple_destroy(input_class);
return retval;
}
retval = devfs_mk_dir("input");
if (retval) {
remove_proc_entry("devices", proc_bus_input_dir);
remove_proc_entry("handlers", proc_bus_input_dir);
remove_proc_entry("input", proc_bus);
unregister_chrdev(INPUT_MAJOR, "input");
class_simple_destroy(input_class);
}
return retval;
}
static void __exit input_exit(void)
{
remove_proc_entry("devices", proc_bus_input_dir);
remove_proc_entry("handlers", proc_bus_input_dir);
remove_proc_entry("input", proc_bus);
devfs_remove("input");
unregister_chrdev(INPUT_MAJOR, "input");
class_simple_destroy(input_class);
}
subsys_initcall(input_init);
module_exit(input_exit);