kernel-fxtec-pro1x/drivers/dma/sirf-dma.c
Barry Song a7e340657a dmaengine:sirf:take clock and enable it while probing
there is hardcode which enabled the clock of dmaengine before,
this patch takes the clock by standard clock API and enable it
in probe.

Signed-off-by: Barry Song <Baohua.Song@csr.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-04-15 09:51:18 +05:30

761 lines
20 KiB
C

/*
* DMA controller driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/sirfsoc_dma.h>
#include "dmaengine.h"
#define SIRFSOC_DMA_DESCRIPTORS 16
#define SIRFSOC_DMA_CHANNELS 16
#define SIRFSOC_DMA_CH_ADDR 0x00
#define SIRFSOC_DMA_CH_XLEN 0x04
#define SIRFSOC_DMA_CH_YLEN 0x08
#define SIRFSOC_DMA_CH_CTRL 0x0C
#define SIRFSOC_DMA_WIDTH_0 0x100
#define SIRFSOC_DMA_CH_VALID 0x140
#define SIRFSOC_DMA_CH_INT 0x144
#define SIRFSOC_DMA_INT_EN 0x148
#define SIRFSOC_DMA_INT_EN_CLR 0x14C
#define SIRFSOC_DMA_CH_LOOP_CTRL 0x150
#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR 0x15C
#define SIRFSOC_DMA_MODE_CTRL_BIT 4
#define SIRFSOC_DMA_DIR_CTRL_BIT 5
/* xlen and dma_width register is in 4 bytes boundary */
#define SIRFSOC_DMA_WORD_LEN 4
struct sirfsoc_dma_desc {
struct dma_async_tx_descriptor desc;
struct list_head node;
/* SiRFprimaII 2D-DMA parameters */
int xlen; /* DMA xlen */
int ylen; /* DMA ylen */
int width; /* DMA width */
int dir;
bool cyclic; /* is loop DMA? */
u32 addr; /* DMA buffer address */
};
struct sirfsoc_dma_chan {
struct dma_chan chan;
struct list_head free;
struct list_head prepared;
struct list_head queued;
struct list_head active;
struct list_head completed;
unsigned long happened_cyclic;
unsigned long completed_cyclic;
/* Lock for this structure */
spinlock_t lock;
int mode;
};
struct sirfsoc_dma {
struct dma_device dma;
struct tasklet_struct tasklet;
struct sirfsoc_dma_chan channels[SIRFSOC_DMA_CHANNELS];
void __iomem *base;
int irq;
struct clk *clk;
bool is_marco;
};
#define DRV_NAME "sirfsoc_dma"
/* Convert struct dma_chan to struct sirfsoc_dma_chan */
static inline
struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c)
{
return container_of(c, struct sirfsoc_dma_chan, chan);
}
/* Convert struct dma_chan to struct sirfsoc_dma */
static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c);
return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]);
}
/* Execute all queued DMA descriptors */
static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
struct sirfsoc_dma_desc *sdesc = NULL;
/*
* lock has been held by functions calling this, so we don't hold
* lock again
*/
sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc,
node);
/* Move the first queued descriptor to active list */
list_move_tail(&sdesc->node, &schan->active);
/* Start the DMA transfer */
writel_relaxed(sdesc->width, sdma->base + SIRFSOC_DMA_WIDTH_0 +
cid * 4);
writel_relaxed(cid | (schan->mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
(sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
writel_relaxed(sdesc->xlen, sdma->base + cid * 0x10 +
SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen, sdma->base + cid * 0x10 +
SIRFSOC_DMA_CH_YLEN);
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) |
(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
/*
* writel has an implict memory write barrier to make sure data is
* flushed into memory before starting DMA
*/
writel(sdesc->addr >> 2, sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
if (sdesc->cyclic) {
writel((1 << cid) | 1 << (cid + 16) |
readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
schan->happened_cyclic = schan->completed_cyclic = 0;
}
}
/* Interrupt handler */
static irqreturn_t sirfsoc_dma_irq(int irq, void *data)
{
struct sirfsoc_dma *sdma = data;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dma_desc *sdesc = NULL;
u32 is;
int ch;
is = readl(sdma->base + SIRFSOC_DMA_CH_INT);
while ((ch = fls(is) - 1) >= 0) {
is &= ~(1 << ch);
writel_relaxed(1 << ch, sdma->base + SIRFSOC_DMA_CH_INT);
schan = &sdma->channels[ch];
spin_lock(&schan->lock);
sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc,
node);
if (!sdesc->cyclic) {
/* Execute queued descriptors */
list_splice_tail_init(&schan->active, &schan->completed);
if (!list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
} else
schan->happened_cyclic++;
spin_unlock(&schan->lock);
}
/* Schedule tasklet */
tasklet_schedule(&sdma->tasklet);
return IRQ_HANDLED;
}
/* process completed descriptors */
static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma)
{
dma_cookie_t last_cookie = 0;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dma_desc *sdesc;
struct dma_async_tx_descriptor *desc;
unsigned long flags;
unsigned long happened_cyclic;
LIST_HEAD(list);
int i;
for (i = 0; i < sdma->dma.chancnt; i++) {
schan = &sdma->channels[i];
/* Get all completed descriptors */
spin_lock_irqsave(&schan->lock, flags);
if (!list_empty(&schan->completed)) {
list_splice_tail_init(&schan->completed, &list);
spin_unlock_irqrestore(&schan->lock, flags);
/* Execute callbacks and run dependencies */
list_for_each_entry(sdesc, &list, node) {
desc = &sdesc->desc;
if (desc->callback)
desc->callback(desc->callback_param);
last_cookie = desc->cookie;
dma_run_dependencies(desc);
}
/* Free descriptors */
spin_lock_irqsave(&schan->lock, flags);
list_splice_tail_init(&list, &schan->free);
schan->chan.completed_cookie = last_cookie;
spin_unlock_irqrestore(&schan->lock, flags);
} else {
/* for cyclic channel, desc is always in active list */
sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc,
node);
if (!sdesc || (sdesc && !sdesc->cyclic)) {
/* without active cyclic DMA */
spin_unlock_irqrestore(&schan->lock, flags);
continue;
}
/* cyclic DMA */
happened_cyclic = schan->happened_cyclic;
spin_unlock_irqrestore(&schan->lock, flags);
desc = &sdesc->desc;
while (happened_cyclic != schan->completed_cyclic) {
if (desc->callback)
desc->callback(desc->callback_param);
schan->completed_cyclic++;
}
}
}
}
/* DMA Tasklet */
static void sirfsoc_dma_tasklet(unsigned long data)
{
struct sirfsoc_dma *sdma = (void *)data;
sirfsoc_dma_process_completed(sdma);
}
/* Submit descriptor to hardware */
static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan);
struct sirfsoc_dma_desc *sdesc;
unsigned long flags;
dma_cookie_t cookie;
sdesc = container_of(txd, struct sirfsoc_dma_desc, desc);
spin_lock_irqsave(&schan->lock, flags);
/* Move descriptor to queue */
list_move_tail(&sdesc->node, &schan->queued);
cookie = dma_cookie_assign(txd);
spin_unlock_irqrestore(&schan->lock, flags);
return cookie;
}
static int sirfsoc_dma_slave_config(struct sirfsoc_dma_chan *schan,
struct dma_slave_config *config)
{
unsigned long flags;
if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) ||
(config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES))
return -EINVAL;
spin_lock_irqsave(&schan->lock, flags);
schan->mode = (config->src_maxburst == 4 ? 1 : 0);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_terminate_all(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (!sdma->is_marco) {
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) &
~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL)
& ~((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
} else {
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR);
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_CLR);
}
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
list_splice_tail_init(&schan->active, &schan->free);
list_splice_tail_init(&schan->queued, &schan->free);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_pause_chan(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (!sdma->is_marco)
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL)
& ~((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
else
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_CLR);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_resume_chan(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (!sdma->is_marco)
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL)
| ((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
else
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct dma_slave_config *config;
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
switch (cmd) {
case DMA_PAUSE:
return sirfsoc_dma_pause_chan(schan);
case DMA_RESUME:
return sirfsoc_dma_resume_chan(schan);
case DMA_TERMINATE_ALL:
return sirfsoc_dma_terminate_all(schan);
case DMA_SLAVE_CONFIG:
config = (struct dma_slave_config *)arg;
return sirfsoc_dma_slave_config(schan, config);
default:
break;
}
return -ENOSYS;
}
/* Alloc channel resources */
static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc;
unsigned long flags;
LIST_HEAD(descs);
int i;
/* Alloc descriptors for this channel */
for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) {
sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL);
if (!sdesc) {
dev_notice(sdma->dma.dev, "Memory allocation error. "
"Allocated only %u descriptors\n", i);
break;
}
dma_async_tx_descriptor_init(&sdesc->desc, chan);
sdesc->desc.flags = DMA_CTRL_ACK;
sdesc->desc.tx_submit = sirfsoc_dma_tx_submit;
list_add_tail(&sdesc->node, &descs);
}
/* Return error only if no descriptors were allocated */
if (i == 0)
return -ENOMEM;
spin_lock_irqsave(&schan->lock, flags);
list_splice_tail_init(&descs, &schan->free);
spin_unlock_irqrestore(&schan->lock, flags);
return i;
}
/* Free channel resources */
static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc, *tmp;
unsigned long flags;
LIST_HEAD(descs);
spin_lock_irqsave(&schan->lock, flags);
/* Channel must be idle */
BUG_ON(!list_empty(&schan->prepared));
BUG_ON(!list_empty(&schan->queued));
BUG_ON(!list_empty(&schan->active));
BUG_ON(!list_empty(&schan->completed));
/* Move data */
list_splice_tail_init(&schan->free, &descs);
spin_unlock_irqrestore(&schan->lock, flags);
/* Free descriptors */
list_for_each_entry_safe(sdesc, tmp, &descs, node)
kfree(sdesc);
}
/* Send pending descriptor to hardware */
static void sirfsoc_dma_issue_pending(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (list_empty(&schan->active) && !list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
spin_unlock_irqrestore(&schan->lock, flags);
}
/* Check request completion status */
static enum dma_status
sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
enum dma_status ret;
spin_lock_irqsave(&schan->lock, flags);
ret = dma_cookie_status(chan, cookie, txstate);
spin_unlock_irqrestore(&schan->lock, flags);
return ret;
}
static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc = NULL;
unsigned long iflags;
int ret;
if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) {
ret = -EINVAL;
goto err_dir;
}
/* Get free descriptor */
spin_lock_irqsave(&schan->lock, iflags);
if (!list_empty(&schan->free)) {
sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
node);
list_del(&sdesc->node);
}
spin_unlock_irqrestore(&schan->lock, iflags);
if (!sdesc) {
/* try to free completed descriptors */
sirfsoc_dma_process_completed(sdma);
ret = 0;
goto no_desc;
}
/* Place descriptor in prepared list */
spin_lock_irqsave(&schan->lock, iflags);
/*
* Number of chunks in a frame can only be 1 for prima2
* and ylen (number of frame - 1) must be at least 0
*/
if ((xt->frame_size == 1) && (xt->numf > 0)) {
sdesc->cyclic = 0;
sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN;
sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) /
SIRFSOC_DMA_WORD_LEN;
sdesc->ylen = xt->numf - 1;
if (xt->dir == DMA_MEM_TO_DEV) {
sdesc->addr = xt->src_start;
sdesc->dir = 1;
} else {
sdesc->addr = xt->dst_start;
sdesc->dir = 0;
}
list_add_tail(&sdesc->node, &schan->prepared);
} else {
pr_err("sirfsoc DMA Invalid xfer\n");
ret = -EINVAL;
goto err_xfer;
}
spin_unlock_irqrestore(&schan->lock, iflags);
return &sdesc->desc;
err_xfer:
spin_unlock_irqrestore(&schan->lock, iflags);
no_desc:
err_dir:
return ERR_PTR(ret);
}
static struct dma_async_tx_descriptor *
sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction direction, unsigned long flags, void *context)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc = NULL;
unsigned long iflags;
/*
* we only support cycle transfer with 2 period
* If the X-length is set to 0, it would be the loop mode.
* The DMA address keeps increasing until reaching the end of a loop
* area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then
* the DMA address goes back to the beginning of this area.
* In loop mode, the DMA data region is divided into two parts, BUFA
* and BUFB. DMA controller generates interrupts twice in each loop:
* when the DMA address reaches the end of BUFA or the end of the
* BUFB
*/
if (buf_len != 2 * period_len)
return ERR_PTR(-EINVAL);
/* Get free descriptor */
spin_lock_irqsave(&schan->lock, iflags);
if (!list_empty(&schan->free)) {
sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
node);
list_del(&sdesc->node);
}
spin_unlock_irqrestore(&schan->lock, iflags);
if (!sdesc)
return 0;
/* Place descriptor in prepared list */
spin_lock_irqsave(&schan->lock, iflags);
sdesc->addr = addr;
sdesc->cyclic = 1;
sdesc->xlen = 0;
sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1;
sdesc->width = 1;
list_add_tail(&sdesc->node, &schan->prepared);
spin_unlock_irqrestore(&schan->lock, iflags);
return &sdesc->desc;
}
/*
* The DMA controller consists of 16 independent DMA channels.
* Each channel is allocated to a different function
*/
bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id)
{
unsigned int ch_nr = (unsigned int) chan_id;
if (ch_nr == chan->chan_id +
chan->device->dev_id * SIRFSOC_DMA_CHANNELS)
return true;
return false;
}
EXPORT_SYMBOL(sirfsoc_dma_filter_id);
static int sirfsoc_dma_probe(struct platform_device *op)
{
struct device_node *dn = op->dev.of_node;
struct device *dev = &op->dev;
struct dma_device *dma;
struct sirfsoc_dma *sdma;
struct sirfsoc_dma_chan *schan;
struct resource res;
ulong regs_start, regs_size;
u32 id;
int ret, i;
sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL);
if (!sdma) {
dev_err(dev, "Memory exhausted!\n");
return -ENOMEM;
}
if (of_device_is_compatible(dn, "sirf,marco-dmac"))
sdma->is_marco = true;
if (of_property_read_u32(dn, "cell-index", &id)) {
dev_err(dev, "Fail to get DMAC index\n");
return -ENODEV;
}
sdma->irq = irq_of_parse_and_map(dn, 0);
if (sdma->irq == NO_IRQ) {
dev_err(dev, "Error mapping IRQ!\n");
return -EINVAL;
}
sdma->clk = devm_clk_get(dev, NULL);
if (IS_ERR(sdma->clk)) {
dev_err(dev, "failed to get a clock.\n");
return PTR_ERR(sdma->clk);
}
ret = of_address_to_resource(dn, 0, &res);
if (ret) {
dev_err(dev, "Error parsing memory region!\n");
goto irq_dispose;
}
regs_start = res.start;
regs_size = resource_size(&res);
sdma->base = devm_ioremap(dev, regs_start, regs_size);
if (!sdma->base) {
dev_err(dev, "Error mapping memory region!\n");
ret = -ENOMEM;
goto irq_dispose;
}
ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma);
if (ret) {
dev_err(dev, "Error requesting IRQ!\n");
ret = -EINVAL;
goto irq_dispose;
}
dma = &sdma->dma;
dma->dev = dev;
dma->chancnt = SIRFSOC_DMA_CHANNELS;
dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources;
dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources;
dma->device_issue_pending = sirfsoc_dma_issue_pending;
dma->device_control = sirfsoc_dma_control;
dma->device_tx_status = sirfsoc_dma_tx_status;
dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved;
dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic;
INIT_LIST_HEAD(&dma->channels);
dma_cap_set(DMA_SLAVE, dma->cap_mask);
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
for (i = 0; i < dma->chancnt; i++) {
schan = &sdma->channels[i];
schan->chan.device = dma;
dma_cookie_init(&schan->chan);
INIT_LIST_HEAD(&schan->free);
INIT_LIST_HEAD(&schan->prepared);
INIT_LIST_HEAD(&schan->queued);
INIT_LIST_HEAD(&schan->active);
INIT_LIST_HEAD(&schan->completed);
spin_lock_init(&schan->lock);
list_add_tail(&schan->chan.device_node, &dma->channels);
}
tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma);
clk_prepare_enable(sdma->clk);
/* Register DMA engine */
dev_set_drvdata(dev, sdma);
ret = dma_async_device_register(dma);
if (ret)
goto free_irq;
dev_info(dev, "initialized SIRFSOC DMAC driver\n");
return 0;
free_irq:
free_irq(sdma->irq, sdma);
irq_dispose:
irq_dispose_mapping(sdma->irq);
return ret;
}
static int sirfsoc_dma_remove(struct platform_device *op)
{
struct device *dev = &op->dev;
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
clk_disable_unprepare(sdma->clk);
dma_async_device_unregister(&sdma->dma);
free_irq(sdma->irq, sdma);
irq_dispose_mapping(sdma->irq);
return 0;
}
static struct of_device_id sirfsoc_dma_match[] = {
{ .compatible = "sirf,prima2-dmac", },
{ .compatible = "sirf,marco-dmac", },
{},
};
static struct platform_driver sirfsoc_dma_driver = {
.probe = sirfsoc_dma_probe,
.remove = sirfsoc_dma_remove,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = sirfsoc_dma_match,
},
};
module_platform_driver(sirfsoc_dma_driver);
MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>, "
"Barry Song <baohua.song@csr.com>");
MODULE_DESCRIPTION("SIRFSOC DMA control driver");
MODULE_LICENSE("GPL v2");