kernel-fxtec-pro1x/drivers/block/umem.c
Tao Guo 32587371ad umem: fix up unplugging
Fix a regression introduced by 7eaceaccab ("block: remove per-queue
plugging").  In that patch, Jens removed the whole mm_unplug_device()
function, which used to be the trigger to make umem start to work.

We need to implement unplugging to make umem start to work, or I/O will
never be triggered.

Signed-off-by: Tao Guo <Tao.Guo@emc.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Shaohua Li <shli@kernel.org>
Cc: <stable@vger.kernel.org>
Acked-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-06-13 21:17:21 +02:00

1163 lines
30 KiB
C

/*
* mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
*
* (C) 2001 San Mehat <nettwerk@valinux.com>
* (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
* (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
*
* This driver for the Micro Memory PCI Memory Module with Battery Backup
* is Copyright Micro Memory Inc 2001-2002. All rights reserved.
*
* This driver is released to the public under the terms of the
* GNU GENERAL PUBLIC LICENSE version 2
* See the file COPYING for details.
*
* This driver provides a standard block device interface for Micro Memory(tm)
* PCI based RAM boards.
* 10/05/01: Phap Nguyen - Rebuilt the driver
* 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
* 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
* - use stand disk partitioning (so fdisk works).
* 08nov2001:NeilBrown - change driver name from "mm" to "umem"
* - incorporate into main kernel
* 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
* - use spin_lock_bh instead of _irq
* - Never block on make_request. queue
* bh's instead.
* - unregister umem from devfs at mod unload
* - Change version to 2.3
* 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
* 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
* 15May2002:NeilBrown - convert to bio for 2.5
* 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
* - a sequence of writes that cover the card, and
* - set initialised bit then.
*/
#undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/gfp.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/hdreg.h> /* HDIO_GETGEO */
#include "umem.h"
#include <asm/uaccess.h>
#include <asm/io.h>
#define MM_MAXCARDS 4
#define MM_RAHEAD 2 /* two sectors */
#define MM_BLKSIZE 1024 /* 1k blocks */
#define MM_HARDSECT 512 /* 512-byte hardware sectors */
#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
/*
* Version Information
*/
#define DRIVER_NAME "umem"
#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
static int debug;
/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)
#define DEBUG_LED_ON_TRANSFER 0x01
#define DEBUG_BATTERY_POLLING 0x02
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug bitmask");
static int pci_read_cmd = 0x0C; /* Read Multiple */
module_param(pci_read_cmd, int, 0);
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
static int pci_write_cmd = 0x0F; /* Write and Invalidate */
module_param(pci_write_cmd, int, 0);
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
static int pci_cmds;
static int major_nr;
#include <linux/blkdev.h>
#include <linux/blkpg.h>
struct cardinfo {
struct pci_dev *dev;
unsigned char __iomem *csr_remap;
unsigned int mm_size; /* size in kbytes */
unsigned int init_size; /* initial segment, in sectors,
* that we know to
* have been written
*/
struct bio *bio, *currentbio, **biotail;
int current_idx;
sector_t current_sector;
struct request_queue *queue;
struct mm_page {
dma_addr_t page_dma;
struct mm_dma_desc *desc;
int cnt, headcnt;
struct bio *bio, **biotail;
int idx;
} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
int Active, Ready;
struct tasklet_struct tasklet;
unsigned int dma_status;
struct {
int good;
int warned;
unsigned long last_change;
} battery[2];
spinlock_t lock;
int check_batteries;
int flags;
};
static struct cardinfo cards[MM_MAXCARDS];
static struct timer_list battery_timer;
static int num_cards;
static struct gendisk *mm_gendisk[MM_MAXCARDS];
static void check_batteries(struct cardinfo *card);
static int get_userbit(struct cardinfo *card, int bit)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
return led & bit;
}
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state)
led |= bit;
else
led &= ~bit;
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
return 0;
}
/*
* NOTE: For the power LED, use the LED_POWER_* macros since they differ
*/
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state == LED_FLIP)
led ^= (1<<shift);
else {
led &= ~(0x03 << shift);
led |= (state << shift);
}
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
}
#ifdef MM_DIAG
static void dump_regs(struct cardinfo *card)
{
unsigned char *p;
int i, i1;
p = card->csr_remap;
for (i = 0; i < 8; i++) {
printk(KERN_DEBUG "%p ", p);
for (i1 = 0; i1 < 16; i1++)
printk("%02x ", *p++);
printk("\n");
}
}
#endif
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
if (dmastat & DMASCR_ANY_ERR)
printk(KERN_CONT "ANY_ERR ");
if (dmastat & DMASCR_MBE_ERR)
printk(KERN_CONT "MBE_ERR ");
if (dmastat & DMASCR_PARITY_ERR_REP)
printk(KERN_CONT "PARITY_ERR_REP ");
if (dmastat & DMASCR_PARITY_ERR_DET)
printk(KERN_CONT "PARITY_ERR_DET ");
if (dmastat & DMASCR_SYSTEM_ERR_SIG)
printk(KERN_CONT "SYSTEM_ERR_SIG ");
if (dmastat & DMASCR_TARGET_ABT)
printk(KERN_CONT "TARGET_ABT ");
if (dmastat & DMASCR_MASTER_ABT)
printk(KERN_CONT "MASTER_ABT ");
if (dmastat & DMASCR_CHAIN_COMPLETE)
printk(KERN_CONT "CHAIN_COMPLETE ");
if (dmastat & DMASCR_DMA_COMPLETE)
printk(KERN_CONT "DMA_COMPLETE ");
printk("\n");
}
/*
* Theory of request handling
*
* Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
* We have two pages of mm_dma_desc, holding about 64 descriptors
* each. These are allocated at init time.
* One page is "Ready" and is either full, or can have request added.
* The other page might be "Active", which DMA is happening on it.
*
* Whenever IO on the active page completes, the Ready page is activated
* and the ex-Active page is clean out and made Ready.
* Otherwise the Ready page is only activated when it becomes full.
*
* If a request arrives while both pages a full, it is queued, and b_rdev is
* overloaded to record whether it was a read or a write.
*
* The interrupt handler only polls the device to clear the interrupt.
* The processing of the result is done in a tasklet.
*/
static void mm_start_io(struct cardinfo *card)
{
/* we have the lock, we know there is
* no IO active, and we know that card->Active
* is set
*/
struct mm_dma_desc *desc;
struct mm_page *page;
int offset;
/* make the last descriptor end the chain */
page = &card->mm_pages[card->Active];
pr_debug("start_io: %d %d->%d\n",
card->Active, page->headcnt, page->cnt - 1);
desc = &page->desc[page->cnt-1];
desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
desc->sem_control_bits = desc->control_bits;
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_ON);
desc = &page->desc[page->headcnt];
writel(0, card->csr_remap + DMA_PCI_ADDR);
writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
writel(0, card->csr_remap + DMA_LOCAL_ADDR);
writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
offset = ((char *)desc) - ((char *)page->desc);
writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
card->csr_remap + DMA_DESCRIPTOR_ADDR);
/* Force the value to u64 before shifting otherwise >> 32 is undefined C
* and on some ports will do nothing ! */
writel(cpu_to_le32(((u64)page->page_dma)>>32),
card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
/* Go, go, go */
writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
card->csr_remap + DMA_STATUS_CTRL);
}
static int add_bio(struct cardinfo *card);
static void activate(struct cardinfo *card)
{
/* if No page is Active, and Ready is
* not empty, then switch Ready page
* to active and start IO.
* Then add any bh's that are available to Ready
*/
do {
while (add_bio(card))
;
if (card->Active == -1 &&
card->mm_pages[card->Ready].cnt > 0) {
card->Active = card->Ready;
card->Ready = 1-card->Ready;
mm_start_io(card);
}
} while (card->Active == -1 && add_bio(card));
}
static inline void reset_page(struct mm_page *page)
{
page->cnt = 0;
page->headcnt = 0;
page->bio = NULL;
page->biotail = &page->bio;
}
/*
* If there is room on Ready page, take
* one bh off list and add it.
* return 1 if there was room, else 0.
*/
static int add_bio(struct cardinfo *card)
{
struct mm_page *p;
struct mm_dma_desc *desc;
dma_addr_t dma_handle;
int offset;
struct bio *bio;
struct bio_vec *vec;
int idx;
int rw;
int len;
bio = card->currentbio;
if (!bio && card->bio) {
card->currentbio = card->bio;
card->current_idx = card->bio->bi_idx;
card->current_sector = card->bio->bi_sector;
card->bio = card->bio->bi_next;
if (card->bio == NULL)
card->biotail = &card->bio;
card->currentbio->bi_next = NULL;
return 1;
}
if (!bio)
return 0;
idx = card->current_idx;
rw = bio_rw(bio);
if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
return 0;
vec = bio_iovec_idx(bio, idx);
len = vec->bv_len;
dma_handle = pci_map_page(card->dev,
vec->bv_page,
vec->bv_offset,
len,
(rw == READ) ?
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
p = &card->mm_pages[card->Ready];
desc = &p->desc[p->cnt];
p->cnt++;
if (p->bio == NULL)
p->idx = idx;
if ((p->biotail) != &bio->bi_next) {
*(p->biotail) = bio;
p->biotail = &(bio->bi_next);
bio->bi_next = NULL;
}
desc->data_dma_handle = dma_handle;
desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
desc->local_addr = cpu_to_le64(card->current_sector << 9);
desc->transfer_size = cpu_to_le32(len);
offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
desc->zero1 = desc->zero2 = 0;
offset = (((char *)(desc+1)) - ((char *)p->desc));
desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
DMASCR_PARITY_INT_EN|
DMASCR_CHAIN_EN |
DMASCR_SEM_EN |
pci_cmds);
if (rw == WRITE)
desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
desc->sem_control_bits = desc->control_bits;
card->current_sector += (len >> 9);
idx++;
card->current_idx = idx;
if (idx >= bio->bi_vcnt)
card->currentbio = NULL;
return 1;
}
static void process_page(unsigned long data)
{
/* check if any of the requests in the page are DMA_COMPLETE,
* and deal with them appropriately.
* If we find a descriptor without DMA_COMPLETE in the semaphore, then
* dma must have hit an error on that descriptor, so use dma_status
* instead and assume that all following descriptors must be re-tried.
*/
struct mm_page *page;
struct bio *return_bio = NULL;
struct cardinfo *card = (struct cardinfo *)data;
unsigned int dma_status = card->dma_status;
spin_lock_bh(&card->lock);
if (card->Active < 0)
goto out_unlock;
page = &card->mm_pages[card->Active];
while (page->headcnt < page->cnt) {
struct bio *bio = page->bio;
struct mm_dma_desc *desc = &page->desc[page->headcnt];
int control = le32_to_cpu(desc->sem_control_bits);
int last = 0;
int idx;
if (!(control & DMASCR_DMA_COMPLETE)) {
control = dma_status;
last = 1;
}
page->headcnt++;
idx = page->idx;
page->idx++;
if (page->idx >= bio->bi_vcnt) {
page->bio = bio->bi_next;
if (page->bio)
page->idx = page->bio->bi_idx;
}
pci_unmap_page(card->dev, desc->data_dma_handle,
bio_iovec_idx(bio, idx)->bv_len,
(control & DMASCR_TRANSFER_READ) ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
if (control & DMASCR_HARD_ERROR) {
/* error */
clear_bit(BIO_UPTODATE, &bio->bi_flags);
dev_printk(KERN_WARNING, &card->dev->dev,
"I/O error on sector %d/%d\n",
le32_to_cpu(desc->local_addr)>>9,
le32_to_cpu(desc->transfer_size));
dump_dmastat(card, control);
} else if ((bio->bi_rw & REQ_WRITE) &&
le32_to_cpu(desc->local_addr) >> 9 ==
card->init_size) {
card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
if (card->init_size >> 1 >= card->mm_size) {
dev_printk(KERN_INFO, &card->dev->dev,
"memory now initialised\n");
set_userbit(card, MEMORY_INITIALIZED, 1);
}
}
if (bio != page->bio) {
bio->bi_next = return_bio;
return_bio = bio;
}
if (last)
break;
}
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_OFF);
if (card->check_batteries) {
card->check_batteries = 0;
check_batteries(card);
}
if (page->headcnt >= page->cnt) {
reset_page(page);
card->Active = -1;
activate(card);
} else {
/* haven't finished with this one yet */
pr_debug("do some more\n");
mm_start_io(card);
}
out_unlock:
spin_unlock_bh(&card->lock);
while (return_bio) {
struct bio *bio = return_bio;
return_bio = bio->bi_next;
bio->bi_next = NULL;
bio_endio(bio, 0);
}
}
struct mm_plug_cb {
struct blk_plug_cb cb;
struct cardinfo *card;
};
static void mm_unplug(struct blk_plug_cb *cb)
{
struct mm_plug_cb *mmcb = container_of(cb, struct mm_plug_cb, cb);
spin_lock_irq(&mmcb->card->lock);
activate(mmcb->card);
spin_unlock_irq(&mmcb->card->lock);
kfree(mmcb);
}
static int mm_check_plugged(struct cardinfo *card)
{
struct blk_plug *plug = current->plug;
struct mm_plug_cb *mmcb;
if (!plug)
return 0;
list_for_each_entry(mmcb, &plug->cb_list, cb.list) {
if (mmcb->cb.callback == mm_unplug && mmcb->card == card)
return 1;
}
/* Not currently on the callback list */
mmcb = kmalloc(sizeof(*mmcb), GFP_ATOMIC);
if (!mmcb)
return 0;
mmcb->card = card;
mmcb->cb.callback = mm_unplug;
list_add(&mmcb->cb.list, &plug->cb_list);
return 1;
}
static void mm_make_request(struct request_queue *q, struct bio *bio)
{
struct cardinfo *card = q->queuedata;
pr_debug("mm_make_request %llu %u\n",
(unsigned long long)bio->bi_sector, bio->bi_size);
spin_lock_irq(&card->lock);
*card->biotail = bio;
bio->bi_next = NULL;
card->biotail = &bio->bi_next;
if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
activate(card);
spin_unlock_irq(&card->lock);
return;
}
static irqreturn_t mm_interrupt(int irq, void *__card)
{
struct cardinfo *card = (struct cardinfo *) __card;
unsigned int dma_status;
unsigned short cfg_status;
HW_TRACE(0x30);
dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
/* interrupt wasn't for me ... */
return IRQ_NONE;
}
/* clear COMPLETION interrupts */
if (card->flags & UM_FLAG_NO_BYTE_STATUS)
writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
card->csr_remap + DMA_STATUS_CTRL);
else
writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
card->csr_remap + DMA_STATUS_CTRL + 2);
/* log errors and clear interrupt status */
if (dma_status & DMASCR_ANY_ERR) {
unsigned int data_log1, data_log2;
unsigned int addr_log1, addr_log2;
unsigned char stat, count, syndrome, check;
stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
data_log1 = le32_to_cpu(readl(card->csr_remap +
ERROR_DATA_LOG));
data_log2 = le32_to_cpu(readl(card->csr_remap +
ERROR_DATA_LOG + 4));
addr_log1 = le32_to_cpu(readl(card->csr_remap +
ERROR_ADDR_LOG));
addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
count = readb(card->csr_remap + ERROR_COUNT);
syndrome = readb(card->csr_remap + ERROR_SYNDROME);
check = readb(card->csr_remap + ERROR_CHECK);
dump_dmastat(card, dma_status);
if (stat & 0x01)
dev_printk(KERN_ERR, &card->dev->dev,
"Memory access error detected (err count %d)\n",
count);
if (stat & 0x02)
dev_printk(KERN_ERR, &card->dev->dev,
"Multi-bit EDC error\n");
dev_printk(KERN_ERR, &card->dev->dev,
"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
addr_log2, addr_log1, data_log2, data_log1);
dev_printk(KERN_ERR, &card->dev->dev,
"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
check, syndrome);
writeb(0, card->csr_remap + ERROR_COUNT);
}
if (dma_status & DMASCR_PARITY_ERR_REP) {
dev_printk(KERN_ERR, &card->dev->dev,
"PARITY ERROR REPORTED\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_PARITY_ERR_DET) {
dev_printk(KERN_ERR, &card->dev->dev,
"PARITY ERROR DETECTED\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_TARGET_ABT) {
dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_MASTER_ABT) {
dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
/* and process the DMA descriptors */
card->dma_status = dma_status;
tasklet_schedule(&card->tasklet);
HW_TRACE(0x36);
return IRQ_HANDLED;
}
/*
* If both batteries are good, no LED
* If either battery has been warned, solid LED
* If both batteries are bad, flash the LED quickly
* If either battery is bad, flash the LED semi quickly
*/
static void set_fault_to_battery_status(struct cardinfo *card)
{
if (card->battery[0].good && card->battery[1].good)
set_led(card, LED_FAULT, LED_OFF);
else if (card->battery[0].warned || card->battery[1].warned)
set_led(card, LED_FAULT, LED_ON);
else if (!card->battery[0].good && !card->battery[1].good)
set_led(card, LED_FAULT, LED_FLASH_7_0);
else
set_led(card, LED_FAULT, LED_FLASH_3_5);
}
static void init_battery_timer(void);
static int check_battery(struct cardinfo *card, int battery, int status)
{
if (status != card->battery[battery].good) {
card->battery[battery].good = !card->battery[battery].good;
card->battery[battery].last_change = jiffies;
if (card->battery[battery].good) {
dev_printk(KERN_ERR, &card->dev->dev,
"Battery %d now good\n", battery + 1);
card->battery[battery].warned = 0;
} else
dev_printk(KERN_ERR, &card->dev->dev,
"Battery %d now FAILED\n", battery + 1);
return 1;
} else if (!card->battery[battery].good &&
!card->battery[battery].warned &&
time_after_eq(jiffies, card->battery[battery].last_change +
(HZ * 60 * 60 * 5))) {
dev_printk(KERN_ERR, &card->dev->dev,
"Battery %d still FAILED after 5 hours\n", battery + 1);
card->battery[battery].warned = 1;
return 1;
}
return 0;
}
static void check_batteries(struct cardinfo *card)
{
/* NOTE: this must *never* be called while the card
* is doing (bus-to-card) DMA, or you will need the
* reset switch
*/
unsigned char status;
int ret1, ret2;
status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
if (debug & DEBUG_BATTERY_POLLING)
dev_printk(KERN_DEBUG, &card->dev->dev,
"checking battery status, 1 = %s, 2 = %s\n",
(status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
(status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
if (ret1 || ret2)
set_fault_to_battery_status(card);
}
static void check_all_batteries(unsigned long ptr)
{
int i;
for (i = 0; i < num_cards; i++)
if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
struct cardinfo *card = &cards[i];
spin_lock_bh(&card->lock);
if (card->Active >= 0)
card->check_batteries = 1;
else
check_batteries(card);
spin_unlock_bh(&card->lock);
}
init_battery_timer();
}
static void init_battery_timer(void)
{
init_timer(&battery_timer);
battery_timer.function = check_all_batteries;
battery_timer.expires = jiffies + (HZ * 60);
add_timer(&battery_timer);
}
static void del_battery_timer(void)
{
del_timer(&battery_timer);
}
/*
* Note no locks taken out here. In a worst case scenario, we could drop
* a chunk of system memory. But that should never happen, since validation
* happens at open or mount time, when locks are held.
*
* That's crap, since doing that while some partitions are opened
* or mounted will give you really nasty results.
*/
static int mm_revalidate(struct gendisk *disk)
{
struct cardinfo *card = disk->private_data;
set_capacity(disk, card->mm_size << 1);
return 0;
}
static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct cardinfo *card = bdev->bd_disk->private_data;
int size = card->mm_size * (1024 / MM_HARDSECT);
/*
* get geometry: we have to fake one... trim the size to a
* multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
* whatever cylinders.
*/
geo->heads = 64;
geo->sectors = 32;
geo->cylinders = size / (geo->heads * geo->sectors);
return 0;
}
static const struct block_device_operations mm_fops = {
.owner = THIS_MODULE,
.getgeo = mm_getgeo,
.revalidate_disk = mm_revalidate,
};
static int __devinit mm_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
int ret = -ENODEV;
struct cardinfo *card = &cards[num_cards];
unsigned char mem_present;
unsigned char batt_status;
unsigned int saved_bar, data;
unsigned long csr_base;
unsigned long csr_len;
int magic_number;
static int printed_version;
if (!printed_version++)
printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
ret = pci_enable_device(dev);
if (ret)
return ret;
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
pci_set_master(dev);
card->dev = dev;
csr_base = pci_resource_start(dev, 0);
csr_len = pci_resource_len(dev, 0);
if (!csr_base || !csr_len)
return -ENODEV;
dev_printk(KERN_INFO, &dev->dev,
"Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
return -ENOMEM;
}
ret = pci_request_regions(dev, DRIVER_NAME);
if (ret) {
dev_printk(KERN_ERR, &card->dev->dev,
"Unable to request memory region\n");
goto failed_req_csr;
}
card->csr_remap = ioremap_nocache(csr_base, csr_len);
if (!card->csr_remap) {
dev_printk(KERN_ERR, &card->dev->dev,
"Unable to remap memory region\n");
ret = -ENOMEM;
goto failed_remap_csr;
}
dev_printk(KERN_INFO, &card->dev->dev,
"CSR 0x%08lx -> 0x%p (0x%lx)\n",
csr_base, card->csr_remap, csr_len);
switch (card->dev->device) {
case 0x5415:
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
magic_number = 0x59;
break;
case 0x5425:
card->flags |= UM_FLAG_NO_BYTE_STATUS;
magic_number = 0x5C;
break;
case 0x6155:
card->flags |= UM_FLAG_NO_BYTE_STATUS |
UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
magic_number = 0x99;
break;
default:
magic_number = 0x100;
break;
}
if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
ret = -ENOMEM;
goto failed_magic;
}
card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE * 2,
&card->mm_pages[0].page_dma);
card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE * 2,
&card->mm_pages[1].page_dma);
if (card->mm_pages[0].desc == NULL ||
card->mm_pages[1].desc == NULL) {
dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
goto failed_alloc;
}
reset_page(&card->mm_pages[0]);
reset_page(&card->mm_pages[1]);
card->Ready = 0; /* page 0 is ready */
card->Active = -1; /* no page is active */
card->bio = NULL;
card->biotail = &card->bio;
card->queue = blk_alloc_queue(GFP_KERNEL);
if (!card->queue)
goto failed_alloc;
blk_queue_make_request(card->queue, mm_make_request);
card->queue->queue_lock = &card->lock;
card->queue->queuedata = card;
tasklet_init(&card->tasklet, process_page, (unsigned long)card);
card->check_batteries = 0;
mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
switch (mem_present) {
case MEM_128_MB:
card->mm_size = 1024 * 128;
break;
case MEM_256_MB:
card->mm_size = 1024 * 256;
break;
case MEM_512_MB:
card->mm_size = 1024 * 512;
break;
case MEM_1_GB:
card->mm_size = 1024 * 1024;
break;
case MEM_2_GB:
card->mm_size = 1024 * 2048;
break;
default:
card->mm_size = 0;
break;
}
/* Clear the LED's we control */
set_led(card, LED_REMOVE, LED_OFF);
set_led(card, LED_FAULT, LED_OFF);
batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
card->battery[0].last_change = card->battery[1].last_change = jiffies;
if (card->flags & UM_FLAG_NO_BATT)
dev_printk(KERN_INFO, &card->dev->dev,
"Size %d KB\n", card->mm_size);
else {
dev_printk(KERN_INFO, &card->dev->dev,
"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
card->mm_size,
batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
card->battery[0].good ? "OK" : "FAILURE",
batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
card->battery[1].good ? "OK" : "FAILURE");
set_fault_to_battery_status(card);
}
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
data = 0xffffffff;
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
data &= 0xfffffff0;
data = ~data;
data += 1;
if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
card)) {
dev_printk(KERN_ERR, &card->dev->dev,
"Unable to allocate IRQ\n");
ret = -ENODEV;
goto failed_req_irq;
}
dev_printk(KERN_INFO, &card->dev->dev,
"Window size %d bytes, IRQ %d\n", data, dev->irq);
spin_lock_init(&card->lock);
pci_set_drvdata(dev, card);
if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
pci_write_cmd = 0x07; /* then Memory Write command */
if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
unsigned short cfg_command;
pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
pci_write_config_word(dev, PCI_COMMAND, cfg_command);
}
pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
num_cards++;
if (!get_userbit(card, MEMORY_INITIALIZED)) {
dev_printk(KERN_INFO, &card->dev->dev,
"memory NOT initialized. Consider over-writing whole device.\n");
card->init_size = 0;
} else {
dev_printk(KERN_INFO, &card->dev->dev,
"memory already initialized\n");
card->init_size = card->mm_size;
}
/* Enable ECC */
writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
return 0;
failed_req_irq:
failed_alloc:
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
failed_magic:
iounmap(card->csr_remap);
failed_remap_csr:
pci_release_regions(dev);
failed_req_csr:
return ret;
}
static void mm_pci_remove(struct pci_dev *dev)
{
struct cardinfo *card = pci_get_drvdata(dev);
tasklet_kill(&card->tasklet);
free_irq(dev->irq, card);
iounmap(card->csr_remap);
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
blk_cleanup_queue(card->queue);
pci_release_regions(dev);
pci_disable_device(dev);
}
static const struct pci_device_id mm_pci_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
{
.vendor = 0x8086,
.device = 0xB555,
.subvendor = 0x1332,
.subdevice = 0x5460,
.class = 0x050000,
.class_mask = 0,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
static struct pci_driver mm_pci_driver = {
.name = DRIVER_NAME,
.id_table = mm_pci_ids,
.probe = mm_pci_probe,
.remove = mm_pci_remove,
};
static int __init mm_init(void)
{
int retval, i;
int err;
retval = pci_register_driver(&mm_pci_driver);
if (retval)
return -ENOMEM;
err = major_nr = register_blkdev(0, DRIVER_NAME);
if (err < 0) {
pci_unregister_driver(&mm_pci_driver);
return -EIO;
}
for (i = 0; i < num_cards; i++) {
mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
if (!mm_gendisk[i])
goto out;
}
for (i = 0; i < num_cards; i++) {
struct gendisk *disk = mm_gendisk[i];
sprintf(disk->disk_name, "umem%c", 'a'+i);
spin_lock_init(&cards[i].lock);
disk->major = major_nr;
disk->first_minor = i << MM_SHIFT;
disk->fops = &mm_fops;
disk->private_data = &cards[i];
disk->queue = cards[i].queue;
set_capacity(disk, cards[i].mm_size << 1);
add_disk(disk);
}
init_battery_timer();
printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
return 0;
out:
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(major_nr, DRIVER_NAME);
while (i--)
put_disk(mm_gendisk[i]);
return -ENOMEM;
}
static void __exit mm_cleanup(void)
{
int i;
del_battery_timer();
for (i = 0; i < num_cards ; i++) {
del_gendisk(mm_gendisk[i]);
put_disk(mm_gendisk[i]);
}
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(major_nr, DRIVER_NAME);
}
module_init(mm_init);
module_exit(mm_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");