kernel-fxtec-pro1x/drivers/usb/host/xhci-mem.c
Xenia Ragiadakou 7dd09a1af2 xhci: replace xhci_write_64() with writeq()
Function xhci_write_64() is used to write 64bit xHC registers residing in MMIO.
On 32bit systems, xHC registers need to be written with 32bit accesses by
writing first the lower 32bits and then the higher 32bits. The header file
asm-generic/io-64-nonatomic-lo-hi.h ensures that on 32bit systems writeq() will
will write 64bit registers in 32bit chunks with low-high order.

Replace all calls to xhci_write_64() with calls to writeq().

This is done to reduce code duplication since 64bit low-high write logic
is already implemented and to take advantage of inherent "atomic" 64bit
write operations on 64bit systems.

Signed-off-by: Xenia Ragiadakou <burzalodowa@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2013-12-02 12:59:50 -08:00

2447 lines
73 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/usb.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include "xhci.h"
#include "xhci-trace.h"
/*
* Allocates a generic ring segment from the ring pool, sets the dma address,
* initializes the segment to zero, and sets the private next pointer to NULL.
*
* Section 4.11.1.1:
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
*/
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
unsigned int cycle_state, gfp_t flags)
{
struct xhci_segment *seg;
dma_addr_t dma;
int i;
seg = kzalloc(sizeof *seg, flags);
if (!seg)
return NULL;
seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
if (!seg->trbs) {
kfree(seg);
return NULL;
}
memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
if (cycle_state == 0) {
for (i = 0; i < TRBS_PER_SEGMENT; i++)
seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
}
seg->dma = dma;
seg->next = NULL;
return seg;
}
static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
if (seg->trbs) {
dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
seg->trbs = NULL;
}
kfree(seg);
}
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
struct xhci_segment *first)
{
struct xhci_segment *seg;
seg = first->next;
while (seg != first) {
struct xhci_segment *next = seg->next;
xhci_segment_free(xhci, seg);
seg = next;
}
xhci_segment_free(xhci, first);
}
/*
* Make the prev segment point to the next segment.
*
* Change the last TRB in the prev segment to be a Link TRB which points to the
* DMA address of the next segment. The caller needs to set any Link TRB
* related flags, such as End TRB, Toggle Cycle, and no snoop.
*/
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
struct xhci_segment *next, enum xhci_ring_type type)
{
u32 val;
if (!prev || !next)
return;
prev->next = next;
if (type != TYPE_EVENT) {
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
cpu_to_le64(next->dma);
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
val &= ~TRB_TYPE_BITMASK;
val |= TRB_TYPE(TRB_LINK);
/* Always set the chain bit with 0.95 hardware */
/* Set chain bit for isoc rings on AMD 0.96 host */
if (xhci_link_trb_quirk(xhci) ||
(type == TYPE_ISOC &&
(xhci->quirks & XHCI_AMD_0x96_HOST)))
val |= TRB_CHAIN;
prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
}
}
/*
* Link the ring to the new segments.
* Set Toggle Cycle for the new ring if needed.
*/
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
struct xhci_segment *first, struct xhci_segment *last,
unsigned int num_segs)
{
struct xhci_segment *next;
if (!ring || !first || !last)
return;
next = ring->enq_seg->next;
xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
xhci_link_segments(xhci, last, next, ring->type);
ring->num_segs += num_segs;
ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
&= ~cpu_to_le32(LINK_TOGGLE);
last->trbs[TRBS_PER_SEGMENT-1].link.control
|= cpu_to_le32(LINK_TOGGLE);
ring->last_seg = last;
}
}
/* XXX: Do we need the hcd structure in all these functions? */
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
if (!ring)
return;
if (ring->first_seg)
xhci_free_segments_for_ring(xhci, ring->first_seg);
kfree(ring);
}
static void xhci_initialize_ring_info(struct xhci_ring *ring,
unsigned int cycle_state)
{
/* The ring is empty, so the enqueue pointer == dequeue pointer */
ring->enqueue = ring->first_seg->trbs;
ring->enq_seg = ring->first_seg;
ring->dequeue = ring->enqueue;
ring->deq_seg = ring->first_seg;
/* The ring is initialized to 0. The producer must write 1 to the cycle
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
* compare CCS to the cycle bit to check ownership, so CCS = 1.
*
* New rings are initialized with cycle state equal to 1; if we are
* handling ring expansion, set the cycle state equal to the old ring.
*/
ring->cycle_state = cycle_state;
/* Not necessary for new rings, but needed for re-initialized rings */
ring->enq_updates = 0;
ring->deq_updates = 0;
/*
* Each segment has a link TRB, and leave an extra TRB for SW
* accounting purpose
*/
ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
}
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
struct xhci_segment **first, struct xhci_segment **last,
unsigned int num_segs, unsigned int cycle_state,
enum xhci_ring_type type, gfp_t flags)
{
struct xhci_segment *prev;
prev = xhci_segment_alloc(xhci, cycle_state, flags);
if (!prev)
return -ENOMEM;
num_segs--;
*first = prev;
while (num_segs > 0) {
struct xhci_segment *next;
next = xhci_segment_alloc(xhci, cycle_state, flags);
if (!next) {
prev = *first;
while (prev) {
next = prev->next;
xhci_segment_free(xhci, prev);
prev = next;
}
return -ENOMEM;
}
xhci_link_segments(xhci, prev, next, type);
prev = next;
num_segs--;
}
xhci_link_segments(xhci, prev, *first, type);
*last = prev;
return 0;
}
/**
* Create a new ring with zero or more segments.
*
* Link each segment together into a ring.
* Set the end flag and the cycle toggle bit on the last segment.
* See section 4.9.1 and figures 15 and 16.
*/
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
unsigned int num_segs, unsigned int cycle_state,
enum xhci_ring_type type, gfp_t flags)
{
struct xhci_ring *ring;
int ret;
ring = kzalloc(sizeof *(ring), flags);
if (!ring)
return NULL;
ring->num_segs = num_segs;
INIT_LIST_HEAD(&ring->td_list);
ring->type = type;
if (num_segs == 0)
return ring;
ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
&ring->last_seg, num_segs, cycle_state, type, flags);
if (ret)
goto fail;
/* Only event ring does not use link TRB */
if (type != TYPE_EVENT) {
/* See section 4.9.2.1 and 6.4.4.1 */
ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
cpu_to_le32(LINK_TOGGLE);
}
xhci_initialize_ring_info(ring, cycle_state);
return ring;
fail:
kfree(ring);
return NULL;
}
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
unsigned int ep_index)
{
int rings_cached;
rings_cached = virt_dev->num_rings_cached;
if (rings_cached < XHCI_MAX_RINGS_CACHED) {
virt_dev->ring_cache[rings_cached] =
virt_dev->eps[ep_index].ring;
virt_dev->num_rings_cached++;
xhci_dbg(xhci, "Cached old ring, "
"%d ring%s cached\n",
virt_dev->num_rings_cached,
(virt_dev->num_rings_cached > 1) ? "s" : "");
} else {
xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
xhci_dbg(xhci, "Ring cache full (%d rings), "
"freeing ring\n",
virt_dev->num_rings_cached);
}
virt_dev->eps[ep_index].ring = NULL;
}
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
* pointers to the beginning of the ring.
*/
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
struct xhci_ring *ring, unsigned int cycle_state,
enum xhci_ring_type type)
{
struct xhci_segment *seg = ring->first_seg;
int i;
do {
memset(seg->trbs, 0,
sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
if (cycle_state == 0) {
for (i = 0; i < TRBS_PER_SEGMENT; i++)
seg->trbs[i].link.control |=
cpu_to_le32(TRB_CYCLE);
}
/* All endpoint rings have link TRBs */
xhci_link_segments(xhci, seg, seg->next, type);
seg = seg->next;
} while (seg != ring->first_seg);
ring->type = type;
xhci_initialize_ring_info(ring, cycle_state);
/* td list should be empty since all URBs have been cancelled,
* but just in case...
*/
INIT_LIST_HEAD(&ring->td_list);
}
/*
* Expand an existing ring.
* Look for a cached ring or allocate a new ring which has same segment numbers
* and link the two rings.
*/
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
unsigned int num_trbs, gfp_t flags)
{
struct xhci_segment *first;
struct xhci_segment *last;
unsigned int num_segs;
unsigned int num_segs_needed;
int ret;
num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
(TRBS_PER_SEGMENT - 1);
/* Allocate number of segments we needed, or double the ring size */
num_segs = ring->num_segs > num_segs_needed ?
ring->num_segs : num_segs_needed;
ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
num_segs, ring->cycle_state, ring->type, flags);
if (ret)
return -ENOMEM;
xhci_link_rings(xhci, ring, first, last, num_segs);
xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
"ring expansion succeed, now has %d segments",
ring->num_segs);
return 0;
}
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
int type, gfp_t flags)
{
struct xhci_container_ctx *ctx;
if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
return NULL;
ctx = kzalloc(sizeof(*ctx), flags);
if (!ctx)
return NULL;
ctx->type = type;
ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
if (type == XHCI_CTX_TYPE_INPUT)
ctx->size += CTX_SIZE(xhci->hcc_params);
ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
if (!ctx->bytes) {
kfree(ctx);
return NULL;
}
memset(ctx->bytes, 0, ctx->size);
return ctx;
}
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx)
{
if (!ctx)
return;
dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
kfree(ctx);
}
struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx)
{
if (ctx->type != XHCI_CTX_TYPE_INPUT)
return NULL;
return (struct xhci_input_control_ctx *)ctx->bytes;
}
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx)
{
if (ctx->type == XHCI_CTX_TYPE_DEVICE)
return (struct xhci_slot_ctx *)ctx->bytes;
return (struct xhci_slot_ctx *)
(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx,
unsigned int ep_index)
{
/* increment ep index by offset of start of ep ctx array */
ep_index++;
if (ctx->type == XHCI_CTX_TYPE_INPUT)
ep_index++;
return (struct xhci_ep_ctx *)
(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}
/***************** Streams structures manipulation *************************/
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs,
struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
dma_free_coherent(dev,
sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
stream_ctx, dma);
else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
return dma_pool_free(xhci->small_streams_pool,
stream_ctx, dma);
else
return dma_pool_free(xhci->medium_streams_pool,
stream_ctx, dma);
}
/*
* The stream context array for each endpoint with bulk streams enabled can
* vary in size, based on:
* - how many streams the endpoint supports,
* - the maximum primary stream array size the host controller supports,
* - and how many streams the device driver asks for.
*
* The stream context array must be a power of 2, and can be as small as
* 64 bytes or as large as 1MB.
*/
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs, dma_addr_t *dma,
gfp_t mem_flags)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
return dma_alloc_coherent(dev,
sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
dma, mem_flags);
else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
return dma_pool_alloc(xhci->small_streams_pool,
mem_flags, dma);
else
return dma_pool_alloc(xhci->medium_streams_pool,
mem_flags, dma);
}
struct xhci_ring *xhci_dma_to_transfer_ring(
struct xhci_virt_ep *ep,
u64 address)
{
if (ep->ep_state & EP_HAS_STREAMS)
return radix_tree_lookup(&ep->stream_info->trb_address_map,
address >> TRB_SEGMENT_SHIFT);
return ep->ring;
}
struct xhci_ring *xhci_stream_id_to_ring(
struct xhci_virt_device *dev,
unsigned int ep_index,
unsigned int stream_id)
{
struct xhci_virt_ep *ep = &dev->eps[ep_index];
if (stream_id == 0)
return ep->ring;
if (!ep->stream_info)
return NULL;
if (stream_id > ep->stream_info->num_streams)
return NULL;
return ep->stream_info->stream_rings[stream_id];
}
/*
* Change an endpoint's internal structure so it supports stream IDs. The
* number of requested streams includes stream 0, which cannot be used by device
* drivers.
*
* The number of stream contexts in the stream context array may be bigger than
* the number of streams the driver wants to use. This is because the number of
* stream context array entries must be a power of two.
*
* We need a radix tree for mapping physical addresses of TRBs to which stream
* ID they belong to. We need to do this because the host controller won't tell
* us which stream ring the TRB came from. We could store the stream ID in an
* event data TRB, but that doesn't help us for the cancellation case, since the
* endpoint may stop before it reaches that event data TRB.
*
* The radix tree maps the upper portion of the TRB DMA address to a ring
* segment that has the same upper portion of DMA addresses. For example, say I
* have segments of size 1KB, that are always 64-byte aligned. A segment may
* start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
* key to the stream ID is 0x43244. I can use the DMA address of the TRB to
* pass the radix tree a key to get the right stream ID:
*
* 0x10c90fff >> 10 = 0x43243
* 0x10c912c0 >> 10 = 0x43244
* 0x10c91400 >> 10 = 0x43245
*
* Obviously, only those TRBs with DMA addresses that are within the segment
* will make the radix tree return the stream ID for that ring.
*
* Caveats for the radix tree:
*
* The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
* unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
* 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
* key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
* PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
* extended systems (where the DMA address can be bigger than 32-bits),
* if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
*/
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs,
unsigned int num_streams, gfp_t mem_flags)
{
struct xhci_stream_info *stream_info;
u32 cur_stream;
struct xhci_ring *cur_ring;
unsigned long key;
u64 addr;
int ret;
xhci_dbg(xhci, "Allocating %u streams and %u "
"stream context array entries.\n",
num_streams, num_stream_ctxs);
if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
return NULL;
}
xhci->cmd_ring_reserved_trbs++;
stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
if (!stream_info)
goto cleanup_trbs;
stream_info->num_streams = num_streams;
stream_info->num_stream_ctxs = num_stream_ctxs;
/* Initialize the array of virtual pointers to stream rings. */
stream_info->stream_rings = kzalloc(
sizeof(struct xhci_ring *)*num_streams,
mem_flags);
if (!stream_info->stream_rings)
goto cleanup_info;
/* Initialize the array of DMA addresses for stream rings for the HW. */
stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
num_stream_ctxs, &stream_info->ctx_array_dma,
mem_flags);
if (!stream_info->stream_ctx_array)
goto cleanup_ctx;
memset(stream_info->stream_ctx_array, 0,
sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
/* Allocate everything needed to free the stream rings later */
stream_info->free_streams_command =
xhci_alloc_command(xhci, true, true, mem_flags);
if (!stream_info->free_streams_command)
goto cleanup_ctx;
INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
/* Allocate rings for all the streams that the driver will use,
* and add their segment DMA addresses to the radix tree.
* Stream 0 is reserved.
*/
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
stream_info->stream_rings[cur_stream] =
xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
cur_ring = stream_info->stream_rings[cur_stream];
if (!cur_ring)
goto cleanup_rings;
cur_ring->stream_id = cur_stream;
/* Set deq ptr, cycle bit, and stream context type */
addr = cur_ring->first_seg->dma |
SCT_FOR_CTX(SCT_PRI_TR) |
cur_ring->cycle_state;
stream_info->stream_ctx_array[cur_stream].stream_ring =
cpu_to_le64(addr);
xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
cur_stream, (unsigned long long) addr);
key = (unsigned long)
(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
ret = radix_tree_insert(&stream_info->trb_address_map,
key, cur_ring);
if (ret) {
xhci_ring_free(xhci, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
goto cleanup_rings;
}
}
/* Leave the other unused stream ring pointers in the stream context
* array initialized to zero. This will cause the xHC to give us an
* error if the device asks for a stream ID we don't have setup (if it
* was any other way, the host controller would assume the ring is
* "empty" and wait forever for data to be queued to that stream ID).
*/
return stream_info;
cleanup_rings:
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
cur_ring = stream_info->stream_rings[cur_stream];
if (cur_ring) {
addr = cur_ring->first_seg->dma;
radix_tree_delete(&stream_info->trb_address_map,
addr >> TRB_SEGMENT_SHIFT);
xhci_ring_free(xhci, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
}
}
xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
kfree(stream_info->stream_rings);
cleanup_info:
kfree(stream_info);
cleanup_trbs:
xhci->cmd_ring_reserved_trbs--;
return NULL;
}
/*
* Sets the MaxPStreams field and the Linear Stream Array field.
* Sets the dequeue pointer to the stream context array.
*/
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
struct xhci_stream_info *stream_info)
{
u32 max_primary_streams;
/* MaxPStreams is the number of stream context array entries, not the
* number we're actually using. Must be in 2^(MaxPstreams + 1) format.
* fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
*/
max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
"Setting number of stream ctx array entries to %u",
1 << (max_primary_streams + 1));
ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
| EP_HAS_LSA);
ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
}
/*
* Sets the MaxPStreams field and the Linear Stream Array field to 0.
* Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
* not at the beginning of the ring).
*/
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
struct xhci_virt_ep *ep)
{
dma_addr_t addr;
ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
}
/* Frees all stream contexts associated with the endpoint,
*
* Caller should fix the endpoint context streams fields.
*/
void xhci_free_stream_info(struct xhci_hcd *xhci,
struct xhci_stream_info *stream_info)
{
int cur_stream;
struct xhci_ring *cur_ring;
dma_addr_t addr;
if (!stream_info)
return;
for (cur_stream = 1; cur_stream < stream_info->num_streams;
cur_stream++) {
cur_ring = stream_info->stream_rings[cur_stream];
if (cur_ring) {
addr = cur_ring->first_seg->dma;
radix_tree_delete(&stream_info->trb_address_map,
addr >> TRB_SEGMENT_SHIFT);
xhci_ring_free(xhci, cur_ring);
stream_info->stream_rings[cur_stream] = NULL;
}
}
xhci_free_command(xhci, stream_info->free_streams_command);
xhci->cmd_ring_reserved_trbs--;
if (stream_info->stream_ctx_array)
xhci_free_stream_ctx(xhci,
stream_info->num_stream_ctxs,
stream_info->stream_ctx_array,
stream_info->ctx_array_dma);
kfree(stream_info->stream_rings);
kfree(stream_info);
}
/***************** Device context manipulation *************************/
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
struct xhci_virt_ep *ep)
{
init_timer(&ep->stop_cmd_timer);
ep->stop_cmd_timer.data = (unsigned long) ep;
ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
ep->xhci = xhci;
}
static void xhci_free_tt_info(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
int slot_id)
{
struct list_head *tt_list_head;
struct xhci_tt_bw_info *tt_info, *next;
bool slot_found = false;
/* If the device never made it past the Set Address stage,
* it may not have the real_port set correctly.
*/
if (virt_dev->real_port == 0 ||
virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
xhci_dbg(xhci, "Bad real port.\n");
return;
}
tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
/* Multi-TT hubs will have more than one entry */
if (tt_info->slot_id == slot_id) {
slot_found = true;
list_del(&tt_info->tt_list);
kfree(tt_info);
} else if (slot_found) {
break;
}
}
}
int xhci_alloc_tt_info(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_device *hdev,
struct usb_tt *tt, gfp_t mem_flags)
{
struct xhci_tt_bw_info *tt_info;
unsigned int num_ports;
int i, j;
if (!tt->multi)
num_ports = 1;
else
num_ports = hdev->maxchild;
for (i = 0; i < num_ports; i++, tt_info++) {
struct xhci_interval_bw_table *bw_table;
tt_info = kzalloc(sizeof(*tt_info), mem_flags);
if (!tt_info)
goto free_tts;
INIT_LIST_HEAD(&tt_info->tt_list);
list_add(&tt_info->tt_list,
&xhci->rh_bw[virt_dev->real_port - 1].tts);
tt_info->slot_id = virt_dev->udev->slot_id;
if (tt->multi)
tt_info->ttport = i+1;
bw_table = &tt_info->bw_table;
for (j = 0; j < XHCI_MAX_INTERVAL; j++)
INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
}
return 0;
free_tts:
xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
return -ENOMEM;
}
/* All the xhci_tds in the ring's TD list should be freed at this point.
* Should be called with xhci->lock held if there is any chance the TT lists
* will be manipulated by the configure endpoint, allocate device, or update
* hub functions while this function is removing the TT entries from the list.
*/
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
struct xhci_virt_device *dev;
int i;
int old_active_eps = 0;
/* Slot ID 0 is reserved */
if (slot_id == 0 || !xhci->devs[slot_id])
return;
dev = xhci->devs[slot_id];
xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
if (!dev)
return;
if (dev->tt_info)
old_active_eps = dev->tt_info->active_eps;
for (i = 0; i < 31; ++i) {
if (dev->eps[i].ring)
xhci_ring_free(xhci, dev->eps[i].ring);
if (dev->eps[i].stream_info)
xhci_free_stream_info(xhci,
dev->eps[i].stream_info);
/* Endpoints on the TT/root port lists should have been removed
* when usb_disable_device() was called for the device.
* We can't drop them anyway, because the udev might have gone
* away by this point, and we can't tell what speed it was.
*/
if (!list_empty(&dev->eps[i].bw_endpoint_list))
xhci_warn(xhci, "Slot %u endpoint %u "
"not removed from BW list!\n",
slot_id, i);
}
/* If this is a hub, free the TT(s) from the TT list */
xhci_free_tt_info(xhci, dev, slot_id);
/* If necessary, update the number of active TTs on this root port */
xhci_update_tt_active_eps(xhci, dev, old_active_eps);
if (dev->ring_cache) {
for (i = 0; i < dev->num_rings_cached; i++)
xhci_ring_free(xhci, dev->ring_cache[i]);
kfree(dev->ring_cache);
}
if (dev->in_ctx)
xhci_free_container_ctx(xhci, dev->in_ctx);
if (dev->out_ctx)
xhci_free_container_ctx(xhci, dev->out_ctx);
kfree(xhci->devs[slot_id]);
xhci->devs[slot_id] = NULL;
}
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
struct usb_device *udev, gfp_t flags)
{
struct xhci_virt_device *dev;
int i;
/* Slot ID 0 is reserved */
if (slot_id == 0 || xhci->devs[slot_id]) {
xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
return 0;
}
xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
if (!xhci->devs[slot_id])
return 0;
dev = xhci->devs[slot_id];
/* Allocate the (output) device context that will be used in the HC. */
dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
if (!dev->out_ctx)
goto fail;
xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
(unsigned long long)dev->out_ctx->dma);
/* Allocate the (input) device context for address device command */
dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
if (!dev->in_ctx)
goto fail;
xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
(unsigned long long)dev->in_ctx->dma);
/* Initialize the cancellation list and watchdog timers for each ep */
for (i = 0; i < 31; i++) {
xhci_init_endpoint_timer(xhci, &dev->eps[i]);
INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
}
/* Allocate endpoint 0 ring */
dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
if (!dev->eps[0].ring)
goto fail;
/* Allocate pointers to the ring cache */
dev->ring_cache = kzalloc(
sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
flags);
if (!dev->ring_cache)
goto fail;
dev->num_rings_cached = 0;
init_completion(&dev->cmd_completion);
INIT_LIST_HEAD(&dev->cmd_list);
dev->udev = udev;
/* Point to output device context in dcbaa. */
xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
slot_id,
&xhci->dcbaa->dev_context_ptrs[slot_id],
le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
return 1;
fail:
xhci_free_virt_device(xhci, slot_id);
return 0;
}
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
struct usb_device *udev)
{
struct xhci_virt_device *virt_dev;
struct xhci_ep_ctx *ep0_ctx;
struct xhci_ring *ep_ring;
virt_dev = xhci->devs[udev->slot_id];
ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
ep_ring = virt_dev->eps[0].ring;
/*
* FIXME we don't keep track of the dequeue pointer very well after a
* Set TR dequeue pointer, so we're setting the dequeue pointer of the
* host to our enqueue pointer. This should only be called after a
* configured device has reset, so all control transfers should have
* been completed or cancelled before the reset.
*/
ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
ep_ring->enqueue)
| ep_ring->cycle_state);
}
/*
* The xHCI roothub may have ports of differing speeds in any order in the port
* status registers. xhci->port_array provides an array of the port speed for
* each offset into the port status registers.
*
* The xHCI hardware wants to know the roothub port number that the USB device
* is attached to (or the roothub port its ancestor hub is attached to). All we
* know is the index of that port under either the USB 2.0 or the USB 3.0
* roothub, but that doesn't give us the real index into the HW port status
* registers. Call xhci_find_raw_port_number() to get real index.
*/
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
struct usb_device *udev)
{
struct usb_device *top_dev;
struct usb_hcd *hcd;
if (udev->speed == USB_SPEED_SUPER)
hcd = xhci->shared_hcd;
else
hcd = xhci->main_hcd;
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
top_dev = top_dev->parent)
/* Found device below root hub */;
return xhci_find_raw_port_number(hcd, top_dev->portnum);
}
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
struct xhci_virt_device *dev;
struct xhci_ep_ctx *ep0_ctx;
struct xhci_slot_ctx *slot_ctx;
u32 port_num;
u32 max_packets;
struct usb_device *top_dev;
dev = xhci->devs[udev->slot_id];
/* Slot ID 0 is reserved */
if (udev->slot_id == 0 || !dev) {
xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
udev->slot_id);
return -EINVAL;
}
ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
/* 3) Only the control endpoint is valid - one endpoint context */
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
switch (udev->speed) {
case USB_SPEED_SUPER:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
max_packets = MAX_PACKET(512);
break;
case USB_SPEED_HIGH:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
max_packets = MAX_PACKET(64);
break;
/* USB core guesses at a 64-byte max packet first for FS devices */
case USB_SPEED_FULL:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
max_packets = MAX_PACKET(64);
break;
case USB_SPEED_LOW:
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
max_packets = MAX_PACKET(8);
break;
case USB_SPEED_WIRELESS:
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
return -EINVAL;
break;
default:
/* Speed was set earlier, this shouldn't happen. */
return -EINVAL;
}
/* Find the root hub port this device is under */
port_num = xhci_find_real_port_number(xhci, udev);
if (!port_num)
return -EINVAL;
slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
/* Set the port number in the virtual_device to the faked port number */
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
top_dev = top_dev->parent)
/* Found device below root hub */;
dev->fake_port = top_dev->portnum;
dev->real_port = port_num;
xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
/* Find the right bandwidth table that this device will be a part of.
* If this is a full speed device attached directly to a root port (or a
* decendent of one), it counts as a primary bandwidth domain, not a
* secondary bandwidth domain under a TT. An xhci_tt_info structure
* will never be created for the HS root hub.
*/
if (!udev->tt || !udev->tt->hub->parent) {
dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
} else {
struct xhci_root_port_bw_info *rh_bw;
struct xhci_tt_bw_info *tt_bw;
rh_bw = &xhci->rh_bw[port_num - 1];
/* Find the right TT. */
list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
if (tt_bw->slot_id != udev->tt->hub->slot_id)
continue;
if (!dev->udev->tt->multi ||
(udev->tt->multi &&
tt_bw->ttport == dev->udev->ttport)) {
dev->bw_table = &tt_bw->bw_table;
dev->tt_info = tt_bw;
break;
}
}
if (!dev->tt_info)
xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
}
/* Is this a LS/FS device under an external HS hub? */
if (udev->tt && udev->tt->hub->parent) {
slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
(udev->ttport << 8));
if (udev->tt->multi)
slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
}
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
/* Step 4 - ring already allocated */
/* Step 5 */
ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
max_packets);
ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
dev->eps[0].ring->cycle_state);
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
return 0;
}
/*
* Convert interval expressed as 2^(bInterval - 1) == interval into
* straight exponent value 2^n == interval.
*
*/
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
unsigned int interval;
interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
if (interval != ep->desc.bInterval - 1)
dev_warn(&udev->dev,
"ep %#x - rounding interval to %d %sframes\n",
ep->desc.bEndpointAddress,
1 << interval,
udev->speed == USB_SPEED_FULL ? "" : "micro");
if (udev->speed == USB_SPEED_FULL) {
/*
* Full speed isoc endpoints specify interval in frames,
* not microframes. We are using microframes everywhere,
* so adjust accordingly.
*/
interval += 3; /* 1 frame = 2^3 uframes */
}
return interval;
}
/*
* Convert bInterval expressed in microframes (in 1-255 range) to exponent of
* microframes, rounded down to nearest power of 2.
*/
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
struct usb_host_endpoint *ep, unsigned int desc_interval,
unsigned int min_exponent, unsigned int max_exponent)
{
unsigned int interval;
interval = fls(desc_interval) - 1;
interval = clamp_val(interval, min_exponent, max_exponent);
if ((1 << interval) != desc_interval)
dev_warn(&udev->dev,
"ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
ep->desc.bEndpointAddress,
1 << interval,
desc_interval);
return interval;
}
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
if (ep->desc.bInterval == 0)
return 0;
return xhci_microframes_to_exponent(udev, ep,
ep->desc.bInterval, 0, 15);
}
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
return xhci_microframes_to_exponent(udev, ep,
ep->desc.bInterval * 8, 3, 10);
}
/* Return the polling or NAK interval.
*
* The polling interval is expressed in "microframes". If xHCI's Interval field
* is set to N, it will service the endpoint every 2^(Interval)*125us.
*
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
* is set to 0.
*/
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
unsigned int interval = 0;
switch (udev->speed) {
case USB_SPEED_HIGH:
/* Max NAK rate */
if (usb_endpoint_xfer_control(&ep->desc) ||
usb_endpoint_xfer_bulk(&ep->desc)) {
interval = xhci_parse_microframe_interval(udev, ep);
break;
}
/* Fall through - SS and HS isoc/int have same decoding */
case USB_SPEED_SUPER:
if (usb_endpoint_xfer_int(&ep->desc) ||
usb_endpoint_xfer_isoc(&ep->desc)) {
interval = xhci_parse_exponent_interval(udev, ep);
}
break;
case USB_SPEED_FULL:
if (usb_endpoint_xfer_isoc(&ep->desc)) {
interval = xhci_parse_exponent_interval(udev, ep);
break;
}
/*
* Fall through for interrupt endpoint interval decoding
* since it uses the same rules as low speed interrupt
* endpoints.
*/
case USB_SPEED_LOW:
if (usb_endpoint_xfer_int(&ep->desc) ||
usb_endpoint_xfer_isoc(&ep->desc)) {
interval = xhci_parse_frame_interval(udev, ep);
}
break;
default:
BUG();
}
return EP_INTERVAL(interval);
}
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
* High speed endpoint descriptors can define "the number of additional
* transaction opportunities per microframe", but that goes in the Max Burst
* endpoint context field.
*/
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
if (udev->speed != USB_SPEED_SUPER ||
!usb_endpoint_xfer_isoc(&ep->desc))
return 0;
return ep->ss_ep_comp.bmAttributes;
}
static u32 xhci_get_endpoint_type(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
int in;
u32 type;
in = usb_endpoint_dir_in(&ep->desc);
if (usb_endpoint_xfer_control(&ep->desc)) {
type = EP_TYPE(CTRL_EP);
} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
if (in)
type = EP_TYPE(BULK_IN_EP);
else
type = EP_TYPE(BULK_OUT_EP);
} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
if (in)
type = EP_TYPE(ISOC_IN_EP);
else
type = EP_TYPE(ISOC_OUT_EP);
} else if (usb_endpoint_xfer_int(&ep->desc)) {
if (in)
type = EP_TYPE(INT_IN_EP);
else
type = EP_TYPE(INT_OUT_EP);
} else {
type = 0;
}
return type;
}
/* Return the maximum endpoint service interval time (ESIT) payload.
* Basically, this is the maxpacket size, multiplied by the burst size
* and mult size.
*/
static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
struct usb_device *udev,
struct usb_host_endpoint *ep)
{
int max_burst;
int max_packet;
/* Only applies for interrupt or isochronous endpoints */
if (usb_endpoint_xfer_control(&ep->desc) ||
usb_endpoint_xfer_bulk(&ep->desc))
return 0;
if (udev->speed == USB_SPEED_SUPER)
return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
/* A 0 in max burst means 1 transfer per ESIT */
return max_packet * (max_burst + 1);
}
/* Set up an endpoint with one ring segment. Do not allocate stream rings.
* Drivers will have to call usb_alloc_streams() to do that.
*/
int xhci_endpoint_init(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_device *udev,
struct usb_host_endpoint *ep,
gfp_t mem_flags)
{
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
struct xhci_ring *ep_ring;
unsigned int max_packet;
unsigned int max_burst;
enum xhci_ring_type type;
u32 max_esit_payload;
u32 endpoint_type;
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
endpoint_type = xhci_get_endpoint_type(udev, ep);
if (!endpoint_type)
return -EINVAL;
ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
type = usb_endpoint_type(&ep->desc);
/* Set up the endpoint ring */
virt_dev->eps[ep_index].new_ring =
xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
if (!virt_dev->eps[ep_index].new_ring) {
/* Attempt to use the ring cache */
if (virt_dev->num_rings_cached == 0)
return -ENOMEM;
virt_dev->eps[ep_index].new_ring =
virt_dev->ring_cache[virt_dev->num_rings_cached];
virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
virt_dev->num_rings_cached--;
xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1, type);
}
virt_dev->eps[ep_index].skip = false;
ep_ring = virt_dev->eps[ep_index].new_ring;
ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
| EP_MULT(xhci_get_endpoint_mult(udev, ep)));
/* FIXME dig Mult and streams info out of ep companion desc */
/* Allow 3 retries for everything but isoc;
* CErr shall be set to 0 for Isoch endpoints.
*/
if (!usb_endpoint_xfer_isoc(&ep->desc))
ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
else
ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
/* Set the max packet size and max burst */
max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
max_burst = 0;
switch (udev->speed) {
case USB_SPEED_SUPER:
/* dig out max burst from ep companion desc */
max_burst = ep->ss_ep_comp.bMaxBurst;
break;
case USB_SPEED_HIGH:
/* Some devices get this wrong */
if (usb_endpoint_xfer_bulk(&ep->desc))
max_packet = 512;
/* bits 11:12 specify the number of additional transaction
* opportunities per microframe (USB 2.0, section 9.6.6)
*/
if (usb_endpoint_xfer_isoc(&ep->desc) ||
usb_endpoint_xfer_int(&ep->desc)) {
max_burst = (usb_endpoint_maxp(&ep->desc)
& 0x1800) >> 11;
}
break;
case USB_SPEED_FULL:
case USB_SPEED_LOW:
break;
default:
BUG();
}
ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
MAX_BURST(max_burst));
max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
/*
* XXX no idea how to calculate the average TRB buffer length for bulk
* endpoints, as the driver gives us no clue how big each scatter gather
* list entry (or buffer) is going to be.
*
* For isochronous and interrupt endpoints, we set it to the max
* available, until we have new API in the USB core to allow drivers to
* declare how much bandwidth they actually need.
*
* Normally, it would be calculated by taking the total of the buffer
* lengths in the TD and then dividing by the number of TRBs in a TD,
* including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
* use Event Data TRBs, and we don't chain in a link TRB on short
* transfers, we're basically dividing by 1.
*
* xHCI 1.0 specification indicates that the Average TRB Length should
* be set to 8 for control endpoints.
*/
if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
else
ep_ctx->tx_info |=
cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
/* FIXME Debug endpoint context */
return 0;
}
void xhci_endpoint_zero(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_host_endpoint *ep)
{
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = 0;
ep_ctx->deq = 0;
ep_ctx->tx_info = 0;
/* Don't free the endpoint ring until the set interface or configuration
* request succeeds.
*/
}
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
bw_info->ep_interval = 0;
bw_info->mult = 0;
bw_info->num_packets = 0;
bw_info->max_packet_size = 0;
bw_info->type = 0;
bw_info->max_esit_payload = 0;
}
void xhci_update_bw_info(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_input_control_ctx *ctrl_ctx,
struct xhci_virt_device *virt_dev)
{
struct xhci_bw_info *bw_info;
struct xhci_ep_ctx *ep_ctx;
unsigned int ep_type;
int i;
for (i = 1; i < 31; ++i) {
bw_info = &virt_dev->eps[i].bw_info;
/* We can't tell what endpoint type is being dropped, but
* unconditionally clearing the bandwidth info for non-periodic
* endpoints should be harmless because the info will never be
* set in the first place.
*/
if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
/* Dropped endpoint */
xhci_clear_endpoint_bw_info(bw_info);
continue;
}
if (EP_IS_ADDED(ctrl_ctx, i)) {
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
/* Ignore non-periodic endpoints */
if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
ep_type != ISOC_IN_EP &&
ep_type != INT_IN_EP)
continue;
/* Added or changed endpoint */
bw_info->ep_interval = CTX_TO_EP_INTERVAL(
le32_to_cpu(ep_ctx->ep_info));
/* Number of packets and mult are zero-based in the
* input context, but we want one-based for the
* interval table.
*/
bw_info->mult = CTX_TO_EP_MULT(
le32_to_cpu(ep_ctx->ep_info)) + 1;
bw_info->num_packets = CTX_TO_MAX_BURST(
le32_to_cpu(ep_ctx->ep_info2)) + 1;
bw_info->max_packet_size = MAX_PACKET_DECODED(
le32_to_cpu(ep_ctx->ep_info2));
bw_info->type = ep_type;
bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
le32_to_cpu(ep_ctx->tx_info));
}
}
}
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
* Useful when you want to change one particular aspect of the endpoint and then
* issue a configure endpoint command.
*/
void xhci_endpoint_copy(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx,
unsigned int ep_index)
{
struct xhci_ep_ctx *out_ep_ctx;
struct xhci_ep_ctx *in_ep_ctx;
out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
in_ep_ctx->ep_info = out_ep_ctx->ep_info;
in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
in_ep_ctx->deq = out_ep_ctx->deq;
in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}
/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
* Useful when you want to change one particular aspect of the endpoint and then
* issue a configure endpoint command. Only the context entries field matters,
* but we'll copy the whole thing anyway.
*/
void xhci_slot_copy(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx)
{
struct xhci_slot_ctx *in_slot_ctx;
struct xhci_slot_ctx *out_slot_ctx;
in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
in_slot_ctx->dev_info = out_slot_ctx->dev_info;
in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
in_slot_ctx->tt_info = out_slot_ctx->tt_info;
in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
int i;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Allocating %d scratchpad buffers", num_sp);
if (!num_sp)
return 0;
xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
if (!xhci->scratchpad)
goto fail_sp;
xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
num_sp * sizeof(u64),
&xhci->scratchpad->sp_dma, flags);
if (!xhci->scratchpad->sp_array)
goto fail_sp2;
xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
if (!xhci->scratchpad->sp_buffers)
goto fail_sp3;
xhci->scratchpad->sp_dma_buffers =
kzalloc(sizeof(dma_addr_t) * num_sp, flags);
if (!xhci->scratchpad->sp_dma_buffers)
goto fail_sp4;
xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
for (i = 0; i < num_sp; i++) {
dma_addr_t dma;
void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
flags);
if (!buf)
goto fail_sp5;
xhci->scratchpad->sp_array[i] = dma;
xhci->scratchpad->sp_buffers[i] = buf;
xhci->scratchpad->sp_dma_buffers[i] = dma;
}
return 0;
fail_sp5:
for (i = i - 1; i >= 0; i--) {
dma_free_coherent(dev, xhci->page_size,
xhci->scratchpad->sp_buffers[i],
xhci->scratchpad->sp_dma_buffers[i]);
}
kfree(xhci->scratchpad->sp_dma_buffers);
fail_sp4:
kfree(xhci->scratchpad->sp_buffers);
fail_sp3:
dma_free_coherent(dev, num_sp * sizeof(u64),
xhci->scratchpad->sp_array,
xhci->scratchpad->sp_dma);
fail_sp2:
kfree(xhci->scratchpad);
xhci->scratchpad = NULL;
fail_sp:
return -ENOMEM;
}
static void scratchpad_free(struct xhci_hcd *xhci)
{
int num_sp;
int i;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
if (!xhci->scratchpad)
return;
num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
for (i = 0; i < num_sp; i++) {
dma_free_coherent(dev, xhci->page_size,
xhci->scratchpad->sp_buffers[i],
xhci->scratchpad->sp_dma_buffers[i]);
}
kfree(xhci->scratchpad->sp_dma_buffers);
kfree(xhci->scratchpad->sp_buffers);
dma_free_coherent(dev, num_sp * sizeof(u64),
xhci->scratchpad->sp_array,
xhci->scratchpad->sp_dma);
kfree(xhci->scratchpad);
xhci->scratchpad = NULL;
}
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
bool allocate_in_ctx, bool allocate_completion,
gfp_t mem_flags)
{
struct xhci_command *command;
command = kzalloc(sizeof(*command), mem_flags);
if (!command)
return NULL;
if (allocate_in_ctx) {
command->in_ctx =
xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
mem_flags);
if (!command->in_ctx) {
kfree(command);
return NULL;
}
}
if (allocate_completion) {
command->completion =
kzalloc(sizeof(struct completion), mem_flags);
if (!command->completion) {
xhci_free_container_ctx(xhci, command->in_ctx);
kfree(command);
return NULL;
}
init_completion(command->completion);
}
command->status = 0;
INIT_LIST_HEAD(&command->cmd_list);
return command;
}
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
{
if (urb_priv) {
kfree(urb_priv->td[0]);
kfree(urb_priv);
}
}
void xhci_free_command(struct xhci_hcd *xhci,
struct xhci_command *command)
{
xhci_free_container_ctx(xhci,
command->in_ctx);
kfree(command->completion);
kfree(command);
}
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
struct xhci_cd *cur_cd, *next_cd;
int size;
int i, j, num_ports;
/* Free the Event Ring Segment Table and the actual Event Ring */
size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
if (xhci->erst.entries)
dma_free_coherent(dev, size,
xhci->erst.entries, xhci->erst.erst_dma_addr);
xhci->erst.entries = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
if (xhci->event_ring)
xhci_ring_free(xhci, xhci->event_ring);
xhci->event_ring = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
if (xhci->lpm_command)
xhci_free_command(xhci, xhci->lpm_command);
xhci->cmd_ring_reserved_trbs = 0;
if (xhci->cmd_ring)
xhci_ring_free(xhci, xhci->cmd_ring);
xhci->cmd_ring = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
list_for_each_entry_safe(cur_cd, next_cd,
&xhci->cancel_cmd_list, cancel_cmd_list) {
list_del(&cur_cd->cancel_cmd_list);
kfree(cur_cd);
}
for (i = 1; i < MAX_HC_SLOTS; ++i)
xhci_free_virt_device(xhci, i);
if (xhci->segment_pool)
dma_pool_destroy(xhci->segment_pool);
xhci->segment_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
if (xhci->device_pool)
dma_pool_destroy(xhci->device_pool);
xhci->device_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
if (xhci->small_streams_pool)
dma_pool_destroy(xhci->small_streams_pool);
xhci->small_streams_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Freed small stream array pool");
if (xhci->medium_streams_pool)
dma_pool_destroy(xhci->medium_streams_pool);
xhci->medium_streams_pool = NULL;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Freed medium stream array pool");
if (xhci->dcbaa)
dma_free_coherent(dev, sizeof(*xhci->dcbaa),
xhci->dcbaa, xhci->dcbaa->dma);
xhci->dcbaa = NULL;
scratchpad_free(xhci);
if (!xhci->rh_bw)
goto no_bw;
num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
for (i = 0; i < num_ports; i++) {
struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
struct list_head *ep = &bwt->interval_bw[j].endpoints;
while (!list_empty(ep))
list_del_init(ep->next);
}
}
for (i = 0; i < num_ports; i++) {
struct xhci_tt_bw_info *tt, *n;
list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
list_del(&tt->tt_list);
kfree(tt);
}
}
no_bw:
xhci->num_usb2_ports = 0;
xhci->num_usb3_ports = 0;
xhci->num_active_eps = 0;
kfree(xhci->usb2_ports);
kfree(xhci->usb3_ports);
kfree(xhci->port_array);
kfree(xhci->rh_bw);
kfree(xhci->ext_caps);
xhci->page_size = 0;
xhci->page_shift = 0;
xhci->bus_state[0].bus_suspended = 0;
xhci->bus_state[1].bus_suspended = 0;
}
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
struct xhci_segment *input_seg,
union xhci_trb *start_trb,
union xhci_trb *end_trb,
dma_addr_t input_dma,
struct xhci_segment *result_seg,
char *test_name, int test_number)
{
unsigned long long start_dma;
unsigned long long end_dma;
struct xhci_segment *seg;
start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
if (seg != result_seg) {
xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
test_name, test_number);
xhci_warn(xhci, "Tested TRB math w/ seg %p and "
"input DMA 0x%llx\n",
input_seg,
(unsigned long long) input_dma);
xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
"ending TRB %p (0x%llx DMA)\n",
start_trb, start_dma,
end_trb, end_dma);
xhci_warn(xhci, "Expected seg %p, got seg %p\n",
result_seg, seg);
return -1;
}
return 0;
}
/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
{
struct {
dma_addr_t input_dma;
struct xhci_segment *result_seg;
} simple_test_vector [] = {
/* A zeroed DMA field should fail */
{ 0, NULL },
/* One TRB before the ring start should fail */
{ xhci->event_ring->first_seg->dma - 16, NULL },
/* One byte before the ring start should fail */
{ xhci->event_ring->first_seg->dma - 1, NULL },
/* Starting TRB should succeed */
{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
/* Ending TRB should succeed */
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
xhci->event_ring->first_seg },
/* One byte after the ring end should fail */
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
/* One TRB after the ring end should fail */
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
/* An address of all ones should fail */
{ (dma_addr_t) (~0), NULL },
};
struct {
struct xhci_segment *input_seg;
union xhci_trb *start_trb;
union xhci_trb *end_trb;
dma_addr_t input_dma;
struct xhci_segment *result_seg;
} complex_test_vector [] = {
/* Test feeding a valid DMA address from a different ring */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = xhci->event_ring->first_seg->trbs,
.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
.input_dma = xhci->cmd_ring->first_seg->dma,
.result_seg = NULL,
},
/* Test feeding a valid end TRB from a different ring */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = xhci->event_ring->first_seg->trbs,
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
.input_dma = xhci->cmd_ring->first_seg->dma,
.result_seg = NULL,
},
/* Test feeding a valid start and end TRB from a different ring */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = xhci->cmd_ring->first_seg->trbs,
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
.input_dma = xhci->cmd_ring->first_seg->dma,
.result_seg = NULL,
},
/* TRB in this ring, but after this TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[0],
.end_trb = &xhci->event_ring->first_seg->trbs[3],
.input_dma = xhci->event_ring->first_seg->dma + 4*16,
.result_seg = NULL,
},
/* TRB in this ring, but before this TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[3],
.end_trb = &xhci->event_ring->first_seg->trbs[6],
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
.result_seg = NULL,
},
/* TRB in this ring, but after this wrapped TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
.end_trb = &xhci->event_ring->first_seg->trbs[1],
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
.result_seg = NULL,
},
/* TRB in this ring, but before this wrapped TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
.end_trb = &xhci->event_ring->first_seg->trbs[1],
.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
.result_seg = NULL,
},
/* TRB not in this ring, and we have a wrapped TD */
{ .input_seg = xhci->event_ring->first_seg,
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
.end_trb = &xhci->event_ring->first_seg->trbs[1],
.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
.result_seg = NULL,
},
};
unsigned int num_tests;
int i, ret;
num_tests = ARRAY_SIZE(simple_test_vector);
for (i = 0; i < num_tests; i++) {
ret = xhci_test_trb_in_td(xhci,
xhci->event_ring->first_seg,
xhci->event_ring->first_seg->trbs,
&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
simple_test_vector[i].input_dma,
simple_test_vector[i].result_seg,
"Simple", i);
if (ret < 0)
return ret;
}
num_tests = ARRAY_SIZE(complex_test_vector);
for (i = 0; i < num_tests; i++) {
ret = xhci_test_trb_in_td(xhci,
complex_test_vector[i].input_seg,
complex_test_vector[i].start_trb,
complex_test_vector[i].end_trb,
complex_test_vector[i].input_dma,
complex_test_vector[i].result_seg,
"Complex", i);
if (ret < 0)
return ret;
}
xhci_dbg(xhci, "TRB math tests passed.\n");
return 0;
}
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
u64 temp;
dma_addr_t deq;
deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
xhci->event_ring->dequeue);
if (deq == 0 && !in_interrupt())
xhci_warn(xhci, "WARN something wrong with SW event ring "
"dequeue ptr.\n");
/* Update HC event ring dequeue pointer */
temp = readq(&xhci->ir_set->erst_dequeue);
temp &= ERST_PTR_MASK;
/* Don't clear the EHB bit (which is RW1C) because
* there might be more events to service.
*/
temp &= ~ERST_EHB;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Write event ring dequeue pointer, "
"preserving EHB bit");
writeq(((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
&xhci->ir_set->erst_dequeue);
}
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
__le32 __iomem *addr, u8 major_revision, int max_caps)
{
u32 temp, port_offset, port_count;
int i;
if (major_revision > 0x03) {
xhci_warn(xhci, "Ignoring unknown port speed, "
"Ext Cap %p, revision = 0x%x\n",
addr, major_revision);
/* Ignoring port protocol we can't understand. FIXME */
return;
}
/* Port offset and count in the third dword, see section 7.2 */
temp = readl(addr + 2);
port_offset = XHCI_EXT_PORT_OFF(temp);
port_count = XHCI_EXT_PORT_COUNT(temp);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Ext Cap %p, port offset = %u, "
"count = %u, revision = 0x%x",
addr, port_offset, port_count, major_revision);
/* Port count includes the current port offset */
if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
/* WTF? "Valid values are 1 to MaxPorts" */
return;
/* cache usb2 port capabilities */
if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
xhci->ext_caps[xhci->num_ext_caps++] = temp;
/* Check the host's USB2 LPM capability */
if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
(temp & XHCI_L1C)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI 0.96: support USB2 software lpm");
xhci->sw_lpm_support = 1;
}
if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI 1.0: support USB2 software lpm");
xhci->sw_lpm_support = 1;
if (temp & XHCI_HLC) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"xHCI 1.0: support USB2 hardware lpm");
xhci->hw_lpm_support = 1;
}
}
port_offset--;
for (i = port_offset; i < (port_offset + port_count); i++) {
/* Duplicate entry. Ignore the port if the revisions differ. */
if (xhci->port_array[i] != 0) {
xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
" port %u\n", addr, i);
xhci_warn(xhci, "Port was marked as USB %u, "
"duplicated as USB %u\n",
xhci->port_array[i], major_revision);
/* Only adjust the roothub port counts if we haven't
* found a similar duplicate.
*/
if (xhci->port_array[i] != major_revision &&
xhci->port_array[i] != DUPLICATE_ENTRY) {
if (xhci->port_array[i] == 0x03)
xhci->num_usb3_ports--;
else
xhci->num_usb2_ports--;
xhci->port_array[i] = DUPLICATE_ENTRY;
}
/* FIXME: Should we disable the port? */
continue;
}
xhci->port_array[i] = major_revision;
if (major_revision == 0x03)
xhci->num_usb3_ports++;
else
xhci->num_usb2_ports++;
}
/* FIXME: Should we disable ports not in the Extended Capabilities? */
}
/*
* Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
* specify what speeds each port is supposed to be. We can't count on the port
* speed bits in the PORTSC register being correct until a device is connected,
* but we need to set up the two fake roothubs with the correct number of USB
* 3.0 and USB 2.0 ports at host controller initialization time.
*/
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
__le32 __iomem *addr, *tmp_addr;
u32 offset, tmp_offset;
unsigned int num_ports;
int i, j, port_index;
int cap_count = 0;
addr = &xhci->cap_regs->hcc_params;
offset = XHCI_HCC_EXT_CAPS(readl(addr));
if (offset == 0) {
xhci_err(xhci, "No Extended Capability registers, "
"unable to set up roothub.\n");
return -ENODEV;
}
num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
if (!xhci->port_array)
return -ENOMEM;
xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
if (!xhci->rh_bw)
return -ENOMEM;
for (i = 0; i < num_ports; i++) {
struct xhci_interval_bw_table *bw_table;
INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
bw_table = &xhci->rh_bw[i].bw_table;
for (j = 0; j < XHCI_MAX_INTERVAL; j++)
INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
}
/*
* For whatever reason, the first capability offset is from the
* capability register base, not from the HCCPARAMS register.
* See section 5.3.6 for offset calculation.
*/
addr = &xhci->cap_regs->hc_capbase + offset;
tmp_addr = addr;
tmp_offset = offset;
/* count extended protocol capability entries for later caching */
do {
u32 cap_id;
cap_id = readl(tmp_addr);
if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
cap_count++;
tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
tmp_addr += tmp_offset;
} while (tmp_offset);
xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
if (!xhci->ext_caps)
return -ENOMEM;
while (1) {
u32 cap_id;
cap_id = readl(addr);
if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
xhci_add_in_port(xhci, num_ports, addr,
(u8) XHCI_EXT_PORT_MAJOR(cap_id),
cap_count);
offset = XHCI_EXT_CAPS_NEXT(cap_id);
if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
== num_ports)
break;
/*
* Once you're into the Extended Capabilities, the offset is
* always relative to the register holding the offset.
*/
addr += offset;
}
if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
xhci_warn(xhci, "No ports on the roothubs?\n");
return -ENODEV;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Found %u USB 2.0 ports and %u USB 3.0 ports.",
xhci->num_usb2_ports, xhci->num_usb3_ports);
/* Place limits on the number of roothub ports so that the hub
* descriptors aren't longer than the USB core will allocate.
*/
if (xhci->num_usb3_ports > 15) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Limiting USB 3.0 roothub ports to 15.");
xhci->num_usb3_ports = 15;
}
if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Limiting USB 2.0 roothub ports to %u.",
USB_MAXCHILDREN);
xhci->num_usb2_ports = USB_MAXCHILDREN;
}
/*
* Note we could have all USB 3.0 ports, or all USB 2.0 ports.
* Not sure how the USB core will handle a hub with no ports...
*/
if (xhci->num_usb2_ports) {
xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
xhci->num_usb2_ports, flags);
if (!xhci->usb2_ports)
return -ENOMEM;
port_index = 0;
for (i = 0; i < num_ports; i++) {
if (xhci->port_array[i] == 0x03 ||
xhci->port_array[i] == 0 ||
xhci->port_array[i] == DUPLICATE_ENTRY)
continue;
xhci->usb2_ports[port_index] =
&xhci->op_regs->port_status_base +
NUM_PORT_REGS*i;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"USB 2.0 port at index %u, "
"addr = %p", i,
xhci->usb2_ports[port_index]);
port_index++;
if (port_index == xhci->num_usb2_ports)
break;
}
}
if (xhci->num_usb3_ports) {
xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
xhci->num_usb3_ports, flags);
if (!xhci->usb3_ports)
return -ENOMEM;
port_index = 0;
for (i = 0; i < num_ports; i++)
if (xhci->port_array[i] == 0x03) {
xhci->usb3_ports[port_index] =
&xhci->op_regs->port_status_base +
NUM_PORT_REGS*i;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"USB 3.0 port at index %u, "
"addr = %p", i,
xhci->usb3_ports[port_index]);
port_index++;
if (port_index == xhci->num_usb3_ports)
break;
}
}
return 0;
}
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
dma_addr_t dma;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
unsigned int val, val2;
u64 val_64;
struct xhci_segment *seg;
u32 page_size, temp;
int i;
INIT_LIST_HEAD(&xhci->cancel_cmd_list);
page_size = readl(&xhci->op_regs->page_size);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Supported page size register = 0x%x", page_size);
for (i = 0; i < 16; i++) {
if ((0x1 & page_size) != 0)
break;
page_size = page_size >> 1;
}
if (i < 16)
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Supported page size of %iK", (1 << (i+12)) / 1024);
else
xhci_warn(xhci, "WARN: no supported page size\n");
/* Use 4K pages, since that's common and the minimum the HC supports */
xhci->page_shift = 12;
xhci->page_size = 1 << xhci->page_shift;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"HCD page size set to %iK", xhci->page_size / 1024);
/*
* Program the Number of Device Slots Enabled field in the CONFIG
* register with the max value of slots the HC can handle.
*/
val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// xHC can handle at most %d device slots.", val);
val2 = readl(&xhci->op_regs->config_reg);
val |= (val2 & ~HCS_SLOTS_MASK);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Setting Max device slots reg = 0x%x.", val);
writel(val, &xhci->op_regs->config_reg);
/*
* Section 5.4.8 - doorbell array must be
* "physically contiguous and 64-byte (cache line) aligned".
*/
xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
GFP_KERNEL);
if (!xhci->dcbaa)
goto fail;
memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
xhci->dcbaa->dma = dma;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Device context base array address = 0x%llx (DMA), %p (virt)",
(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
writeq(dma, &xhci->op_regs->dcbaa_ptr);
/*
* Initialize the ring segment pool. The ring must be a contiguous
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
* however, the command ring segment needs 64-byte aligned segments,
* so we pick the greater alignment need.
*/
xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
TRB_SEGMENT_SIZE, 64, xhci->page_size);
/* See Table 46 and Note on Figure 55 */
xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2112, 64, xhci->page_size);
if (!xhci->segment_pool || !xhci->device_pool)
goto fail;
/* Linear stream context arrays don't have any boundary restrictions,
* and only need to be 16-byte aligned.
*/
xhci->small_streams_pool =
dma_pool_create("xHCI 256 byte stream ctx arrays",
dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
xhci->medium_streams_pool =
dma_pool_create("xHCI 1KB stream ctx arrays",
dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
* will be allocated with dma_alloc_coherent()
*/
if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
goto fail;
/* Set up the command ring to have one segments for now. */
xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
if (!xhci->cmd_ring)
goto fail;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Allocated command ring at %p", xhci->cmd_ring);
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
(unsigned long long)xhci->cmd_ring->first_seg->dma);
/* Set the address in the Command Ring Control register */
val_64 = readq(&xhci->op_regs->cmd_ring);
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
xhci->cmd_ring->cycle_state;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Setting command ring address to 0x%x", val);
writeq(val_64, &xhci->op_regs->cmd_ring);
xhci_dbg_cmd_ptrs(xhci);
xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
if (!xhci->lpm_command)
goto fail;
/* Reserve one command ring TRB for disabling LPM.
* Since the USB core grabs the shared usb_bus bandwidth mutex before
* disabling LPM, we only need to reserve one TRB for all devices.
*/
xhci->cmd_ring_reserved_trbs++;
val = readl(&xhci->cap_regs->db_off);
val &= DBOFF_MASK;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Doorbell array is located at offset 0x%x"
" from cap regs base addr", val);
xhci->dba = (void __iomem *) xhci->cap_regs + val;
xhci_dbg_regs(xhci);
xhci_print_run_regs(xhci);
/* Set ir_set to interrupt register set 0 */
xhci->ir_set = &xhci->run_regs->ir_set[0];
/*
* Event ring setup: Allocate a normal ring, but also setup
* the event ring segment table (ERST). Section 4.9.3.
*/
xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
flags);
if (!xhci->event_ring)
goto fail;
if (xhci_check_trb_in_td_math(xhci, flags) < 0)
goto fail;
xhci->erst.entries = dma_alloc_coherent(dev,
sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
GFP_KERNEL);
if (!xhci->erst.entries)
goto fail;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Allocated event ring segment table at 0x%llx",
(unsigned long long)dma);
memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
xhci->erst.num_entries = ERST_NUM_SEGS;
xhci->erst.erst_dma_addr = dma;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
xhci->erst.num_entries,
xhci->erst.entries,
(unsigned long long)xhci->erst.erst_dma_addr);
/* set ring base address and size for each segment table entry */
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
struct xhci_erst_entry *entry = &xhci->erst.entries[val];
entry->seg_addr = cpu_to_le64(seg->dma);
entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
entry->rsvd = 0;
seg = seg->next;
}
/* set ERST count with the number of entries in the segment table */
val = readl(&xhci->ir_set->erst_size);
val &= ERST_SIZE_MASK;
val |= ERST_NUM_SEGS;
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Write ERST size = %i to ir_set 0 (some bits preserved)",
val);
writel(val, &xhci->ir_set->erst_size);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Set ERST entries to point to event ring.");
/* set the segment table base address */
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"// Set ERST base address for ir_set 0 = 0x%llx",
(unsigned long long)xhci->erst.erst_dma_addr);
val_64 = readq(&xhci->ir_set->erst_base);
val_64 &= ERST_PTR_MASK;
val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
writeq(val_64, &xhci->ir_set->erst_base);
/* Set the event ring dequeue address */
xhci_set_hc_event_deq(xhci);
xhci_dbg_trace(xhci, trace_xhci_dbg_init,
"Wrote ERST address to ir_set 0.");
xhci_print_ir_set(xhci, 0);
/*
* XXX: Might need to set the Interrupter Moderation Register to
* something other than the default (~1ms minimum between interrupts).
* See section 5.5.1.2.
*/
init_completion(&xhci->addr_dev);
for (i = 0; i < MAX_HC_SLOTS; ++i)
xhci->devs[i] = NULL;
for (i = 0; i < USB_MAXCHILDREN; ++i) {
xhci->bus_state[0].resume_done[i] = 0;
xhci->bus_state[1].resume_done[i] = 0;
/* Only the USB 2.0 completions will ever be used. */
init_completion(&xhci->bus_state[1].rexit_done[i]);
}
if (scratchpad_alloc(xhci, flags))
goto fail;
if (xhci_setup_port_arrays(xhci, flags))
goto fail;
/* Enable USB 3.0 device notifications for function remote wake, which
* is necessary for allowing USB 3.0 devices to do remote wakeup from
* U3 (device suspend).
*/
temp = readl(&xhci->op_regs->dev_notification);
temp &= ~DEV_NOTE_MASK;
temp |= DEV_NOTE_FWAKE;
writel(temp, &xhci->op_regs->dev_notification);
return 0;
fail:
xhci_warn(xhci, "Couldn't initialize memory\n");
xhci_halt(xhci);
xhci_reset(xhci);
xhci_mem_cleanup(xhci);
return -ENOMEM;
}