kernel-fxtec-pro1x/fs/ocfs2/journal.c
Kai Li e5d0adee67 ocfs2: call journal flush to mark journal as empty after journal recovery when mount
[ Upstream commit 397eac17f86f404f5ba31d8c3e39ec3124b39fd3 ]

If journal is dirty when mount, it will be replayed but jbd2 sb log tail
cannot be updated to mark a new start because journal->j_flag has
already been set with JBD2_ABORT first in journal_init_common.

When a new transaction is committed, it will be recored in block 1
first(journal->j_tail is set to 1 in journal_reset).  If emergency
restart happens again before journal super block is updated
unfortunately, the new recorded trans will not be replayed in the next
mount.

The following steps describe this procedure in detail.
1. mount and touch some files
2. these transactions are committed to journal area but not checkpointed
3. emergency restart
4. mount again and its journals are replayed
5. journal super block's first s_start is 1, but its s_seq is not updated
6. touch a new file and its trans is committed but not checkpointed
7. emergency restart again
8. mount and journal is dirty, but trans committed in 6 will not be
replayed.

This exception happens easily when this lun is used by only one node.
If it is used by multi-nodes, other node will replay its journal and its
journal super block will be updated after recovery like what this patch
does.

ocfs2_recover_node->ocfs2_replay_journal.

The following jbd2 journal can be generated by touching a new file after
journal is replayed, and seq 15 is the first valid commit, but first seq
is 13 in journal super block.

logdump:
  Block 0: Journal Superblock
  Seq: 0   Type: 4 (JBD2_SUPERBLOCK_V2)
  Blocksize: 4096   Total Blocks: 32768   First Block: 1
  First Commit ID: 13   Start Log Blknum: 1
  Error: 0
  Feature Compat: 0
  Feature Incompat: 2 block64
  Feature RO compat: 0
  Journal UUID: 4ED3822C54294467A4F8E87D2BA4BC36
  FS Share Cnt: 1   Dynamic Superblk Blknum: 0
  Per Txn Block Limit    Journal: 0    Data: 0

  Block 1: Journal Commit Block
  Seq: 14   Type: 2 (JBD2_COMMIT_BLOCK)

  Block 2: Journal Descriptor
  Seq: 15   Type: 1 (JBD2_DESCRIPTOR_BLOCK)
  No. Blocknum        Flags
   0. 587             none
  UUID: 00000000000000000000000000000000
   1. 8257792         JBD2_FLAG_SAME_UUID
   2. 619             JBD2_FLAG_SAME_UUID
   3. 24772864        JBD2_FLAG_SAME_UUID
   4. 8257802         JBD2_FLAG_SAME_UUID
   5. 513             JBD2_FLAG_SAME_UUID JBD2_FLAG_LAST_TAG
  ...
  Block 7: Inode
  Inode: 8257802   Mode: 0640   Generation: 57157641 (0x3682809)
  FS Generation: 2839773110 (0xa9437fb6)
  CRC32: 00000000   ECC: 0000
  Type: Regular   Attr: 0x0   Flags: Valid
  Dynamic Features: (0x1) InlineData
  User: 0 (root)   Group: 0 (root)   Size: 7
  Links: 1   Clusters: 0
  ctime: 0x5de5d870 0x11104c61 -- Tue Dec  3 11:37:20.286280801 2019
  atime: 0x5de5d870 0x113181a1 -- Tue Dec  3 11:37:20.288457121 2019
  mtime: 0x5de5d870 0x11104c61 -- Tue Dec  3 11:37:20.286280801 2019
  dtime: 0x0 -- Thu Jan  1 08:00:00 1970
  ...
  Block 9: Journal Commit Block
  Seq: 15   Type: 2 (JBD2_COMMIT_BLOCK)

The following is journal recovery log when recovering the upper jbd2
journal when mount again.

syslog:
  ocfs2: File system on device (252,1) was not unmounted cleanly, recovering it.
  fs/jbd2/recovery.c:(do_one_pass, 449): Starting recovery pass 0
  fs/jbd2/recovery.c:(do_one_pass, 449): Starting recovery pass 1
  fs/jbd2/recovery.c:(do_one_pass, 449): Starting recovery pass 2
  fs/jbd2/recovery.c:(jbd2_journal_recover, 278): JBD2: recovery, exit status 0, recovered transactions 13 to 13

Due to first commit seq 13 recorded in journal super is not consistent
with the value recorded in block 1(seq is 14), journal recovery will be
terminated before seq 15 even though it is an unbroken commit, inode
8257802 is a new file and it will be lost.

Link: http://lkml.kernel.org/r/20191217020140.2197-1-li.kai4@h3c.com
Signed-off-by: Kai Li <li.kai4@h3c.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Changwei Ge <gechangwei@live.cn>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-17 19:47:17 +01:00

2385 lines
62 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* journal.c
*
* Defines functions of journalling api
*
* Copyright (C) 2003, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kthread.h>
#include <linux/time.h>
#include <linux/random.h>
#include <linux/delay.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "blockcheck.h"
#include "dir.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "heartbeat.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "slot_map.h"
#include "super.h"
#include "sysfile.h"
#include "uptodate.h"
#include "quota.h"
#include "file.h"
#include "namei.h"
#include "buffer_head_io.h"
#include "ocfs2_trace.h"
DEFINE_SPINLOCK(trans_inc_lock);
#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
static int ocfs2_force_read_journal(struct inode *inode);
static int ocfs2_recover_node(struct ocfs2_super *osb,
int node_num, int slot_num);
static int __ocfs2_recovery_thread(void *arg);
static int ocfs2_commit_cache(struct ocfs2_super *osb);
static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
int dirty, int replayed);
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num);
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot,
enum ocfs2_orphan_reco_type orphan_reco_type);
static int ocfs2_commit_thread(void *arg);
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode,
struct ocfs2_quota_recovery *qrec,
enum ocfs2_orphan_reco_type orphan_reco_type);
static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
{
return __ocfs2_wait_on_mount(osb, 0);
}
static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
{
return __ocfs2_wait_on_mount(osb, 1);
}
/*
* This replay_map is to track online/offline slots, so we could recover
* offline slots during recovery and mount
*/
enum ocfs2_replay_state {
REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
REPLAY_DONE /* Replay was already queued */
};
struct ocfs2_replay_map {
unsigned int rm_slots;
enum ocfs2_replay_state rm_state;
unsigned char rm_replay_slots[0];
};
static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
{
if (!osb->replay_map)
return;
/* If we've already queued the replay, we don't have any more to do */
if (osb->replay_map->rm_state == REPLAY_DONE)
return;
osb->replay_map->rm_state = state;
}
int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
{
struct ocfs2_replay_map *replay_map;
int i, node_num;
/* If replay map is already set, we don't do it again */
if (osb->replay_map)
return 0;
replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
(osb->max_slots * sizeof(char)), GFP_KERNEL);
if (!replay_map) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
spin_lock(&osb->osb_lock);
replay_map->rm_slots = osb->max_slots;
replay_map->rm_state = REPLAY_UNNEEDED;
/* set rm_replay_slots for offline slot(s) */
for (i = 0; i < replay_map->rm_slots; i++) {
if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
replay_map->rm_replay_slots[i] = 1;
}
osb->replay_map = replay_map;
spin_unlock(&osb->osb_lock);
return 0;
}
static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
struct ocfs2_replay_map *replay_map = osb->replay_map;
int i;
if (!replay_map)
return;
if (replay_map->rm_state != REPLAY_NEEDED)
return;
for (i = 0; i < replay_map->rm_slots; i++)
if (replay_map->rm_replay_slots[i])
ocfs2_queue_recovery_completion(osb->journal, i, NULL,
NULL, NULL,
orphan_reco_type);
replay_map->rm_state = REPLAY_DONE;
}
static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
{
struct ocfs2_replay_map *replay_map = osb->replay_map;
if (!osb->replay_map)
return;
kfree(replay_map);
osb->replay_map = NULL;
}
int ocfs2_recovery_init(struct ocfs2_super *osb)
{
struct ocfs2_recovery_map *rm;
mutex_init(&osb->recovery_lock);
osb->disable_recovery = 0;
osb->recovery_thread_task = NULL;
init_waitqueue_head(&osb->recovery_event);
rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
osb->max_slots * sizeof(unsigned int),
GFP_KERNEL);
if (!rm) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
rm->rm_entries = (unsigned int *)((char *)rm +
sizeof(struct ocfs2_recovery_map));
osb->recovery_map = rm;
return 0;
}
/* we can't grab the goofy sem lock from inside wait_event, so we use
* memory barriers to make sure that we'll see the null task before
* being woken up */
static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
{
mb();
return osb->recovery_thread_task != NULL;
}
void ocfs2_recovery_exit(struct ocfs2_super *osb)
{
struct ocfs2_recovery_map *rm;
/* disable any new recovery threads and wait for any currently
* running ones to exit. Do this before setting the vol_state. */
mutex_lock(&osb->recovery_lock);
osb->disable_recovery = 1;
mutex_unlock(&osb->recovery_lock);
wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
/* At this point, we know that no more recovery threads can be
* launched, so wait for any recovery completion work to
* complete. */
if (osb->ocfs2_wq)
flush_workqueue(osb->ocfs2_wq);
/*
* Now that recovery is shut down, and the osb is about to be
* freed, the osb_lock is not taken here.
*/
rm = osb->recovery_map;
/* XXX: Should we bug if there are dirty entries? */
kfree(rm);
}
static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
unsigned int node_num)
{
int i;
struct ocfs2_recovery_map *rm = osb->recovery_map;
assert_spin_locked(&osb->osb_lock);
for (i = 0; i < rm->rm_used; i++) {
if (rm->rm_entries[i] == node_num)
return 1;
}
return 0;
}
/* Behaves like test-and-set. Returns the previous value */
static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
unsigned int node_num)
{
struct ocfs2_recovery_map *rm = osb->recovery_map;
spin_lock(&osb->osb_lock);
if (__ocfs2_recovery_map_test(osb, node_num)) {
spin_unlock(&osb->osb_lock);
return 1;
}
/* XXX: Can this be exploited? Not from o2dlm... */
BUG_ON(rm->rm_used >= osb->max_slots);
rm->rm_entries[rm->rm_used] = node_num;
rm->rm_used++;
spin_unlock(&osb->osb_lock);
return 0;
}
static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
unsigned int node_num)
{
int i;
struct ocfs2_recovery_map *rm = osb->recovery_map;
spin_lock(&osb->osb_lock);
for (i = 0; i < rm->rm_used; i++) {
if (rm->rm_entries[i] == node_num)
break;
}
if (i < rm->rm_used) {
/* XXX: be careful with the pointer math */
memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
(rm->rm_used - i - 1) * sizeof(unsigned int));
rm->rm_used--;
}
spin_unlock(&osb->osb_lock);
}
static int ocfs2_commit_cache(struct ocfs2_super *osb)
{
int status = 0;
unsigned int flushed;
struct ocfs2_journal *journal = NULL;
journal = osb->journal;
/* Flush all pending commits and checkpoint the journal. */
down_write(&journal->j_trans_barrier);
flushed = atomic_read(&journal->j_num_trans);
trace_ocfs2_commit_cache_begin(flushed);
if (flushed == 0) {
up_write(&journal->j_trans_barrier);
goto finally;
}
jbd2_journal_lock_updates(journal->j_journal);
status = jbd2_journal_flush(journal->j_journal);
jbd2_journal_unlock_updates(journal->j_journal);
if (status < 0) {
up_write(&journal->j_trans_barrier);
mlog_errno(status);
goto finally;
}
ocfs2_inc_trans_id(journal);
flushed = atomic_read(&journal->j_num_trans);
atomic_set(&journal->j_num_trans, 0);
up_write(&journal->j_trans_barrier);
trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
ocfs2_wake_downconvert_thread(osb);
wake_up(&journal->j_checkpointed);
finally:
return status;
}
handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
{
journal_t *journal = osb->journal->j_journal;
handle_t *handle;
BUG_ON(!osb || !osb->journal->j_journal);
if (ocfs2_is_hard_readonly(osb))
return ERR_PTR(-EROFS);
BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
BUG_ON(max_buffs <= 0);
/* Nested transaction? Just return the handle... */
if (journal_current_handle())
return jbd2_journal_start(journal, max_buffs);
sb_start_intwrite(osb->sb);
down_read(&osb->journal->j_trans_barrier);
handle = jbd2_journal_start(journal, max_buffs);
if (IS_ERR(handle)) {
up_read(&osb->journal->j_trans_barrier);
sb_end_intwrite(osb->sb);
mlog_errno(PTR_ERR(handle));
if (is_journal_aborted(journal)) {
ocfs2_abort(osb->sb, "Detected aborted journal\n");
handle = ERR_PTR(-EROFS);
}
} else {
if (!ocfs2_mount_local(osb))
atomic_inc(&(osb->journal->j_num_trans));
}
return handle;
}
int ocfs2_commit_trans(struct ocfs2_super *osb,
handle_t *handle)
{
int ret, nested;
struct ocfs2_journal *journal = osb->journal;
BUG_ON(!handle);
nested = handle->h_ref > 1;
ret = jbd2_journal_stop(handle);
if (ret < 0)
mlog_errno(ret);
if (!nested) {
up_read(&journal->j_trans_barrier);
sb_end_intwrite(osb->sb);
}
return ret;
}
/*
* 'nblocks' is what you want to add to the current transaction.
*
* This might call jbd2_journal_restart() which will commit dirty buffers
* and then restart the transaction. Before calling
* ocfs2_extend_trans(), any changed blocks should have been
* dirtied. After calling it, all blocks which need to be changed must
* go through another set of journal_access/journal_dirty calls.
*
* WARNING: This will not release any semaphores or disk locks taken
* during the transaction, so make sure they were taken *before*
* start_trans or we'll have ordering deadlocks.
*
* WARNING2: Note that we do *not* drop j_trans_barrier here. This is
* good because transaction ids haven't yet been recorded on the
* cluster locks associated with this handle.
*/
int ocfs2_extend_trans(handle_t *handle, int nblocks)
{
int status, old_nblocks;
BUG_ON(!handle);
BUG_ON(nblocks < 0);
if (!nblocks)
return 0;
old_nblocks = handle->h_buffer_credits;
trace_ocfs2_extend_trans(old_nblocks, nblocks);
#ifdef CONFIG_OCFS2_DEBUG_FS
status = 1;
#else
status = jbd2_journal_extend(handle, nblocks);
if (status < 0) {
mlog_errno(status);
goto bail;
}
#endif
if (status > 0) {
trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
status = jbd2_journal_restart(handle,
old_nblocks + nblocks);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
return status;
}
/*
* If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
* If that fails, restart the transaction & regain write access for the
* buffer head which is used for metadata modifications.
* Taken from Ext4: extend_or_restart_transaction()
*/
int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
{
int status, old_nblks;
BUG_ON(!handle);
old_nblks = handle->h_buffer_credits;
trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
if (old_nblks < thresh)
return 0;
status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (status > 0) {
status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
if (status < 0)
mlog_errno(status);
}
bail:
return status;
}
struct ocfs2_triggers {
struct jbd2_buffer_trigger_type ot_triggers;
int ot_offset;
};
static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
{
return container_of(triggers, struct ocfs2_triggers, ot_triggers);
}
static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh,
void *data, size_t size)
{
struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
/*
* We aren't guaranteed to have the superblock here, so we
* must unconditionally compute the ecc data.
* __ocfs2_journal_access() will only set the triggers if
* metaecc is enabled.
*/
ocfs2_block_check_compute(data, size, data + ot->ot_offset);
}
/*
* Quota blocks have their own trigger because the struct ocfs2_block_check
* offset depends on the blocksize.
*/
static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh,
void *data, size_t size)
{
struct ocfs2_disk_dqtrailer *dqt =
ocfs2_block_dqtrailer(size, data);
/*
* We aren't guaranteed to have the superblock here, so we
* must unconditionally compute the ecc data.
* __ocfs2_journal_access() will only set the triggers if
* metaecc is enabled.
*/
ocfs2_block_check_compute(data, size, &dqt->dq_check);
}
/*
* Directory blocks also have their own trigger because the
* struct ocfs2_block_check offset depends on the blocksize.
*/
static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh,
void *data, size_t size)
{
struct ocfs2_dir_block_trailer *trailer =
ocfs2_dir_trailer_from_size(size, data);
/*
* We aren't guaranteed to have the superblock here, so we
* must unconditionally compute the ecc data.
* __ocfs2_journal_access() will only set the triggers if
* metaecc is enabled.
*/
ocfs2_block_check_compute(data, size, &trailer->db_check);
}
static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh)
{
mlog(ML_ERROR,
"ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
"bh->b_blocknr = %llu\n",
(unsigned long)bh,
(unsigned long long)bh->b_blocknr);
ocfs2_error(bh->b_bdev->bd_super,
"JBD2 has aborted our journal, ocfs2 cannot continue\n");
}
static struct ocfs2_triggers di_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_dinode, i_check),
};
static struct ocfs2_triggers eb_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_extent_block, h_check),
};
static struct ocfs2_triggers rb_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
};
static struct ocfs2_triggers gd_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
};
static struct ocfs2_triggers db_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_db_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
};
static struct ocfs2_triggers xb_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
};
static struct ocfs2_triggers dq_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_dq_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
};
static struct ocfs2_triggers dr_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
};
static struct ocfs2_triggers dl_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
};
static int __ocfs2_journal_access(handle_t *handle,
struct ocfs2_caching_info *ci,
struct buffer_head *bh,
struct ocfs2_triggers *triggers,
int type)
{
int status;
struct ocfs2_super *osb =
OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
BUG_ON(!ci || !ci->ci_ops);
BUG_ON(!handle);
BUG_ON(!bh);
trace_ocfs2_journal_access(
(unsigned long long)ocfs2_metadata_cache_owner(ci),
(unsigned long long)bh->b_blocknr, type, bh->b_size);
/* we can safely remove this assertion after testing. */
if (!buffer_uptodate(bh)) {
mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
(unsigned long long)bh->b_blocknr, bh->b_state);
lock_buffer(bh);
/*
* A previous transaction with a couple of buffer heads fail
* to checkpoint, so all the bhs are marked as BH_Write_EIO.
* For current transaction, the bh is just among those error
* bhs which previous transaction handle. We can't just clear
* its BH_Write_EIO and reuse directly, since other bhs are
* not written to disk yet and that will cause metadata
* inconsistency. So we should set fs read-only to avoid
* further damage.
*/
if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
unlock_buffer(bh);
return ocfs2_error(osb->sb, "A previous attempt to "
"write this buffer head failed\n");
}
unlock_buffer(bh);
}
/* Set the current transaction information on the ci so
* that the locking code knows whether it can drop it's locks
* on this ci or not. We're protected from the commit
* thread updating the current transaction id until
* ocfs2_commit_trans() because ocfs2_start_trans() took
* j_trans_barrier for us. */
ocfs2_set_ci_lock_trans(osb->journal, ci);
ocfs2_metadata_cache_io_lock(ci);
switch (type) {
case OCFS2_JOURNAL_ACCESS_CREATE:
case OCFS2_JOURNAL_ACCESS_WRITE:
status = jbd2_journal_get_write_access(handle, bh);
break;
case OCFS2_JOURNAL_ACCESS_UNDO:
status = jbd2_journal_get_undo_access(handle, bh);
break;
default:
status = -EINVAL;
mlog(ML_ERROR, "Unknown access type!\n");
}
if (!status && ocfs2_meta_ecc(osb) && triggers)
jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
ocfs2_metadata_cache_io_unlock(ci);
if (status < 0)
mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
status, type);
return status;
}
int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
}
int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
}
int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
type);
}
int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
}
int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
}
int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
}
int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
}
int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
}
int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
}
int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, NULL, type);
}
void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
{
int status;
trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
status = jbd2_journal_dirty_metadata(handle, bh);
if (status) {
mlog_errno(status);
if (!is_handle_aborted(handle)) {
journal_t *journal = handle->h_transaction->t_journal;
struct super_block *sb = bh->b_bdev->bd_super;
mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
"Aborting transaction and journal.\n");
handle->h_err = status;
jbd2_journal_abort_handle(handle);
jbd2_journal_abort(journal, status);
ocfs2_abort(sb, "Journal already aborted.\n");
}
}
}
#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
void ocfs2_set_journal_params(struct ocfs2_super *osb)
{
journal_t *journal = osb->journal->j_journal;
unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
if (osb->osb_commit_interval)
commit_interval = osb->osb_commit_interval;
write_lock(&journal->j_state_lock);
journal->j_commit_interval = commit_interval;
if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
journal->j_flags |= JBD2_BARRIER;
else
journal->j_flags &= ~JBD2_BARRIER;
write_unlock(&journal->j_state_lock);
}
int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
{
int status = -1;
struct inode *inode = NULL; /* the journal inode */
journal_t *j_journal = NULL;
struct ocfs2_dinode *di = NULL;
struct buffer_head *bh = NULL;
struct ocfs2_super *osb;
int inode_lock = 0;
BUG_ON(!journal);
osb = journal->j_osb;
/* already have the inode for our journal */
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
osb->slot_num);
if (inode == NULL) {
status = -EACCES;
mlog_errno(status);
goto done;
}
if (is_bad_inode(inode)) {
mlog(ML_ERROR, "access error (bad inode)\n");
iput(inode);
inode = NULL;
status = -EACCES;
goto done;
}
SET_INODE_JOURNAL(inode);
OCFS2_I(inode)->ip_open_count++;
/* Skip recovery waits here - journal inode metadata never
* changes in a live cluster so it can be considered an
* exception to the rule. */
status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
if (status < 0) {
if (status != -ERESTARTSYS)
mlog(ML_ERROR, "Could not get lock on journal!\n");
goto done;
}
inode_lock = 1;
di = (struct ocfs2_dinode *)bh->b_data;
if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
i_size_read(inode));
status = -EINVAL;
goto done;
}
trace_ocfs2_journal_init(i_size_read(inode),
(unsigned long long)inode->i_blocks,
OCFS2_I(inode)->ip_clusters);
/* call the kernels journal init function now */
j_journal = jbd2_journal_init_inode(inode);
if (j_journal == NULL) {
mlog(ML_ERROR, "Linux journal layer error\n");
status = -EINVAL;
goto done;
}
trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
OCFS2_JOURNAL_DIRTY_FL);
journal->j_journal = j_journal;
journal->j_inode = inode;
journal->j_bh = bh;
ocfs2_set_journal_params(osb);
journal->j_state = OCFS2_JOURNAL_LOADED;
status = 0;
done:
if (status < 0) {
if (inode_lock)
ocfs2_inode_unlock(inode, 1);
brelse(bh);
if (inode) {
OCFS2_I(inode)->ip_open_count--;
iput(inode);
}
}
return status;
}
static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
{
le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
}
static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
{
return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
}
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
int dirty, int replayed)
{
int status;
unsigned int flags;
struct ocfs2_journal *journal = osb->journal;
struct buffer_head *bh = journal->j_bh;
struct ocfs2_dinode *fe;
fe = (struct ocfs2_dinode *)bh->b_data;
/* The journal bh on the osb always comes from ocfs2_journal_init()
* and was validated there inside ocfs2_inode_lock_full(). It's a
* code bug if we mess it up. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
if (dirty)
flags |= OCFS2_JOURNAL_DIRTY_FL;
else
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
if (replayed)
ocfs2_bump_recovery_generation(fe);
ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
if (status < 0)
mlog_errno(status);
return status;
}
/*
* If the journal has been kmalloc'd it needs to be freed after this
* call.
*/
void ocfs2_journal_shutdown(struct ocfs2_super *osb)
{
struct ocfs2_journal *journal = NULL;
int status = 0;
struct inode *inode = NULL;
int num_running_trans = 0;
BUG_ON(!osb);
journal = osb->journal;
if (!journal)
goto done;
inode = journal->j_inode;
if (journal->j_state != OCFS2_JOURNAL_LOADED)
goto done;
/* need to inc inode use count - jbd2_journal_destroy will iput. */
if (!igrab(inode))
BUG();
num_running_trans = atomic_read(&(osb->journal->j_num_trans));
trace_ocfs2_journal_shutdown(num_running_trans);
/* Do a commit_cache here. It will flush our journal, *and*
* release any locks that are still held.
* set the SHUTDOWN flag and release the trans lock.
* the commit thread will take the trans lock for us below. */
journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
* drop the trans_lock (which we want to hold until we
* completely destroy the journal. */
if (osb->commit_task) {
/* Wait for the commit thread */
trace_ocfs2_journal_shutdown_wait(osb->commit_task);
kthread_stop(osb->commit_task);
osb->commit_task = NULL;
}
BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
if (ocfs2_mount_local(osb)) {
jbd2_journal_lock_updates(journal->j_journal);
status = jbd2_journal_flush(journal->j_journal);
jbd2_journal_unlock_updates(journal->j_journal);
if (status < 0)
mlog_errno(status);
}
/* Shutdown the kernel journal system */
if (!jbd2_journal_destroy(journal->j_journal) && !status) {
/*
* Do not toggle if flush was unsuccessful otherwise
* will leave dirty metadata in a "clean" journal
*/
status = ocfs2_journal_toggle_dirty(osb, 0, 0);
if (status < 0)
mlog_errno(status);
}
journal->j_journal = NULL;
OCFS2_I(inode)->ip_open_count--;
/* unlock our journal */
ocfs2_inode_unlock(inode, 1);
brelse(journal->j_bh);
journal->j_bh = NULL;
journal->j_state = OCFS2_JOURNAL_FREE;
// up_write(&journal->j_trans_barrier);
done:
iput(inode);
}
static void ocfs2_clear_journal_error(struct super_block *sb,
journal_t *journal,
int slot)
{
int olderr;
olderr = jbd2_journal_errno(journal);
if (olderr) {
mlog(ML_ERROR, "File system error %d recorded in "
"journal %u.\n", olderr, slot);
mlog(ML_ERROR, "File system on device %s needs checking.\n",
sb->s_id);
jbd2_journal_ack_err(journal);
jbd2_journal_clear_err(journal);
}
}
int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
{
int status = 0;
struct ocfs2_super *osb;
BUG_ON(!journal);
osb = journal->j_osb;
status = jbd2_journal_load(journal->j_journal);
if (status < 0) {
mlog(ML_ERROR, "Failed to load journal!\n");
goto done;
}
ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
if (replayed) {
jbd2_journal_lock_updates(journal->j_journal);
status = jbd2_journal_flush(journal->j_journal);
jbd2_journal_unlock_updates(journal->j_journal);
if (status < 0)
mlog_errno(status);
}
status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* Launch the commit thread */
if (!local) {
osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
"ocfs2cmt-%s", osb->uuid_str);
if (IS_ERR(osb->commit_task)) {
status = PTR_ERR(osb->commit_task);
osb->commit_task = NULL;
mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
"error=%d", status);
goto done;
}
} else
osb->commit_task = NULL;
done:
return status;
}
/* 'full' flag tells us whether we clear out all blocks or if we just
* mark the journal clean */
int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
{
int status;
BUG_ON(!journal);
status = jbd2_journal_wipe(journal->j_journal, full);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
if (status < 0)
mlog_errno(status);
bail:
return status;
}
static int ocfs2_recovery_completed(struct ocfs2_super *osb)
{
int empty;
struct ocfs2_recovery_map *rm = osb->recovery_map;
spin_lock(&osb->osb_lock);
empty = (rm->rm_used == 0);
spin_unlock(&osb->osb_lock);
return empty;
}
void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
{
wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
}
/*
* JBD Might read a cached version of another nodes journal file. We
* don't want this as this file changes often and we get no
* notification on those changes. The only way to be sure that we've
* got the most up to date version of those blocks then is to force
* read them off disk. Just searching through the buffer cache won't
* work as there may be pages backing this file which are still marked
* up to date. We know things can't change on this file underneath us
* as we have the lock by now :)
*/
static int ocfs2_force_read_journal(struct inode *inode)
{
int status = 0;
int i;
u64 v_blkno, p_blkno, p_blocks, num_blocks;
struct buffer_head *bh = NULL;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
v_blkno = 0;
while (v_blkno < num_blocks) {
status = ocfs2_extent_map_get_blocks(inode, v_blkno,
&p_blkno, &p_blocks, NULL);
if (status < 0) {
mlog_errno(status);
goto bail;
}
for (i = 0; i < p_blocks; i++, p_blkno++) {
bh = __find_get_block(osb->sb->s_bdev, p_blkno,
osb->sb->s_blocksize);
/* block not cached. */
if (!bh)
continue;
brelse(bh);
bh = NULL;
/* We are reading journal data which should not
* be put in the uptodate cache.
*/
status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
brelse(bh);
bh = NULL;
}
v_blkno += p_blocks;
}
bail:
return status;
}
struct ocfs2_la_recovery_item {
struct list_head lri_list;
int lri_slot;
struct ocfs2_dinode *lri_la_dinode;
struct ocfs2_dinode *lri_tl_dinode;
struct ocfs2_quota_recovery *lri_qrec;
enum ocfs2_orphan_reco_type lri_orphan_reco_type;
};
/* Does the second half of the recovery process. By this point, the
* node is marked clean and can actually be considered recovered,
* hence it's no longer in the recovery map, but there's still some
* cleanup we can do which shouldn't happen within the recovery thread
* as locking in that context becomes very difficult if we are to take
* recovering nodes into account.
*
* NOTE: This function can and will sleep on recovery of other nodes
* during cluster locking, just like any other ocfs2 process.
*/
void ocfs2_complete_recovery(struct work_struct *work)
{
int ret = 0;
struct ocfs2_journal *journal =
container_of(work, struct ocfs2_journal, j_recovery_work);
struct ocfs2_super *osb = journal->j_osb;
struct ocfs2_dinode *la_dinode, *tl_dinode;
struct ocfs2_la_recovery_item *item, *n;
struct ocfs2_quota_recovery *qrec;
enum ocfs2_orphan_reco_type orphan_reco_type;
LIST_HEAD(tmp_la_list);
trace_ocfs2_complete_recovery(
(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
spin_lock(&journal->j_lock);
list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
spin_unlock(&journal->j_lock);
list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
list_del_init(&item->lri_list);
ocfs2_wait_on_quotas(osb);
la_dinode = item->lri_la_dinode;
tl_dinode = item->lri_tl_dinode;
qrec = item->lri_qrec;
orphan_reco_type = item->lri_orphan_reco_type;
trace_ocfs2_complete_recovery_slot(item->lri_slot,
la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
qrec);
if (la_dinode) {
ret = ocfs2_complete_local_alloc_recovery(osb,
la_dinode);
if (ret < 0)
mlog_errno(ret);
kfree(la_dinode);
}
if (tl_dinode) {
ret = ocfs2_complete_truncate_log_recovery(osb,
tl_dinode);
if (ret < 0)
mlog_errno(ret);
kfree(tl_dinode);
}
ret = ocfs2_recover_orphans(osb, item->lri_slot,
orphan_reco_type);
if (ret < 0)
mlog_errno(ret);
if (qrec) {
ret = ocfs2_finish_quota_recovery(osb, qrec,
item->lri_slot);
if (ret < 0)
mlog_errno(ret);
/* Recovery info is already freed now */
}
kfree(item);
}
trace_ocfs2_complete_recovery_end(ret);
}
/* NOTE: This function always eats your references to la_dinode and
* tl_dinode, either manually on error, or by passing them to
* ocfs2_complete_recovery */
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode,
struct ocfs2_quota_recovery *qrec,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
struct ocfs2_la_recovery_item *item;
item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
if (!item) {
/* Though we wish to avoid it, we are in fact safe in
* skipping local alloc cleanup as fsck.ocfs2 is more
* than capable of reclaiming unused space. */
kfree(la_dinode);
kfree(tl_dinode);
if (qrec)
ocfs2_free_quota_recovery(qrec);
mlog_errno(-ENOMEM);
return;
}
INIT_LIST_HEAD(&item->lri_list);
item->lri_la_dinode = la_dinode;
item->lri_slot = slot_num;
item->lri_tl_dinode = tl_dinode;
item->lri_qrec = qrec;
item->lri_orphan_reco_type = orphan_reco_type;
spin_lock(&journal->j_lock);
list_add_tail(&item->lri_list, &journal->j_la_cleanups);
queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
spin_unlock(&journal->j_lock);
}
/* Called by the mount code to queue recovery the last part of
* recovery for it's own and offline slot(s). */
void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
{
struct ocfs2_journal *journal = osb->journal;
if (ocfs2_is_hard_readonly(osb))
return;
/* No need to queue up our truncate_log as regular cleanup will catch
* that */
ocfs2_queue_recovery_completion(journal, osb->slot_num,
osb->local_alloc_copy, NULL, NULL,
ORPHAN_NEED_TRUNCATE);
ocfs2_schedule_truncate_log_flush(osb, 0);
osb->local_alloc_copy = NULL;
/* queue to recover orphan slots for all offline slots */
ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
ocfs2_free_replay_slots(osb);
}
void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
{
if (osb->quota_rec) {
ocfs2_queue_recovery_completion(osb->journal,
osb->slot_num,
NULL,
NULL,
osb->quota_rec,
ORPHAN_NEED_TRUNCATE);
osb->quota_rec = NULL;
}
}
static int __ocfs2_recovery_thread(void *arg)
{
int status, node_num, slot_num;
struct ocfs2_super *osb = arg;
struct ocfs2_recovery_map *rm = osb->recovery_map;
int *rm_quota = NULL;
int rm_quota_used = 0, i;
struct ocfs2_quota_recovery *qrec;
/* Whether the quota supported. */
int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
status = ocfs2_wait_on_mount(osb);
if (status < 0) {
goto bail;
}
if (quota_enabled) {
rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
if (!rm_quota) {
status = -ENOMEM;
goto bail;
}
}
restart:
status = ocfs2_super_lock(osb, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_compute_replay_slots(osb);
if (status < 0)
mlog_errno(status);
/* queue recovery for our own slot */
ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
spin_lock(&osb->osb_lock);
while (rm->rm_used) {
/* It's always safe to remove entry zero, as we won't
* clear it until ocfs2_recover_node() has succeeded. */
node_num = rm->rm_entries[0];
spin_unlock(&osb->osb_lock);
slot_num = ocfs2_node_num_to_slot(osb, node_num);
trace_ocfs2_recovery_thread_node(node_num, slot_num);
if (slot_num == -ENOENT) {
status = 0;
goto skip_recovery;
}
/* It is a bit subtle with quota recovery. We cannot do it
* immediately because we have to obtain cluster locks from
* quota files and we also don't want to just skip it because
* then quota usage would be out of sync until some node takes
* the slot. So we remember which nodes need quota recovery
* and when everything else is done, we recover quotas. */
if (quota_enabled) {
for (i = 0; i < rm_quota_used
&& rm_quota[i] != slot_num; i++)
;
if (i == rm_quota_used)
rm_quota[rm_quota_used++] = slot_num;
}
status = ocfs2_recover_node(osb, node_num, slot_num);
skip_recovery:
if (!status) {
ocfs2_recovery_map_clear(osb, node_num);
} else {
mlog(ML_ERROR,
"Error %d recovering node %d on device (%u,%u)!\n",
status, node_num,
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
mlog(ML_ERROR, "Volume requires unmount.\n");
}
spin_lock(&osb->osb_lock);
}
spin_unlock(&osb->osb_lock);
trace_ocfs2_recovery_thread_end(status);
/* Refresh all journal recovery generations from disk */
status = ocfs2_check_journals_nolocks(osb);
status = (status == -EROFS) ? 0 : status;
if (status < 0)
mlog_errno(status);
/* Now it is right time to recover quotas... We have to do this under
* superblock lock so that no one can start using the slot (and crash)
* before we recover it */
if (quota_enabled) {
for (i = 0; i < rm_quota_used; i++) {
qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
if (IS_ERR(qrec)) {
status = PTR_ERR(qrec);
mlog_errno(status);
continue;
}
ocfs2_queue_recovery_completion(osb->journal,
rm_quota[i],
NULL, NULL, qrec,
ORPHAN_NEED_TRUNCATE);
}
}
ocfs2_super_unlock(osb, 1);
/* queue recovery for offline slots */
ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
bail:
mutex_lock(&osb->recovery_lock);
if (!status && !ocfs2_recovery_completed(osb)) {
mutex_unlock(&osb->recovery_lock);
goto restart;
}
ocfs2_free_replay_slots(osb);
osb->recovery_thread_task = NULL;
mb(); /* sync with ocfs2_recovery_thread_running */
wake_up(&osb->recovery_event);
mutex_unlock(&osb->recovery_lock);
if (quota_enabled)
kfree(rm_quota);
/* no one is callint kthread_stop() for us so the kthread() api
* requires that we call do_exit(). And it isn't exported, but
* complete_and_exit() seems to be a minimal wrapper around it. */
complete_and_exit(NULL, status);
}
void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
{
mutex_lock(&osb->recovery_lock);
trace_ocfs2_recovery_thread(node_num, osb->node_num,
osb->disable_recovery, osb->recovery_thread_task,
osb->disable_recovery ?
-1 : ocfs2_recovery_map_set(osb, node_num));
if (osb->disable_recovery)
goto out;
if (osb->recovery_thread_task)
goto out;
osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
"ocfs2rec-%s", osb->uuid_str);
if (IS_ERR(osb->recovery_thread_task)) {
mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
osb->recovery_thread_task = NULL;
}
out:
mutex_unlock(&osb->recovery_lock);
wake_up(&osb->recovery_event);
}
static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
int slot_num,
struct buffer_head **bh,
struct inode **ret_inode)
{
int status = -EACCES;
struct inode *inode = NULL;
BUG_ON(slot_num >= osb->max_slots);
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
slot_num);
if (!inode || is_bad_inode(inode)) {
mlog_errno(status);
goto bail;
}
SET_INODE_JOURNAL(inode);
status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = 0;
bail:
if (inode) {
if (status || !ret_inode)
iput(inode);
else
*ret_inode = inode;
}
return status;
}
/* Does the actual journal replay and marks the journal inode as
* clean. Will only replay if the journal inode is marked dirty. */
static int ocfs2_replay_journal(struct ocfs2_super *osb,
int node_num,
int slot_num)
{
int status;
int got_lock = 0;
unsigned int flags;
struct inode *inode = NULL;
struct ocfs2_dinode *fe;
journal_t *journal = NULL;
struct buffer_head *bh = NULL;
u32 slot_reco_gen;
status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
if (status) {
mlog_errno(status);
goto done;
}
fe = (struct ocfs2_dinode *)bh->b_data;
slot_reco_gen = ocfs2_get_recovery_generation(fe);
brelse(bh);
bh = NULL;
/*
* As the fs recovery is asynchronous, there is a small chance that
* another node mounted (and recovered) the slot before the recovery
* thread could get the lock. To handle that, we dirty read the journal
* inode for that slot to get the recovery generation. If it is
* different than what we expected, the slot has been recovered.
* If not, it needs recovery.
*/
if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
trace_ocfs2_replay_journal_recovered(slot_num,
osb->slot_recovery_generations[slot_num], slot_reco_gen);
osb->slot_recovery_generations[slot_num] = slot_reco_gen;
status = -EBUSY;
goto done;
}
/* Continue with recovery as the journal has not yet been recovered */
status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
if (status < 0) {
trace_ocfs2_replay_journal_lock_err(status);
if (status != -ERESTARTSYS)
mlog(ML_ERROR, "Could not lock journal!\n");
goto done;
}
got_lock = 1;
fe = (struct ocfs2_dinode *) bh->b_data;
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
slot_reco_gen = ocfs2_get_recovery_generation(fe);
if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
trace_ocfs2_replay_journal_skip(node_num);
/* Refresh recovery generation for the slot */
osb->slot_recovery_generations[slot_num] = slot_reco_gen;
goto done;
}
/* we need to run complete recovery for offline orphan slots */
ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
"device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
MINOR(osb->sb->s_dev));
OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
status = ocfs2_force_read_journal(inode);
if (status < 0) {
mlog_errno(status);
goto done;
}
journal = jbd2_journal_init_inode(inode);
if (journal == NULL) {
mlog(ML_ERROR, "Linux journal layer error\n");
status = -EIO;
goto done;
}
status = jbd2_journal_load(journal);
if (status < 0) {
mlog_errno(status);
if (!igrab(inode))
BUG();
jbd2_journal_destroy(journal);
goto done;
}
ocfs2_clear_journal_error(osb->sb, journal, slot_num);
/* wipe the journal */
jbd2_journal_lock_updates(journal);
status = jbd2_journal_flush(journal);
jbd2_journal_unlock_updates(journal);
if (status < 0)
mlog_errno(status);
/* This will mark the node clean */
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
/* Increment recovery generation to indicate successful recovery */
ocfs2_bump_recovery_generation(fe);
osb->slot_recovery_generations[slot_num] =
ocfs2_get_recovery_generation(fe);
ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
if (status < 0)
mlog_errno(status);
if (!igrab(inode))
BUG();
jbd2_journal_destroy(journal);
printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
"device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
MINOR(osb->sb->s_dev));
done:
/* drop the lock on this nodes journal */
if (got_lock)
ocfs2_inode_unlock(inode, 1);
iput(inode);
brelse(bh);
return status;
}
/*
* Do the most important parts of node recovery:
* - Replay it's journal
* - Stamp a clean local allocator file
* - Stamp a clean truncate log
* - Mark the node clean
*
* If this function completes without error, a node in OCFS2 can be
* said to have been safely recovered. As a result, failure during the
* second part of a nodes recovery process (local alloc recovery) is
* far less concerning.
*/
static int ocfs2_recover_node(struct ocfs2_super *osb,
int node_num, int slot_num)
{
int status = 0;
struct ocfs2_dinode *la_copy = NULL;
struct ocfs2_dinode *tl_copy = NULL;
trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
/* Should not ever be called to recover ourselves -- in that
* case we should've called ocfs2_journal_load instead. */
BUG_ON(osb->node_num == node_num);
status = ocfs2_replay_journal(osb, node_num, slot_num);
if (status < 0) {
if (status == -EBUSY) {
trace_ocfs2_recover_node_skip(slot_num, node_num);
status = 0;
goto done;
}
mlog_errno(status);
goto done;
}
/* Stamp a clean local alloc file AFTER recovering the journal... */
status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* An error from begin_truncate_log_recovery is not
* serious enough to warrant halting the rest of
* recovery. */
status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
if (status < 0)
mlog_errno(status);
/* Likewise, this would be a strange but ultimately not so
* harmful place to get an error... */
status = ocfs2_clear_slot(osb, slot_num);
if (status < 0)
mlog_errno(status);
/* This will kfree the memory pointed to by la_copy and tl_copy */
ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
status = 0;
done:
return status;
}
/* Test node liveness by trylocking his journal. If we get the lock,
* we drop it here. Return 0 if we got the lock, -EAGAIN if node is
* still alive (we couldn't get the lock) and < 0 on error. */
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num)
{
int status, flags;
struct inode *inode = NULL;
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
slot_num);
if (inode == NULL) {
mlog(ML_ERROR, "access error\n");
status = -EACCES;
goto bail;
}
if (is_bad_inode(inode)) {
mlog(ML_ERROR, "access error (bad inode)\n");
iput(inode);
inode = NULL;
status = -EACCES;
goto bail;
}
SET_INODE_JOURNAL(inode);
flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
if (status < 0) {
if (status != -EAGAIN)
mlog_errno(status);
goto bail;
}
ocfs2_inode_unlock(inode, 1);
bail:
iput(inode);
return status;
}
/* Call this underneath ocfs2_super_lock. It also assumes that the
* slot info struct has been updated from disk. */
int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
{
unsigned int node_num;
int status, i;
u32 gen;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *di;
/* This is called with the super block cluster lock, so we
* know that the slot map can't change underneath us. */
for (i = 0; i < osb->max_slots; i++) {
/* Read journal inode to get the recovery generation */
status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
if (status) {
mlog_errno(status);
goto bail;
}
di = (struct ocfs2_dinode *)bh->b_data;
gen = ocfs2_get_recovery_generation(di);
brelse(bh);
bh = NULL;
spin_lock(&osb->osb_lock);
osb->slot_recovery_generations[i] = gen;
trace_ocfs2_mark_dead_nodes(i,
osb->slot_recovery_generations[i]);
if (i == osb->slot_num) {
spin_unlock(&osb->osb_lock);
continue;
}
status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
if (status == -ENOENT) {
spin_unlock(&osb->osb_lock);
continue;
}
if (__ocfs2_recovery_map_test(osb, node_num)) {
spin_unlock(&osb->osb_lock);
continue;
}
spin_unlock(&osb->osb_lock);
/* Ok, we have a slot occupied by another node which
* is not in the recovery map. We trylock his journal
* file here to test if he's alive. */
status = ocfs2_trylock_journal(osb, i);
if (!status) {
/* Since we're called from mount, we know that
* the recovery thread can't race us on
* setting / checking the recovery bits. */
ocfs2_recovery_thread(osb, node_num);
} else if ((status < 0) && (status != -EAGAIN)) {
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
return status;
}
/*
* Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
* randomness to the timeout to minimize multple nodes firing the timer at the
* same time.
*/
static inline unsigned long ocfs2_orphan_scan_timeout(void)
{
unsigned long time;
get_random_bytes(&time, sizeof(time));
time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
return msecs_to_jiffies(time);
}
/*
* ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
* every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
* is done to catch any orphans that are left over in orphan directories.
*
* It scans all slots, even ones that are in use. It does so to handle the
* case described below:
*
* Node 1 has an inode it was using. The dentry went away due to memory
* pressure. Node 1 closes the inode, but it's on the free list. The node
* has the open lock.
* Node 2 unlinks the inode. It grabs the dentry lock to notify others,
* but node 1 has no dentry and doesn't get the message. It trylocks the
* open lock, sees that another node has a PR, and does nothing.
* Later node 2 runs its orphan dir. It igets the inode, trylocks the
* open lock, sees the PR still, and does nothing.
* Basically, we have to trigger an orphan iput on node 1. The only way
* for this to happen is if node 1 runs node 2's orphan dir.
*
* ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
* seconds. It gets an EX lock on os_lockres and checks sequence number
* stored in LVB. If the sequence number has changed, it means some other
* node has done the scan. This node skips the scan and tracks the
* sequence number. If the sequence number didn't change, it means a scan
* hasn't happened. The node queues a scan and increments the
* sequence number in the LVB.
*/
static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
int status, i;
u32 seqno = 0;
os = &osb->osb_orphan_scan;
if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
goto out;
trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
atomic_read(&os->os_state));
status = ocfs2_orphan_scan_lock(osb, &seqno);
if (status < 0) {
if (status != -EAGAIN)
mlog_errno(status);
goto out;
}
/* Do no queue the tasks if the volume is being umounted */
if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
goto unlock;
if (os->os_seqno != seqno) {
os->os_seqno = seqno;
goto unlock;
}
for (i = 0; i < osb->max_slots; i++)
ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
NULL, ORPHAN_NO_NEED_TRUNCATE);
/*
* We queued a recovery on orphan slots, increment the sequence
* number and update LVB so other node will skip the scan for a while
*/
seqno++;
os->os_count++;
os->os_scantime = ktime_get_seconds();
unlock:
ocfs2_orphan_scan_unlock(osb, seqno);
out:
trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
atomic_read(&os->os_state));
return;
}
/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
static void ocfs2_orphan_scan_work(struct work_struct *work)
{
struct ocfs2_orphan_scan *os;
struct ocfs2_super *osb;
os = container_of(work, struct ocfs2_orphan_scan,
os_orphan_scan_work.work);
osb = os->os_osb;
mutex_lock(&os->os_lock);
ocfs2_queue_orphan_scan(osb);
if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
ocfs2_orphan_scan_timeout());
mutex_unlock(&os->os_lock);
}
void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
os = &osb->osb_orphan_scan;
if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
mutex_lock(&os->os_lock);
cancel_delayed_work(&os->os_orphan_scan_work);
mutex_unlock(&os->os_lock);
}
}
void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
os = &osb->osb_orphan_scan;
os->os_osb = osb;
os->os_count = 0;
os->os_seqno = 0;
mutex_init(&os->os_lock);
INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
}
void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
os = &osb->osb_orphan_scan;
os->os_scantime = ktime_get_seconds();
if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
else {
atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
ocfs2_orphan_scan_timeout());
}
}
struct ocfs2_orphan_filldir_priv {
struct dir_context ctx;
struct inode *head;
struct ocfs2_super *osb;
enum ocfs2_orphan_reco_type orphan_reco_type;
};
static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
int name_len, loff_t pos, u64 ino,
unsigned type)
{
struct ocfs2_orphan_filldir_priv *p =
container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
struct inode *iter;
if (name_len == 1 && !strncmp(".", name, 1))
return 0;
if (name_len == 2 && !strncmp("..", name, 2))
return 0;
/* do not include dio entry in case of orphan scan */
if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
OCFS2_DIO_ORPHAN_PREFIX_LEN)))
return 0;
/* Skip bad inodes so that recovery can continue */
iter = ocfs2_iget(p->osb, ino,
OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
if (IS_ERR(iter))
return 0;
if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
OCFS2_DIO_ORPHAN_PREFIX_LEN))
OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
/* Skip inodes which are already added to recover list, since dio may
* happen concurrently with unlink/rename */
if (OCFS2_I(iter)->ip_next_orphan) {
iput(iter);
return 0;
}
trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
/* No locking is required for the next_orphan queue as there
* is only ever a single process doing orphan recovery. */
OCFS2_I(iter)->ip_next_orphan = p->head;
p->head = iter;
return 0;
}
static int ocfs2_queue_orphans(struct ocfs2_super *osb,
int slot,
struct inode **head,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
int status;
struct inode *orphan_dir_inode = NULL;
struct ocfs2_orphan_filldir_priv priv = {
.ctx.actor = ocfs2_orphan_filldir,
.osb = osb,
.head = *head,
.orphan_reco_type = orphan_reco_type
};
orphan_dir_inode = ocfs2_get_system_file_inode(osb,
ORPHAN_DIR_SYSTEM_INODE,
slot);
if (!orphan_dir_inode) {
status = -ENOENT;
mlog_errno(status);
return status;
}
inode_lock(orphan_dir_inode);
status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
if (status < 0) {
mlog_errno(status);
goto out;
}
status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
if (status) {
mlog_errno(status);
goto out_cluster;
}
*head = priv.head;
out_cluster:
ocfs2_inode_unlock(orphan_dir_inode, 0);
out:
inode_unlock(orphan_dir_inode);
iput(orphan_dir_inode);
return status;
}
static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
int slot)
{
int ret;
spin_lock(&osb->osb_lock);
ret = !osb->osb_orphan_wipes[slot];
spin_unlock(&osb->osb_lock);
return ret;
}
static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
int slot)
{
spin_lock(&osb->osb_lock);
/* Mark ourselves such that new processes in delete_inode()
* know to quit early. */
ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
while (osb->osb_orphan_wipes[slot]) {
/* If any processes are already in the middle of an
* orphan wipe on this dir, then we need to wait for
* them. */
spin_unlock(&osb->osb_lock);
wait_event_interruptible(osb->osb_wipe_event,
ocfs2_orphan_recovery_can_continue(osb, slot));
spin_lock(&osb->osb_lock);
}
spin_unlock(&osb->osb_lock);
}
static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
int slot)
{
ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
}
/*
* Orphan recovery. Each mounted node has it's own orphan dir which we
* must run during recovery. Our strategy here is to build a list of
* the inodes in the orphan dir and iget/iput them. The VFS does
* (most) of the rest of the work.
*
* Orphan recovery can happen at any time, not just mount so we have a
* couple of extra considerations.
*
* - We grab as many inodes as we can under the orphan dir lock -
* doing iget() outside the orphan dir risks getting a reference on
* an invalid inode.
* - We must be sure not to deadlock with other processes on the
* system wanting to run delete_inode(). This can happen when they go
* to lock the orphan dir and the orphan recovery process attempts to
* iget() inside the orphan dir lock. This can be avoided by
* advertising our state to ocfs2_delete_inode().
*/
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
int ret = 0;
struct inode *inode = NULL;
struct inode *iter;
struct ocfs2_inode_info *oi;
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di = NULL;
trace_ocfs2_recover_orphans(slot);
ocfs2_mark_recovering_orphan_dir(osb, slot);
ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
ocfs2_clear_recovering_orphan_dir(osb, slot);
/* Error here should be noted, but we want to continue with as
* many queued inodes as we've got. */
if (ret)
mlog_errno(ret);
while (inode) {
oi = OCFS2_I(inode);
trace_ocfs2_recover_orphans_iput(
(unsigned long long)oi->ip_blkno);
iter = oi->ip_next_orphan;
oi->ip_next_orphan = NULL;
if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
inode_lock(inode);
ret = ocfs2_rw_lock(inode, 1);
if (ret < 0) {
mlog_errno(ret);
goto unlock_mutex;
}
/*
* We need to take and drop the inode lock to
* force read inode from disk.
*/
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
goto unlock_rw;
}
di = (struct ocfs2_dinode *)di_bh->b_data;
if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
ret = ocfs2_truncate_file(inode, di_bh,
i_size_read(inode));
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto unlock_inode;
}
ret = ocfs2_del_inode_from_orphan(osb, inode,
di_bh, 0, 0);
if (ret)
mlog_errno(ret);
}
unlock_inode:
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
di_bh = NULL;
unlock_rw:
ocfs2_rw_unlock(inode, 1);
unlock_mutex:
inode_unlock(inode);
/* clear dio flag in ocfs2_inode_info */
oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
} else {
spin_lock(&oi->ip_lock);
/* Set the proper information to get us going into
* ocfs2_delete_inode. */
oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
spin_unlock(&oi->ip_lock);
}
iput(inode);
inode = iter;
}
return ret;
}
static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
{
/* This check is good because ocfs2 will wait on our recovery
* thread before changing it to something other than MOUNTED
* or DISABLED. */
wait_event(osb->osb_mount_event,
(!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
atomic_read(&osb->vol_state) == VOLUME_DISABLED);
/* If there's an error on mount, then we may never get to the
* MOUNTED flag, but this is set right before
* dismount_volume() so we can trust it. */
if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
mlog(0, "mount error, exiting!\n");
return -EBUSY;
}
return 0;
}
static int ocfs2_commit_thread(void *arg)
{
int status;
struct ocfs2_super *osb = arg;
struct ocfs2_journal *journal = osb->journal;
/* we can trust j_num_trans here because _should_stop() is only set in
* shutdown and nobody other than ourselves should be able to start
* transactions. committing on shutdown might take a few iterations
* as final transactions put deleted inodes on the list */
while (!(kthread_should_stop() &&
atomic_read(&journal->j_num_trans) == 0)) {
wait_event_interruptible(osb->checkpoint_event,
atomic_read(&journal->j_num_trans)
|| kthread_should_stop());
status = ocfs2_commit_cache(osb);
if (status < 0) {
static unsigned long abort_warn_time;
/* Warn about this once per minute */
if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
mlog(ML_ERROR, "status = %d, journal is "
"already aborted.\n", status);
/*
* After ocfs2_commit_cache() fails, j_num_trans has a
* non-zero value. Sleep here to avoid a busy-wait
* loop.
*/
msleep_interruptible(1000);
}
if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
mlog(ML_KTHREAD,
"commit_thread: %u transactions pending on "
"shutdown\n",
atomic_read(&journal->j_num_trans));
}
}
return 0;
}
/* Reads all the journal inodes without taking any cluster locks. Used
* for hard readonly access to determine whether any journal requires
* recovery. Also used to refresh the recovery generation numbers after
* a journal has been recovered by another node.
*/
int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
{
int ret = 0;
unsigned int slot;
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di;
int journal_dirty = 0;
for(slot = 0; slot < osb->max_slots; slot++) {
ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
di = (struct ocfs2_dinode *) di_bh->b_data;
osb->slot_recovery_generations[slot] =
ocfs2_get_recovery_generation(di);
if (le32_to_cpu(di->id1.journal1.ij_flags) &
OCFS2_JOURNAL_DIRTY_FL)
journal_dirty = 1;
brelse(di_bh);
di_bh = NULL;
}
out:
if (journal_dirty)
ret = -EROFS;
return ret;
}