kernel-fxtec-pro1x/drivers/tty/serial/efm32-uart.c
Uwe Kleine-König d36f47fa84 serial: efm32: correct namespacing of location property
Olof Johansson pointed out that usually the company name is picked as
namespace prefix to specific properties. So expect "energymicro,location"
but fall back to the previously introduced name "efm32,location".

Cc: Olof Johansson <olof@lixom.net>
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-11 17:49:46 -07:00

850 lines
21 KiB
C

#if defined(CONFIG_SERIAL_EFM32_UART_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/serial_core.h>
#include <linux/tty_flip.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_data/efm32-uart.h>
#define DRIVER_NAME "efm32-uart"
#define DEV_NAME "ttyefm"
#define UARTn_CTRL 0x00
#define UARTn_CTRL_SYNC 0x0001
#define UARTn_CTRL_TXBIL 0x1000
#define UARTn_FRAME 0x04
#define UARTn_FRAME_DATABITS__MASK 0x000f
#define UARTn_FRAME_DATABITS(n) ((n) - 3)
#define UARTn_FRAME_PARITY_NONE 0x0000
#define UARTn_FRAME_PARITY_EVEN 0x0200
#define UARTn_FRAME_PARITY_ODD 0x0300
#define UARTn_FRAME_STOPBITS_HALF 0x0000
#define UARTn_FRAME_STOPBITS_ONE 0x1000
#define UARTn_FRAME_STOPBITS_TWO 0x3000
#define UARTn_CMD 0x0c
#define UARTn_CMD_RXEN 0x0001
#define UARTn_CMD_RXDIS 0x0002
#define UARTn_CMD_TXEN 0x0004
#define UARTn_CMD_TXDIS 0x0008
#define UARTn_STATUS 0x10
#define UARTn_STATUS_TXENS 0x0002
#define UARTn_STATUS_TXC 0x0020
#define UARTn_STATUS_TXBL 0x0040
#define UARTn_STATUS_RXDATAV 0x0080
#define UARTn_CLKDIV 0x14
#define UARTn_RXDATAX 0x18
#define UARTn_RXDATAX_RXDATA__MASK 0x01ff
#define UARTn_RXDATAX_PERR 0x4000
#define UARTn_RXDATAX_FERR 0x8000
/*
* This is a software only flag used for ignore_status_mask and
* read_status_mask! It's used for breaks that the hardware doesn't report
* explicitly.
*/
#define SW_UARTn_RXDATAX_BERR 0x2000
#define UARTn_TXDATA 0x34
#define UARTn_IF 0x40
#define UARTn_IF_TXC 0x0001
#define UARTn_IF_TXBL 0x0002
#define UARTn_IF_RXDATAV 0x0004
#define UARTn_IF_RXOF 0x0010
#define UARTn_IFS 0x44
#define UARTn_IFC 0x48
#define UARTn_IEN 0x4c
#define UARTn_ROUTE 0x54
#define UARTn_ROUTE_LOCATION__MASK 0x0700
#define UARTn_ROUTE_LOCATION(n) (((n) << 8) & UARTn_ROUTE_LOCATION__MASK)
#define UARTn_ROUTE_RXPEN 0x0001
#define UARTn_ROUTE_TXPEN 0x0002
struct efm32_uart_port {
struct uart_port port;
unsigned int txirq;
struct clk *clk;
struct efm32_uart_pdata pdata;
};
#define to_efm_port(_port) container_of(_port, struct efm32_uart_port, port)
#define efm_debug(efm_port, format, arg...) \
dev_dbg(efm_port->port.dev, format, ##arg)
static void efm32_uart_write32(struct efm32_uart_port *efm_port,
u32 value, unsigned offset)
{
writel_relaxed(value, efm_port->port.membase + offset);
}
static u32 efm32_uart_read32(struct efm32_uart_port *efm_port,
unsigned offset)
{
return readl_relaxed(efm_port->port.membase + offset);
}
static unsigned int efm32_uart_tx_empty(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
u32 status = efm32_uart_read32(efm_port, UARTn_STATUS);
if (status & UARTn_STATUS_TXC)
return TIOCSER_TEMT;
else
return 0;
}
static void efm32_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
/* sorry, neither handshaking lines nor loop functionallity */
}
static unsigned int efm32_uart_get_mctrl(struct uart_port *port)
{
/* sorry, no handshaking lines available */
return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR;
}
static void efm32_uart_stop_tx(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
u32 ien = efm32_uart_read32(efm_port, UARTn_IEN);
efm32_uart_write32(efm_port, UARTn_CMD_TXDIS, UARTn_CMD);
ien &= ~(UARTn_IF_TXC | UARTn_IF_TXBL);
efm32_uart_write32(efm_port, ien, UARTn_IEN);
}
static void efm32_uart_tx_chars(struct efm32_uart_port *efm_port)
{
struct uart_port *port = &efm_port->port;
struct circ_buf *xmit = &port->state->xmit;
while (efm32_uart_read32(efm_port, UARTn_STATUS) &
UARTn_STATUS_TXBL) {
if (port->x_char) {
port->icount.tx++;
efm32_uart_write32(efm_port, port->x_char,
UARTn_TXDATA);
port->x_char = 0;
continue;
}
if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) {
port->icount.tx++;
efm32_uart_write32(efm_port, xmit->buf[xmit->tail],
UARTn_TXDATA);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
} else
break;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (!port->x_char && uart_circ_empty(xmit) &&
efm32_uart_read32(efm_port, UARTn_STATUS) &
UARTn_STATUS_TXC)
efm32_uart_stop_tx(port);
}
static void efm32_uart_start_tx(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
u32 ien;
efm32_uart_write32(efm_port,
UARTn_IF_TXBL | UARTn_IF_TXC, UARTn_IFC);
ien = efm32_uart_read32(efm_port, UARTn_IEN);
efm32_uart_write32(efm_port,
ien | UARTn_IF_TXBL | UARTn_IF_TXC, UARTn_IEN);
efm32_uart_write32(efm_port, UARTn_CMD_TXEN, UARTn_CMD);
efm32_uart_tx_chars(efm_port);
}
static void efm32_uart_stop_rx(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
efm32_uart_write32(efm_port, UARTn_CMD_RXDIS, UARTn_CMD);
}
static void efm32_uart_break_ctl(struct uart_port *port, int ctl)
{
/* not possible without fiddling with gpios */
}
static void efm32_uart_rx_chars(struct efm32_uart_port *efm_port)
{
struct uart_port *port = &efm_port->port;
while (efm32_uart_read32(efm_port, UARTn_STATUS) &
UARTn_STATUS_RXDATAV) {
u32 rxdata = efm32_uart_read32(efm_port, UARTn_RXDATAX);
int flag = 0;
/*
* This is a reserved bit and I only saw it read as 0. But to be
* sure not to be confused too much by new devices adhere to the
* warning in the reference manual that reserverd bits might
* read as 1 in the future.
*/
rxdata &= ~SW_UARTn_RXDATAX_BERR;
port->icount.rx++;
if ((rxdata & UARTn_RXDATAX_FERR) &&
!(rxdata & UARTn_RXDATAX_RXDATA__MASK)) {
rxdata |= SW_UARTn_RXDATAX_BERR;
port->icount.brk++;
if (uart_handle_break(port))
continue;
} else if (rxdata & UARTn_RXDATAX_PERR)
port->icount.parity++;
else if (rxdata & UARTn_RXDATAX_FERR)
port->icount.frame++;
rxdata &= port->read_status_mask;
if (rxdata & SW_UARTn_RXDATAX_BERR)
flag = TTY_BREAK;
else if (rxdata & UARTn_RXDATAX_PERR)
flag = TTY_PARITY;
else if (rxdata & UARTn_RXDATAX_FERR)
flag = TTY_FRAME;
else if (uart_handle_sysrq_char(port,
rxdata & UARTn_RXDATAX_RXDATA__MASK))
continue;
if ((rxdata & port->ignore_status_mask) == 0)
tty_insert_flip_char(&port->state->port,
rxdata & UARTn_RXDATAX_RXDATA__MASK, flag);
}
}
static irqreturn_t efm32_uart_rxirq(int irq, void *data)
{
struct efm32_uart_port *efm_port = data;
u32 irqflag = efm32_uart_read32(efm_port, UARTn_IF);
int handled = IRQ_NONE;
struct uart_port *port = &efm_port->port;
struct tty_port *tport = &port->state->port;
spin_lock(&port->lock);
if (irqflag & UARTn_IF_RXDATAV) {
efm32_uart_write32(efm_port, UARTn_IF_RXDATAV, UARTn_IFC);
efm32_uart_rx_chars(efm_port);
handled = IRQ_HANDLED;
}
if (irqflag & UARTn_IF_RXOF) {
efm32_uart_write32(efm_port, UARTn_IF_RXOF, UARTn_IFC);
port->icount.overrun++;
tty_insert_flip_char(tport, 0, TTY_OVERRUN);
handled = IRQ_HANDLED;
}
spin_unlock(&port->lock);
tty_flip_buffer_push(tport);
return handled;
}
static irqreturn_t efm32_uart_txirq(int irq, void *data)
{
struct efm32_uart_port *efm_port = data;
u32 irqflag = efm32_uart_read32(efm_port, UARTn_IF);
/* TXBL doesn't need to be cleared */
if (irqflag & UARTn_IF_TXC)
efm32_uart_write32(efm_port, UARTn_IF_TXC, UARTn_IFC);
if (irqflag & (UARTn_IF_TXC | UARTn_IF_TXBL)) {
efm32_uart_tx_chars(efm_port);
return IRQ_HANDLED;
} else
return IRQ_NONE;
}
static int efm32_uart_startup(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
int ret;
ret = clk_enable(efm_port->clk);
if (ret) {
efm_debug(efm_port, "failed to enable clk\n");
goto err_clk_enable;
}
port->uartclk = clk_get_rate(efm_port->clk);
/* Enable pins at configured location */
efm32_uart_write32(efm_port,
UARTn_ROUTE_LOCATION(efm_port->pdata.location) |
UARTn_ROUTE_RXPEN | UARTn_ROUTE_TXPEN,
UARTn_ROUTE);
ret = request_irq(port->irq, efm32_uart_rxirq, 0,
DRIVER_NAME, efm_port);
if (ret) {
efm_debug(efm_port, "failed to register rxirq\n");
goto err_request_irq_rx;
}
/* disable all irqs */
efm32_uart_write32(efm_port, 0, UARTn_IEN);
ret = request_irq(efm_port->txirq, efm32_uart_txirq, 0,
DRIVER_NAME, efm_port);
if (ret) {
efm_debug(efm_port, "failed to register txirq\n");
free_irq(port->irq, efm_port);
err_request_irq_rx:
clk_disable(efm_port->clk);
} else {
efm32_uart_write32(efm_port,
UARTn_IF_RXDATAV | UARTn_IF_RXOF, UARTn_IEN);
efm32_uart_write32(efm_port, UARTn_CMD_RXEN, UARTn_CMD);
}
err_clk_enable:
return ret;
}
static void efm32_uart_shutdown(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
efm32_uart_write32(efm_port, 0, UARTn_IEN);
free_irq(port->irq, efm_port);
clk_disable(efm_port->clk);
}
static void efm32_uart_set_termios(struct uart_port *port,
struct ktermios *new, struct ktermios *old)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
unsigned long flags;
unsigned baud;
u32 clkdiv;
u32 frame = 0;
/* no modem control lines */
new->c_cflag &= ~(CRTSCTS | CMSPAR);
baud = uart_get_baud_rate(port, new, old,
DIV_ROUND_CLOSEST(port->uartclk, 16 * 8192),
DIV_ROUND_CLOSEST(port->uartclk, 16));
switch (new->c_cflag & CSIZE) {
case CS5:
frame |= UARTn_FRAME_DATABITS(5);
break;
case CS6:
frame |= UARTn_FRAME_DATABITS(6);
break;
case CS7:
frame |= UARTn_FRAME_DATABITS(7);
break;
case CS8:
frame |= UARTn_FRAME_DATABITS(8);
break;
}
if (new->c_cflag & CSTOPB)
/* the receiver only verifies the first stop bit */
frame |= UARTn_FRAME_STOPBITS_TWO;
else
frame |= UARTn_FRAME_STOPBITS_ONE;
if (new->c_cflag & PARENB) {
if (new->c_cflag & PARODD)
frame |= UARTn_FRAME_PARITY_ODD;
else
frame |= UARTn_FRAME_PARITY_EVEN;
} else
frame |= UARTn_FRAME_PARITY_NONE;
/*
* the 6 lowest bits of CLKDIV are dc, bit 6 has value 0.25.
* port->uartclk <= 14e6, so 4 * port->uartclk doesn't overflow.
*/
clkdiv = (DIV_ROUND_CLOSEST(4 * port->uartclk, 16 * baud) - 4) << 6;
spin_lock_irqsave(&port->lock, flags);
efm32_uart_write32(efm_port,
UARTn_CMD_TXDIS | UARTn_CMD_RXDIS, UARTn_CMD);
port->read_status_mask = UARTn_RXDATAX_RXDATA__MASK;
if (new->c_iflag & INPCK)
port->read_status_mask |=
UARTn_RXDATAX_FERR | UARTn_RXDATAX_PERR;
if (new->c_iflag & (IGNBRK | BRKINT | PARMRK))
port->read_status_mask |= SW_UARTn_RXDATAX_BERR;
port->ignore_status_mask = 0;
if (new->c_iflag & IGNPAR)
port->ignore_status_mask |=
UARTn_RXDATAX_FERR | UARTn_RXDATAX_PERR;
if (new->c_iflag & IGNBRK)
port->ignore_status_mask |= SW_UARTn_RXDATAX_BERR;
uart_update_timeout(port, new->c_cflag, baud);
efm32_uart_write32(efm_port, UARTn_CTRL_TXBIL, UARTn_CTRL);
efm32_uart_write32(efm_port, frame, UARTn_FRAME);
efm32_uart_write32(efm_port, clkdiv, UARTn_CLKDIV);
efm32_uart_write32(efm_port, UARTn_CMD_TXEN | UARTn_CMD_RXEN,
UARTn_CMD);
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *efm32_uart_type(struct uart_port *port)
{
return port->type == PORT_EFMUART ? "efm32-uart" : NULL;
}
static void efm32_uart_release_port(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
clk_unprepare(efm_port->clk);
clk_put(efm_port->clk);
iounmap(port->membase);
}
static int efm32_uart_request_port(struct uart_port *port)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
int ret;
port->membase = ioremap(port->mapbase, 60);
if (!efm_port->port.membase) {
ret = -ENOMEM;
efm_debug(efm_port, "failed to remap\n");
goto err_ioremap;
}
efm_port->clk = clk_get(port->dev, NULL);
if (IS_ERR(efm_port->clk)) {
ret = PTR_ERR(efm_port->clk);
efm_debug(efm_port, "failed to get clock\n");
goto err_clk_get;
}
ret = clk_prepare(efm_port->clk);
if (ret) {
clk_put(efm_port->clk);
err_clk_get:
iounmap(port->membase);
err_ioremap:
return ret;
}
return 0;
}
static void efm32_uart_config_port(struct uart_port *port, int type)
{
if (type & UART_CONFIG_TYPE &&
!efm32_uart_request_port(port))
port->type = PORT_EFMUART;
}
static int efm32_uart_verify_port(struct uart_port *port,
struct serial_struct *serinfo)
{
int ret = 0;
if (serinfo->type != PORT_UNKNOWN && serinfo->type != PORT_EFMUART)
ret = -EINVAL;
return ret;
}
static struct uart_ops efm32_uart_pops = {
.tx_empty = efm32_uart_tx_empty,
.set_mctrl = efm32_uart_set_mctrl,
.get_mctrl = efm32_uart_get_mctrl,
.stop_tx = efm32_uart_stop_tx,
.start_tx = efm32_uart_start_tx,
.stop_rx = efm32_uart_stop_rx,
.break_ctl = efm32_uart_break_ctl,
.startup = efm32_uart_startup,
.shutdown = efm32_uart_shutdown,
.set_termios = efm32_uart_set_termios,
.type = efm32_uart_type,
.release_port = efm32_uart_release_port,
.request_port = efm32_uart_request_port,
.config_port = efm32_uart_config_port,
.verify_port = efm32_uart_verify_port,
};
static struct efm32_uart_port *efm32_uart_ports[5];
#ifdef CONFIG_SERIAL_EFM32_UART_CONSOLE
static void efm32_uart_console_putchar(struct uart_port *port, int ch)
{
struct efm32_uart_port *efm_port = to_efm_port(port);
unsigned int timeout = 0x400;
u32 status;
while (1) {
status = efm32_uart_read32(efm_port, UARTn_STATUS);
if (status & UARTn_STATUS_TXBL)
break;
if (!timeout--)
return;
}
efm32_uart_write32(efm_port, ch, UARTn_TXDATA);
}
static void efm32_uart_console_write(struct console *co, const char *s,
unsigned int count)
{
struct efm32_uart_port *efm_port = efm32_uart_ports[co->index];
u32 status = efm32_uart_read32(efm_port, UARTn_STATUS);
unsigned int timeout = 0x400;
if (!(status & UARTn_STATUS_TXENS))
efm32_uart_write32(efm_port, UARTn_CMD_TXEN, UARTn_CMD);
uart_console_write(&efm_port->port, s, count,
efm32_uart_console_putchar);
/* Wait for the transmitter to become empty */
while (1) {
u32 status = efm32_uart_read32(efm_port, UARTn_STATUS);
if (status & UARTn_STATUS_TXC)
break;
if (!timeout--)
break;
}
if (!(status & UARTn_STATUS_TXENS))
efm32_uart_write32(efm_port, UARTn_CMD_TXDIS, UARTn_CMD);
}
static void efm32_uart_console_get_options(struct efm32_uart_port *efm_port,
int *baud, int *parity, int *bits)
{
u32 ctrl = efm32_uart_read32(efm_port, UARTn_CTRL);
u32 route, clkdiv, frame;
if (ctrl & UARTn_CTRL_SYNC)
/* not operating in async mode */
return;
route = efm32_uart_read32(efm_port, UARTn_ROUTE);
if (!(route & UARTn_ROUTE_TXPEN))
/* tx pin not routed */
return;
clkdiv = efm32_uart_read32(efm_port, UARTn_CLKDIV);
*baud = DIV_ROUND_CLOSEST(4 * efm_port->port.uartclk,
16 * (4 + (clkdiv >> 6)));
frame = efm32_uart_read32(efm_port, UARTn_FRAME);
if (frame & UARTn_FRAME_PARITY_ODD)
*parity = 'o';
else if (frame & UARTn_FRAME_PARITY_EVEN)
*parity = 'e';
else
*parity = 'n';
*bits = (frame & UARTn_FRAME_DATABITS__MASK) -
UARTn_FRAME_DATABITS(4) + 4;
efm_debug(efm_port, "get_opts: options=%d%c%d\n",
*baud, *parity, *bits);
}
static int efm32_uart_console_setup(struct console *co, char *options)
{
struct efm32_uart_port *efm_port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
int ret;
if (co->index < 0 || co->index >= ARRAY_SIZE(efm32_uart_ports)) {
unsigned i;
for (i = 0; i < ARRAY_SIZE(efm32_uart_ports); ++i) {
if (efm32_uart_ports[i]) {
pr_warn("efm32-console: fall back to console index %u (from %hhi)\n",
i, co->index);
co->index = i;
break;
}
}
}
efm_port = efm32_uart_ports[co->index];
if (!efm_port) {
pr_warn("efm32-console: No port at %d\n", co->index);
return -ENODEV;
}
ret = clk_prepare(efm_port->clk);
if (ret) {
dev_warn(efm_port->port.dev,
"console: clk_prepare failed: %d\n", ret);
return ret;
}
efm_port->port.uartclk = clk_get_rate(efm_port->clk);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
efm32_uart_console_get_options(efm_port,
&baud, &parity, &bits);
return uart_set_options(&efm_port->port, co, baud, parity, bits, flow);
}
static struct uart_driver efm32_uart_reg;
static struct console efm32_uart_console = {
.name = DEV_NAME,
.write = efm32_uart_console_write,
.device = uart_console_device,
.setup = efm32_uart_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &efm32_uart_reg,
};
#else
#define efm32_uart_console (*(struct console *)NULL)
#endif /* ifdef CONFIG_SERIAL_EFM32_UART_CONSOLE / else */
static struct uart_driver efm32_uart_reg = {
.owner = THIS_MODULE,
.driver_name = DRIVER_NAME,
.dev_name = DEV_NAME,
.nr = ARRAY_SIZE(efm32_uart_ports),
.cons = &efm32_uart_console,
};
static int efm32_uart_probe_dt(struct platform_device *pdev,
struct efm32_uart_port *efm_port)
{
struct device_node *np = pdev->dev.of_node;
u32 location;
int ret;
if (!np)
return 1;
ret = of_property_read_u32(np, "energymicro,location", &location);
if (ret)
/* fall back to wrongly namespaced property */
ret = of_property_read_u32(np, "efm32,location", &location);
if (ret)
/* fall back to old and (wrongly) generic property "location" */
ret = of_property_read_u32(np, "location", &location);
if (!ret) {
if (location > 5) {
dev_err(&pdev->dev, "invalid location\n");
return -EINVAL;
}
efm_debug(efm_port, "using location %u\n", location);
efm_port->pdata.location = location;
} else {
efm_debug(efm_port, "fall back to location 0\n");
}
ret = of_alias_get_id(np, "serial");
if (ret < 0) {
dev_err(&pdev->dev, "failed to get alias id: %d\n", ret);
return ret;
} else {
efm_port->port.line = ret;
return 0;
}
}
static int efm32_uart_probe(struct platform_device *pdev)
{
struct efm32_uart_port *efm_port;
struct resource *res;
unsigned int line;
int ret;
efm_port = kzalloc(sizeof(*efm_port), GFP_KERNEL);
if (!efm_port) {
dev_dbg(&pdev->dev, "failed to allocate private data\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
dev_dbg(&pdev->dev, "failed to determine base address\n");
goto err_get_base;
}
if (resource_size(res) < 60) {
ret = -EINVAL;
dev_dbg(&pdev->dev, "memory resource too small\n");
goto err_too_small;
}
ret = platform_get_irq(pdev, 0);
if (ret <= 0) {
dev_dbg(&pdev->dev, "failed to get rx irq\n");
goto err_get_rxirq;
}
efm_port->port.irq = ret;
ret = platform_get_irq(pdev, 1);
if (ret <= 0)
ret = efm_port->port.irq + 1;
efm_port->txirq = ret;
efm_port->port.dev = &pdev->dev;
efm_port->port.mapbase = res->start;
efm_port->port.type = PORT_EFMUART;
efm_port->port.iotype = UPIO_MEM32;
efm_port->port.fifosize = 2;
efm_port->port.ops = &efm32_uart_pops;
efm_port->port.flags = UPF_BOOT_AUTOCONF;
ret = efm32_uart_probe_dt(pdev, efm_port);
if (ret > 0) {
/* not created by device tree */
const struct efm32_uart_pdata *pdata = dev_get_platdata(&pdev->dev);
efm_port->port.line = pdev->id;
if (pdata)
efm_port->pdata = *pdata;
} else if (ret < 0)
goto err_probe_dt;
line = efm_port->port.line;
if (line >= 0 && line < ARRAY_SIZE(efm32_uart_ports))
efm32_uart_ports[line] = efm_port;
ret = uart_add_one_port(&efm32_uart_reg, &efm_port->port);
if (ret) {
dev_dbg(&pdev->dev, "failed to add port: %d\n", ret);
if (line >= 0 && line < ARRAY_SIZE(efm32_uart_ports))
efm32_uart_ports[line] = NULL;
err_probe_dt:
err_get_rxirq:
err_too_small:
err_get_base:
kfree(efm_port);
} else {
platform_set_drvdata(pdev, efm_port);
dev_dbg(&pdev->dev, "\\o/\n");
}
return ret;
}
static int efm32_uart_remove(struct platform_device *pdev)
{
struct efm32_uart_port *efm_port = platform_get_drvdata(pdev);
unsigned int line = efm_port->port.line;
uart_remove_one_port(&efm32_uart_reg, &efm_port->port);
if (line >= 0 && line < ARRAY_SIZE(efm32_uart_ports))
efm32_uart_ports[line] = NULL;
kfree(efm_port);
return 0;
}
static const struct of_device_id efm32_uart_dt_ids[] = {
{
.compatible = "energymicro,efm32-uart",
}, {
/* doesn't follow the "vendor,device" scheme, don't use */
.compatible = "efm32,uart",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, efm32_uart_dt_ids);
static struct platform_driver efm32_uart_driver = {
.probe = efm32_uart_probe,
.remove = efm32_uart_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = efm32_uart_dt_ids,
},
};
static int __init efm32_uart_init(void)
{
int ret;
ret = uart_register_driver(&efm32_uart_reg);
if (ret)
return ret;
ret = platform_driver_register(&efm32_uart_driver);
if (ret)
uart_unregister_driver(&efm32_uart_reg);
pr_info("EFM32 UART/USART driver\n");
return ret;
}
module_init(efm32_uart_init);
static void __exit efm32_uart_exit(void)
{
platform_driver_unregister(&efm32_uart_driver);
uart_unregister_driver(&efm32_uart_reg);
}
module_exit(efm32_uart_exit);
MODULE_AUTHOR("Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>");
MODULE_DESCRIPTION("EFM32 UART/USART driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);