08197f6e3b
Rather than using the compile-time constant CLOCK_TICK_RATE, select the clock tick rate at run time. We organise the selection so that PXA3 automatically falls out with the right tick rate. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
257 lines
6.6 KiB
C
257 lines
6.6 KiB
C
/*
|
|
* arch/arm/mach-pxa/time.c
|
|
*
|
|
* PXA clocksource, clockevents, and OST interrupt handlers.
|
|
* Copyright (c) 2007 by Bill Gatliff <bgat@billgatliff.com>.
|
|
*
|
|
* Derived from Nicolas Pitre's PXA timer handler Copyright (c) 2001
|
|
* by MontaVista Software, Inc. (Nico, your code rocks!)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/div64.h>
|
|
#include <asm/cnt32_to_63.h>
|
|
#include <asm/mach/irq.h>
|
|
#include <asm/mach/time.h>
|
|
#include <asm/arch/pxa-regs.h>
|
|
#include <asm/mach-types.h>
|
|
|
|
/*
|
|
* This is PXA's sched_clock implementation. This has a resolution
|
|
* of at least 308 ns and a maximum value of 208 days.
|
|
*
|
|
* The return value is guaranteed to be monotonic in that range as
|
|
* long as there is always less than 582 seconds between successive
|
|
* calls to sched_clock() which should always be the case in practice.
|
|
*/
|
|
|
|
#define OSCR2NS_SCALE_FACTOR 10
|
|
|
|
static unsigned long oscr2ns_scale;
|
|
|
|
static void __init set_oscr2ns_scale(unsigned long oscr_rate)
|
|
{
|
|
unsigned long long v = 1000000000ULL << OSCR2NS_SCALE_FACTOR;
|
|
do_div(v, oscr_rate);
|
|
oscr2ns_scale = v;
|
|
/*
|
|
* We want an even value to automatically clear the top bit
|
|
* returned by cnt32_to_63() without an additional run time
|
|
* instruction. So if the LSB is 1 then round it up.
|
|
*/
|
|
if (oscr2ns_scale & 1)
|
|
oscr2ns_scale++;
|
|
}
|
|
|
|
unsigned long long sched_clock(void)
|
|
{
|
|
unsigned long long v = cnt32_to_63(OSCR);
|
|
return (v * oscr2ns_scale) >> OSCR2NS_SCALE_FACTOR;
|
|
}
|
|
|
|
|
|
static irqreturn_t
|
|
pxa_ost0_interrupt(int irq, void *dev_id)
|
|
{
|
|
int next_match;
|
|
struct clock_event_device *c = dev_id;
|
|
|
|
if (c->mode == CLOCK_EVT_MODE_ONESHOT) {
|
|
/* Disarm the compare/match, signal the event. */
|
|
OIER &= ~OIER_E0;
|
|
c->event_handler(c);
|
|
} else if (c->mode == CLOCK_EVT_MODE_PERIODIC) {
|
|
/* Call the event handler as many times as necessary
|
|
* to recover missed events, if any (if we update
|
|
* OSMR0 and OSCR0 is still ahead of us, we've missed
|
|
* the event). As we're dealing with that, re-arm the
|
|
* compare/match for the next event.
|
|
*
|
|
* HACK ALERT:
|
|
*
|
|
* There's a latency between the instruction that
|
|
* writes to OSMR0 and the actual commit to the
|
|
* physical hardware, because the CPU doesn't (have
|
|
* to) run at bus speed, there's a write buffer
|
|
* between the CPU and the bus, etc. etc. So if the
|
|
* target OSCR0 is "very close", to the OSMR0 load
|
|
* value, the update to OSMR0 might not get to the
|
|
* hardware in time and we'll miss that interrupt.
|
|
*
|
|
* To be safe, if the new OSMR0 is "very close" to the
|
|
* target OSCR0 value, we call the event_handler as
|
|
* though the event actually happened. According to
|
|
* Nico's comment in the previous version of this
|
|
* code, experience has shown that 6 OSCR ticks is
|
|
* "very close" but he went with 8. We will use 16,
|
|
* based on the results of testing on PXA270.
|
|
*
|
|
* To be doubly sure, we also tell clkevt via
|
|
* clockevents_register_device() not to ask for
|
|
* anything that might put us "very close".
|
|
*/
|
|
#define MIN_OSCR_DELTA 16
|
|
do {
|
|
OSSR = OSSR_M0;
|
|
next_match = (OSMR0 += LATCH);
|
|
c->event_handler(c);
|
|
} while (((signed long)(next_match - OSCR) <= MIN_OSCR_DELTA)
|
|
&& (c->mode == CLOCK_EVT_MODE_PERIODIC));
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int
|
|
pxa_osmr0_set_next_event(unsigned long delta, struct clock_event_device *dev)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
raw_local_irq_save(irqflags);
|
|
OSMR0 = OSCR + delta;
|
|
OSSR = OSSR_M0;
|
|
OIER |= OIER_E0;
|
|
raw_local_irq_restore(irqflags);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
pxa_osmr0_set_mode(enum clock_event_mode mode, struct clock_event_device *dev)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
switch (mode) {
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
raw_local_irq_save(irqflags);
|
|
OSMR0 = OSCR + LATCH;
|
|
OSSR = OSSR_M0;
|
|
OIER |= OIER_E0;
|
|
raw_local_irq_restore(irqflags);
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
raw_local_irq_save(irqflags);
|
|
OIER &= ~OIER_E0;
|
|
raw_local_irq_restore(irqflags);
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
/* initializing, released, or preparing for suspend */
|
|
raw_local_irq_save(irqflags);
|
|
OIER &= ~OIER_E0;
|
|
raw_local_irq_restore(irqflags);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct clock_event_device ckevt_pxa_osmr0 = {
|
|
.name = "osmr0",
|
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
|
.shift = 32,
|
|
.rating = 200,
|
|
.cpumask = CPU_MASK_CPU0,
|
|
.set_next_event = pxa_osmr0_set_next_event,
|
|
.set_mode = pxa_osmr0_set_mode,
|
|
};
|
|
|
|
static cycle_t pxa_read_oscr(void)
|
|
{
|
|
return OSCR;
|
|
}
|
|
|
|
static struct clocksource cksrc_pxa_oscr0 = {
|
|
.name = "oscr0",
|
|
.rating = 200,
|
|
.read = pxa_read_oscr,
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
.shift = 20,
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static struct irqaction pxa_ost0_irq = {
|
|
.name = "ost0",
|
|
.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
|
|
.handler = pxa_ost0_interrupt,
|
|
.dev_id = &ckevt_pxa_osmr0,
|
|
};
|
|
|
|
static void __init pxa_timer_init(void)
|
|
{
|
|
unsigned long clock_tick_rate;
|
|
|
|
OIER = 0;
|
|
OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3;
|
|
|
|
if (cpu_is_pxa21x() || cpu_is_pxa25x())
|
|
clock_tick_rate = 3686400;
|
|
else if (machine_is_mainstone())
|
|
clock_tick_rate = 3249600;
|
|
else
|
|
clock_tick_rate = 3250000;
|
|
|
|
set_oscr2ns_scale(clock_tick_rate);
|
|
|
|
ckevt_pxa_osmr0.mult =
|
|
div_sc(clock_tick_rate, NSEC_PER_SEC, ckevt_pxa_osmr0.shift);
|
|
ckevt_pxa_osmr0.max_delta_ns =
|
|
clockevent_delta2ns(0x7fffffff, &ckevt_pxa_osmr0);
|
|
ckevt_pxa_osmr0.min_delta_ns =
|
|
clockevent_delta2ns(MIN_OSCR_DELTA, &ckevt_pxa_osmr0) + 1;
|
|
|
|
cksrc_pxa_oscr0.mult =
|
|
clocksource_hz2mult(clock_tick_rate, cksrc_pxa_oscr0.shift);
|
|
|
|
setup_irq(IRQ_OST0, &pxa_ost0_irq);
|
|
|
|
clocksource_register(&cksrc_pxa_oscr0);
|
|
clockevents_register_device(&ckevt_pxa_osmr0);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static unsigned long osmr[4], oier;
|
|
|
|
static void pxa_timer_suspend(void)
|
|
{
|
|
osmr[0] = OSMR0;
|
|
osmr[1] = OSMR1;
|
|
osmr[2] = OSMR2;
|
|
osmr[3] = OSMR3;
|
|
oier = OIER;
|
|
}
|
|
|
|
static void pxa_timer_resume(void)
|
|
{
|
|
OSMR0 = osmr[0];
|
|
OSMR1 = osmr[1];
|
|
OSMR2 = osmr[2];
|
|
OSMR3 = osmr[3];
|
|
OIER = oier;
|
|
|
|
/*
|
|
* OSCR0 is the system timer, which has to increase
|
|
* monotonically until it rolls over in hardware. The value
|
|
* (OSMR0 - LATCH) is OSCR0 at the most recent system tick,
|
|
* which is a handy value to restore to OSCR0.
|
|
*/
|
|
OSCR = OSMR0 - LATCH;
|
|
}
|
|
#else
|
|
#define pxa_timer_suspend NULL
|
|
#define pxa_timer_resume NULL
|
|
#endif
|
|
|
|
struct sys_timer pxa_timer = {
|
|
.init = pxa_timer_init,
|
|
.suspend = pxa_timer_suspend,
|
|
.resume = pxa_timer_resume,
|
|
};
|