kernel-fxtec-pro1x/drivers/usb/class/audio.c
Jesper Juhl 1bc3c9e1e4 [PATCH] USB: kfree cleanup for drivers/usb/* - no need to check for NULL
Get rid of a bunch of redundant NULL pointer checks in drivers/usb/*,
there's no need to check a pointer for NULL before calling kfree() on it.

Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>


Index: gregkh-2.6/drivers/usb/class/audio.c
===================================================================
2005-04-18 17:39:34 -07:00

3866 lines
120 KiB
C

/*****************************************************************************/
/*
* audio.c -- USB Audio Class driver
*
* Copyright (C) 1999, 2000, 2001, 2003, 2004
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Debugging:
* Use the 'lsusb' utility to dump the descriptors.
*
* 1999-09-07: Alan Cox
* Parsing Audio descriptor patch
* 1999-09-08: Thomas Sailer
* Added OSS compatible data io functions; both parts of the
* driver remain to be glued together
* 1999-09-10: Thomas Sailer
* Beautified the driver. Added sample format conversions.
* Still not properly glued with the parsing code.
* The parsing code seems to have its problems btw,
* Since it parses all available configs but doesn't
* store which iface/altsetting belongs to which config.
* 1999-09-20: Thomas Sailer
* Threw out Alan's parsing code and implemented my own one.
* You cannot reasonnably linearly parse audio descriptors,
* especially the AudioClass descriptors have to be considered
* pointer lists. Mixer parsing untested, due to lack of device.
* First stab at synch pipe implementation, the Dallas USB DAC
* wants to use an Asynch out pipe. usb_audio_state now basically
* only contains lists of mixer and wave devices. We can therefore
* now have multiple mixer/wave devices per USB device.
* 1999-10-28: Thomas Sailer
* Converted to URB API. Fixed a taskstate/wakeup semantics mistake
* that made the driver consume all available CPU cycles.
* Now runs stable on UHCI-Acher/Fliegl/Sailer.
* 1999-10-31: Thomas Sailer
* Audio can now be unloaded if it is not in use by any mixer
* or dsp client (formerly you had to disconnect the audio devices
* from the USB port)
* Finally, about three months after ordering, my "Maxxtro SPK222"
* speakers arrived, isn't disdata a great mail order company 8-)
* Parse class specific endpoint descriptor of the audiostreaming
* interfaces and take the endpoint attributes from there.
* Unbelievably, the Philips USB DAC has a sampling rate range
* of over a decade, yet does not support the sampling rate control!
* No wonder it sounds so bad, has very audible sampling rate
* conversion distortion. Don't try to listen to it using
* decent headphones!
* "Let's make things better" -> but please Philips start with your
* own stuff!!!!
* 1999-11-02: Thomas Sailer
* It takes the Philips boxes several seconds to acquire synchronisation
* that means they won't play short sounds. Should probably maintain
* the ISO datastream even if there's nothing to play.
* Fix counting the total_bytes counter, RealPlayer G2 depends on it.
* 1999-12-20: Thomas Sailer
* Fix bad bug in conversion to per interface probing.
* disconnect was called multiple times for the audio device,
* leading to a premature freeing of the audio structures
* 2000-05-13: Thomas Sailer
* I don't remember who changed the find_format routine,
* but the change was completely broken for the Dallas
* chip. Anyway taking sampling rate into account in find_format
* is bad and should not be done unless there are devices with
* completely broken audio descriptors. Unless someone shows
* me such a descriptor, I will not allow find_format to
* take the sampling rate into account.
* Also, the former find_format made:
* - mpg123 play mono instead of stereo
* - sox completely fail for wav's with sample rates < 44.1kHz
* for the Dallas chip.
* Also fix a rather long standing problem with applications that
* use "small" writes producing no sound at all.
* 2000-05-15: Thomas Sailer
* My fears came true, the Philips camera indeed has pretty stupid
* audio descriptors.
* 2000-05-17: Thomas Sailer
* Nemsoft spotted my stupid last minute change, thanks
* 2000-05-19: Thomas Sailer
* Fixed FEATURE_UNIT thinkos found thanks to the KC Technology
* Xtend device. Basically the driver treated FEATURE_UNIT's sourced
* by mono terminals as stereo.
* 2000-05-20: Thomas Sailer
* SELECTOR support (and thus selecting record channels from the mixer).
* Somewhat peculiar due to OSS interface limitations. Only works
* for channels where a "slider" is already in front of it (i.e.
* a MIXER unit or a FEATURE unit with volume capability).
* 2000-11-26: Thomas Sailer
* Workaround for Dallas DS4201. The DS4201 uses PCM8 as format tag for
* its 8 bit modes, but expects signed data (and should therefore have used PCM).
* 2001-03-10: Thomas Sailer
* provide abs function, prevent picking up a bogus kernel macro
* for abs. Bug report by Andrew Morton <andrewm@uow.edu.au>
* 2001-06-16: Bryce Nesbitt <bryce@obviously.com>
* Fix SNDCTL_DSP_STEREO API violation
* 2003-04-08: Oliver Neukum (oliver@neukum.name):
* Setting a configuration is done by usbcore and must not be overridden
* 2004-02-27: Workaround for broken synch descriptors
* 2004-03-07: Alan Stern <stern@rowland.harvard.edu>
* Add usb_ifnum_to_if() and usb_altnum_to_altsetting() support.
* Use the in-memory descriptors instead of reading them from the device.
*
*/
/*
* Strategy:
*
* Alan Cox and Thomas Sailer are starting to dig at opposite ends and
* are hoping to meet in the middle, just like tunnel diggers :)
* Alan tackles the descriptor parsing, Thomas the actual data IO and the
* OSS compatible interface.
*
* Data IO implementation issues
*
* A mmap'able ring buffer per direction is implemented, because
* almost every OSS app expects it. It is however impractical to
* transmit/receive USB data directly into and out of the ring buffer,
* due to alignment and synchronisation issues. Instead, the ring buffer
* feeds a constant time delay line that handles the USB issues.
*
* Now we first try to find an alternate setting that exactly matches
* the sample format requested by the user. If we find one, we do not
* need to perform any sample rate conversions. If there is no matching
* altsetting, we choose the closest one and perform sample format
* conversions. We never do sample rate conversion; these are too
* expensive to be performed in the kernel.
*
* Current status: no known HCD-specific issues.
*
* Generally: Due to the brokenness of the Audio Class spec
* it seems generally impossible to write a generic Audio Class driver,
* so a reasonable driver should implement the features that are actually
* used.
*
* Parsing implementation issues
*
* One cannot reasonably parse the AudioClass descriptors linearly.
* Therefore the current implementation features routines to look
* for a specific descriptor in the descriptor list.
*
* How does the parsing work? First, all interfaces are searched
* for an AudioControl class interface. If found, the config descriptor
* that belongs to the current configuration is searched and
* the HEADER descriptor is found. It contains a list of
* all AudioStreaming and MIDIStreaming devices. This list is then walked,
* and all AudioStreaming interfaces are classified into input and output
* interfaces (according to the endpoint0 direction in altsetting1) (MIDIStreaming
* is currently not supported). The input & output list is then used
* to group inputs and outputs together and issued pairwise to the
* AudioStreaming class parser. Finally, all OUTPUT_TERMINAL descriptors
* are walked and issued to the mixer construction routine.
*
* The AudioStreaming parser simply enumerates all altsettings belonging
* to the specified interface. It looks for AS_GENERAL and FORMAT_TYPE
* class specific descriptors to extract the sample format/sample rate
* data. Only sample format types PCM and PCM8 are supported right now, and
* only FORMAT_TYPE_I is handled. The isochronous data endpoint needs to
* be the first endpoint of the interface, and the optional synchronisation
* isochronous endpoint the second one.
*
* Mixer construction works as follows: The various TERMINAL and UNIT
* descriptors span a tree from the root (OUTPUT_TERMINAL) through the
* intermediate nodes (UNITs) to the leaves (INPUT_TERMINAL). We walk
* that tree in a depth first manner. FEATURE_UNITs may contribute volume,
* bass and treble sliders to the mixer, MIXER_UNITs volume sliders.
* The terminal type encoded in the INPUT_TERMINALs feeds a heuristic
* to determine "meaningful" OSS slider numbers, however we will see
* how well this works in practice. Other features are not used at the
* moment, they seem less often used. Also, it seems difficult at least
* to construct recording source switches from SELECTOR_UNITs, but
* since there are not many USB ADC's available, we leave that for later.
*/
/*****************************************************************************/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <linux/list.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/usb.h>
#include "audio.h"
/*
* Version Information
*/
#define DRIVER_VERSION "v1.0.0"
#define DRIVER_AUTHOR "Alan Cox <alan@lxorguk.ukuu.org.uk>, Thomas Sailer (sailer@ife.ee.ethz.ch)"
#define DRIVER_DESC "USB Audio Class driver"
#define AUDIO_DEBUG 1
#define SND_DEV_DSP16 5
#define dprintk(x)
/* --------------------------------------------------------------------- */
/*
* Linked list of all audio devices...
*/
static struct list_head audiodevs = LIST_HEAD_INIT(audiodevs);
static DECLARE_MUTEX(open_sem);
/*
* wait queue for processes wanting to open an USB audio device
*/
static DECLARE_WAIT_QUEUE_HEAD(open_wait);
#define MAXFORMATS MAX_ALT
#define DMABUFSHIFT 17 /* 128k worth of DMA buffer */
#define NRSGBUF (1U<<(DMABUFSHIFT-PAGE_SHIFT))
/*
* This influences:
* - Latency
* - Interrupt rate
* - Synchronisation behaviour
* Don't touch this if you don't understand all of the above.
*/
#define DESCFRAMES 5
#define SYNCFRAMES DESCFRAMES
#define MIXFLG_STEREOIN 1
#define MIXFLG_STEREOOUT 2
struct mixerchannel {
__u16 value;
__u16 osschannel; /* number of the OSS channel */
__s16 minval, maxval;
__u16 slctunitid;
__u8 unitid;
__u8 selector;
__u8 chnum;
__u8 flags;
};
struct audioformat {
unsigned int format;
unsigned int sratelo;
unsigned int sratehi;
unsigned char altsetting;
unsigned char attributes;
};
struct dmabuf {
/* buffer data format */
unsigned int format;
unsigned int srate;
/* physical buffer */
unsigned char *sgbuf[NRSGBUF];
unsigned bufsize;
unsigned numfrag;
unsigned fragshift;
unsigned wrptr, rdptr;
unsigned total_bytes;
int count;
unsigned error; /* over/underrun */
wait_queue_head_t wait;
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dmasize;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
};
struct usb_audio_state;
#define FLG_URB0RUNNING 1
#define FLG_URB1RUNNING 2
#define FLG_SYNC0RUNNING 4
#define FLG_SYNC1RUNNING 8
#define FLG_RUNNING 16
#define FLG_CONNECTED 32
struct my_data_urb {
struct urb *urb;
};
struct my_sync_urb {
struct urb *urb;
};
struct usb_audiodev {
struct list_head list;
struct usb_audio_state *state;
/* soundcore stuff */
int dev_audio;
/* wave stuff */
mode_t open_mode;
spinlock_t lock; /* DMA buffer access spinlock */
struct usbin {
int interface; /* Interface number, -1 means not used */
unsigned int format; /* USB data format */
unsigned int datapipe; /* the data input pipe */
unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but adaptive IN mode */
unsigned int syncinterval; /* P for adaptive IN mode, 0 otherwise */
unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
unsigned int freqmax; /* maximum sampling rate, used for buffer management */
unsigned int phase; /* phase accumulator */
unsigned int flags; /* see FLG_ defines */
struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
struct dmabuf dma;
} usbin;
struct usbout {
int interface; /* Interface number, -1 means not used */
unsigned int format; /* USB data format */
unsigned int datapipe; /* the data input pipe */
unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but asynchronous OUT mode */
unsigned int syncinterval; /* P for asynchronous OUT mode, 0 otherwise */
unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
unsigned int freqm; /* momentary sampling rate in USB format, i.e. fs/1000 in Q10.14 */
unsigned int freqmax; /* maximum sampling rate, used for buffer management */
unsigned int phase; /* phase accumulator */
unsigned int flags; /* see FLG_ defines */
struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
struct dmabuf dma;
} usbout;
unsigned int numfmtin, numfmtout;
struct audioformat fmtin[MAXFORMATS];
struct audioformat fmtout[MAXFORMATS];
};
struct usb_mixerdev {
struct list_head list;
struct usb_audio_state *state;
/* soundcore stuff */
int dev_mixer;
unsigned char iface; /* interface number of the AudioControl interface */
/* USB format descriptions */
unsigned int numch, modcnt;
/* mixch is last and gets allocated dynamically */
struct mixerchannel ch[0];
};
struct usb_audio_state {
struct list_head audiodev;
/* USB device */
struct usb_device *usbdev;
struct list_head audiolist;
struct list_head mixerlist;
unsigned count; /* usage counter; NOTE: the usb stack is also considered a user */
};
/* private audio format extensions */
#define AFMT_STEREO 0x80000000
#define AFMT_ISSTEREO(x) ((x) & AFMT_STEREO)
#define AFMT_IS16BIT(x) ((x) & (AFMT_S16_LE|AFMT_S16_BE|AFMT_U16_LE|AFMT_U16_BE))
#define AFMT_ISUNSIGNED(x) ((x) & (AFMT_U8|AFMT_U16_LE|AFMT_U16_BE))
#define AFMT_BYTESSHIFT(x) ((AFMT_ISSTEREO(x) ? 1 : 0) + (AFMT_IS16BIT(x) ? 1 : 0))
#define AFMT_BYTES(x) (1<<AFMT_BYTESSHFIT(x))
/* --------------------------------------------------------------------- */
static inline unsigned ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
/* --------------------------------------------------------------------- */
/*
* OSS compatible ring buffer management. The ring buffer may be mmap'ed into
* an application address space.
*
* I first used the rvmalloc stuff copied from bttv. Alan Cox did not like it, so
* we now use an array of pointers to a single page each. This saves us the
* kernel page table manipulations, but we have to do a page table alike mechanism
* (though only one indirection) in software.
*/
static void dmabuf_release(struct dmabuf *db)
{
unsigned int nr;
void *p;
for(nr = 0; nr < NRSGBUF; nr++) {
if (!(p = db->sgbuf[nr]))
continue;
ClearPageReserved(virt_to_page(p));
free_page((unsigned long)p);
db->sgbuf[nr] = NULL;
}
db->mapped = db->ready = 0;
}
static int dmabuf_init(struct dmabuf *db)
{
unsigned int nr, bytepersec, bufs;
void *p;
/* initialize some fields */
db->rdptr = db->wrptr = db->total_bytes = db->count = db->error = 0;
/* calculate required buffer size */
bytepersec = db->srate << AFMT_BYTESSHIFT(db->format);
bufs = 1U << DMABUFSHIFT;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < bytepersec)
db->fragshift = ld2(bytepersec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->numfrag = bufs >> db->fragshift;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->numfrag = bufs >> db->fragshift;
}
db->fragsize = 1 << db->fragshift;
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
db->dmasize = db->numfrag << db->fragshift;
for(nr = 0; nr < NRSGBUF; nr++) {
if (!db->sgbuf[nr]) {
p = (void *)get_zeroed_page(GFP_KERNEL);
if (!p)
return -ENOMEM;
db->sgbuf[nr] = p;
SetPageReserved(virt_to_page(p));
}
memset(db->sgbuf[nr], AFMT_ISUNSIGNED(db->format) ? 0x80 : 0, PAGE_SIZE);
if ((nr << PAGE_SHIFT) >= db->dmasize)
break;
}
db->bufsize = nr << PAGE_SHIFT;
db->ready = 1;
dprintk((KERN_DEBUG "usbaudio: dmabuf_init bytepersec %d bufs %d ossfragshift %d ossmaxfrags %d "
"fragshift %d fragsize %d numfrag %d dmasize %d bufsize %d fmt 0x%x srate %d\n",
bytepersec, bufs, db->ossfragshift, db->ossmaxfrags, db->fragshift, db->fragsize,
db->numfrag, db->dmasize, db->bufsize, db->format, db->srate));
return 0;
}
static int dmabuf_mmap(struct vm_area_struct *vma, struct dmabuf *db, unsigned long start, unsigned long size, pgprot_t prot)
{
unsigned int nr;
if (!db->ready || db->mapped || (start | size) & (PAGE_SIZE-1) || size > db->bufsize)
return -EINVAL;
size >>= PAGE_SHIFT;
for(nr = 0; nr < size; nr++)
if (!db->sgbuf[nr])
return -EINVAL;
db->mapped = 1;
for(nr = 0; nr < size; nr++) {
unsigned long pfn;
pfn = virt_to_phys(db->sgbuf[nr]) >> PAGE_SHIFT;
if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, prot))
return -EAGAIN;
start += PAGE_SIZE;
}
return 0;
}
static void dmabuf_copyin(struct dmabuf *db, const void *buffer, unsigned int size)
{
unsigned int pgrem, rem;
db->total_bytes += size;
for (;;) {
if (size <= 0)
return;
pgrem = ((~db->wrptr) & (PAGE_SIZE-1)) + 1;
if (pgrem > size)
pgrem = size;
rem = db->dmasize - db->wrptr;
if (pgrem > rem)
pgrem = rem;
memcpy((db->sgbuf[db->wrptr >> PAGE_SHIFT]) + (db->wrptr & (PAGE_SIZE-1)), buffer, pgrem);
size -= pgrem;
buffer += pgrem;
db->wrptr += pgrem;
if (db->wrptr >= db->dmasize)
db->wrptr = 0;
}
}
static void dmabuf_copyout(struct dmabuf *db, void *buffer, unsigned int size)
{
unsigned int pgrem, rem;
db->total_bytes += size;
for (;;) {
if (size <= 0)
return;
pgrem = ((~db->rdptr) & (PAGE_SIZE-1)) + 1;
if (pgrem > size)
pgrem = size;
rem = db->dmasize - db->rdptr;
if (pgrem > rem)
pgrem = rem;
memcpy(buffer, (db->sgbuf[db->rdptr >> PAGE_SHIFT]) + (db->rdptr & (PAGE_SIZE-1)), pgrem);
size -= pgrem;
buffer += pgrem;
db->rdptr += pgrem;
if (db->rdptr >= db->dmasize)
db->rdptr = 0;
}
}
static int dmabuf_copyin_user(struct dmabuf *db, unsigned int ptr, const void __user *buffer, unsigned int size)
{
unsigned int pgrem, rem;
if (!db->ready || db->mapped)
return -EINVAL;
for (;;) {
if (size <= 0)
return 0;
pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
if (pgrem > size)
pgrem = size;
rem = db->dmasize - ptr;
if (pgrem > rem)
pgrem = rem;
if (copy_from_user((db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), buffer, pgrem))
return -EFAULT;
size -= pgrem;
buffer += pgrem;
ptr += pgrem;
if (ptr >= db->dmasize)
ptr = 0;
}
}
static int dmabuf_copyout_user(struct dmabuf *db, unsigned int ptr, void __user *buffer, unsigned int size)
{
unsigned int pgrem, rem;
if (!db->ready || db->mapped)
return -EINVAL;
for (;;) {
if (size <= 0)
return 0;
pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
if (pgrem > size)
pgrem = size;
rem = db->dmasize - ptr;
if (pgrem > rem)
pgrem = rem;
if (copy_to_user(buffer, (db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), pgrem))
return -EFAULT;
size -= pgrem;
buffer += pgrem;
ptr += pgrem;
if (ptr >= db->dmasize)
ptr = 0;
}
}
/* --------------------------------------------------------------------- */
/*
* USB I/O code. We do sample format conversion if necessary
*/
static void usbin_stop(struct usb_audiodev *as)
{
struct usbin *u = &as->usbin;
unsigned long flags;
unsigned int i, notkilled = 1;
spin_lock_irqsave(&as->lock, flags);
u->flags &= ~FLG_RUNNING;
i = u->flags;
spin_unlock_irqrestore(&as->lock, flags);
while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
set_current_state(notkilled ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
spin_lock_irqsave(&as->lock, flags);
i = u->flags;
spin_unlock_irqrestore(&as->lock, flags);
if (notkilled && signal_pending(current)) {
if (i & FLG_URB0RUNNING)
usb_kill_urb(u->durb[0].urb);
if (i & FLG_URB1RUNNING)
usb_kill_urb(u->durb[1].urb);
if (i & FLG_SYNC0RUNNING)
usb_kill_urb(u->surb[0].urb);
if (i & FLG_SYNC1RUNNING)
usb_kill_urb(u->surb[1].urb);
notkilled = 0;
}
}
set_current_state(TASK_RUNNING);
kfree(u->durb[0].urb->transfer_buffer);
kfree(u->durb[1].urb->transfer_buffer);
kfree(u->surb[0].urb->transfer_buffer);
kfree(u->surb[1].urb->transfer_buffer);
u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
}
static inline void usbin_release(struct usb_audiodev *as)
{
usbin_stop(as);
}
static void usbin_disc(struct usb_audiodev *as)
{
struct usbin *u = &as->usbin;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
spin_unlock_irqrestore(&as->lock, flags);
usbin_stop(as);
}
static void conversion(const void *ibuf, unsigned int ifmt, void *obuf, unsigned int ofmt, void *tmp, unsigned int scnt)
{
unsigned int cnt, i;
__s16 *sp, *sp2, s;
unsigned char *bp;
cnt = scnt;
if (AFMT_ISSTEREO(ifmt))
cnt <<= 1;
sp = ((__s16 *)tmp) + cnt;
switch (ifmt & ~AFMT_STEREO) {
case AFMT_U8:
for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
bp--;
sp--;
*sp = (*bp ^ 0x80) << 8;
}
break;
case AFMT_S8:
for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
bp--;
sp--;
*sp = *bp << 8;
}
break;
case AFMT_U16_LE:
for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
bp -= 2;
sp--;
*sp = (bp[0] | (bp[1] << 8)) ^ 0x8000;
}
break;
case AFMT_U16_BE:
for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
bp -= 2;
sp--;
*sp = (bp[1] | (bp[0] << 8)) ^ 0x8000;
}
break;
case AFMT_S16_LE:
for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
bp -= 2;
sp--;
*sp = bp[0] | (bp[1] << 8);
}
break;
case AFMT_S16_BE:
for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
bp -= 2;
sp--;
*sp = bp[1] | (bp[0] << 8);
}
break;
}
if (!AFMT_ISSTEREO(ifmt) && AFMT_ISSTEREO(ofmt)) {
/* expand from mono to stereo */
for (sp = ((__s16 *)tmp)+scnt, sp2 = ((__s16 *)tmp)+2*scnt, i = 0; i < scnt; i++) {
sp--;
sp2 -= 2;
sp2[0] = sp2[1] = sp[0];
}
}
if (AFMT_ISSTEREO(ifmt) && !AFMT_ISSTEREO(ofmt)) {
/* contract from stereo to mono */
for (sp = sp2 = ((__s16 *)tmp), i = 0; i < scnt; i++, sp++, sp2 += 2)
sp[0] = (sp2[0] + sp2[1]) >> 1;
}
cnt = scnt;
if (AFMT_ISSTEREO(ofmt))
cnt <<= 1;
sp = ((__s16 *)tmp);
bp = ((unsigned char *)obuf);
switch (ofmt & ~AFMT_STEREO) {
case AFMT_U8:
for (i = 0; i < cnt; i++, sp++, bp++)
*bp = (*sp >> 8) ^ 0x80;
break;
case AFMT_S8:
for (i = 0; i < cnt; i++, sp++, bp++)
*bp = *sp >> 8;
break;
case AFMT_U16_LE:
for (i = 0; i < cnt; i++, sp++, bp += 2) {
s = *sp;
bp[0] = s;
bp[1] = (s >> 8) ^ 0x80;
}
break;
case AFMT_U16_BE:
for (i = 0; i < cnt; i++, sp++, bp += 2) {
s = *sp;
bp[1] = s;
bp[0] = (s >> 8) ^ 0x80;
}
break;
case AFMT_S16_LE:
for (i = 0; i < cnt; i++, sp++, bp += 2) {
s = *sp;
bp[0] = s;
bp[1] = s >> 8;
}
break;
case AFMT_S16_BE:
for (i = 0; i < cnt; i++, sp++, bp += 2) {
s = *sp;
bp[1] = s;
bp[0] = s >> 8;
}
break;
}
}
static void usbin_convert(struct usbin *u, unsigned char *buffer, unsigned int samples)
{
union {
__s16 s[64];
unsigned char b[0];
} tmp;
unsigned int scnt, maxs, ufmtsh, dfmtsh;
ufmtsh = AFMT_BYTESSHIFT(u->format);
dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
while (samples > 0) {
scnt = samples;
if (scnt > maxs)
scnt = maxs;
conversion(buffer, u->format, tmp.b, u->dma.format, tmp.b, scnt);
dmabuf_copyin(&u->dma, tmp.b, scnt << dfmtsh);
buffer += scnt << ufmtsh;
samples -= scnt;
}
}
static int usbin_prepare_desc(struct usbin *u, struct urb *urb)
{
unsigned int i, maxsize, offs;
maxsize = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
//printk(KERN_DEBUG "usbin_prepare_desc: maxsize %d freq 0x%x format 0x%x\n", maxsize, u->freqn, u->format);
for (i = offs = 0; i < DESCFRAMES; i++, offs += maxsize) {
urb->iso_frame_desc[i].length = maxsize;
urb->iso_frame_desc[i].offset = offs;
}
urb->interval = 1;
return 0;
}
/*
* return value: 0 if descriptor should be restarted, -1 otherwise
* convert sample format on the fly if necessary
*/
static int usbin_retire_desc(struct usbin *u, struct urb *urb)
{
unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, dmafree;
unsigned char *cp;
ufmtsh = AFMT_BYTESSHIFT(u->format);
dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
for (i = 0; i < DESCFRAMES; i++) {
cp = ((unsigned char *)urb->transfer_buffer) + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) {
dprintk((KERN_DEBUG "usbin_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
continue;
}
scnt = urb->iso_frame_desc[i].actual_length >> ufmtsh;
if (!scnt)
continue;
cnt = scnt << dfmtsh;
if (!u->dma.mapped) {
dmafree = u->dma.dmasize - u->dma.count;
if (cnt > dmafree) {
scnt = dmafree >> dfmtsh;
cnt = scnt << dfmtsh;
err++;
}
}
u->dma.count += cnt;
if (u->format == u->dma.format) {
/* we do not need format conversion */
dprintk((KERN_DEBUG "usbaudio: no sample format conversion\n"));
dmabuf_copyin(&u->dma, cp, cnt);
} else {
/* we need sampling format conversion */
dprintk((KERN_DEBUG "usbaudio: sample format conversion %x != %x\n", u->format, u->dma.format));
usbin_convert(u, cp, scnt);
}
}
if (err)
u->dma.error++;
if (u->dma.count >= (signed)u->dma.fragsize)
wake_up(&u->dma.wait);
return err ? -1 : 0;
}
static void usbin_completed(struct urb *urb, struct pt_regs *regs)
{
struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
struct usbin *u = &as->usbin;
unsigned long flags;
unsigned int mask;
int suret = 0;
#if 0
printk(KERN_DEBUG "usbin_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
#endif
if (urb == u->durb[0].urb)
mask = FLG_URB0RUNNING;
else if (urb == u->durb[1].urb)
mask = FLG_URB1RUNNING;
else {
mask = 0;
printk(KERN_ERR "usbin_completed: panic: unknown URB\n");
}
urb->dev = as->state->usbdev;
spin_lock_irqsave(&as->lock, flags);
if (!usbin_retire_desc(u, urb) &&
u->flags & FLG_RUNNING &&
!usbin_prepare_desc(u, urb) &&
(suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
u->flags |= mask;
} else {
u->flags &= ~(mask | FLG_RUNNING);
wake_up(&u->dma.wait);
printk(KERN_DEBUG "usbin_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret);
}
spin_unlock_irqrestore(&as->lock, flags);
}
/*
* we output sync data
*/
static int usbin_sync_prepare_desc(struct usbin *u, struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
unsigned int i, offs;
for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3, cp += 3) {
urb->iso_frame_desc[i].length = 3;
urb->iso_frame_desc[i].offset = offs;
cp[0] = u->freqn;
cp[1] = u->freqn >> 8;
cp[2] = u->freqn >> 16;
}
urb->interval = 1;
return 0;
}
/*
* return value: 0 if descriptor should be restarted, -1 otherwise
*/
static int usbin_sync_retire_desc(struct usbin *u, struct urb *urb)
{
unsigned int i;
for (i = 0; i < SYNCFRAMES; i++)
if (urb->iso_frame_desc[0].status)
dprintk((KERN_DEBUG "usbin_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
return 0;
}
static void usbin_sync_completed(struct urb *urb, struct pt_regs *regs)
{
struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
struct usbin *u = &as->usbin;
unsigned long flags;
unsigned int mask;
int suret = 0;
#if 0
printk(KERN_DEBUG "usbin_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
#endif
if (urb == u->surb[0].urb)
mask = FLG_SYNC0RUNNING;
else if (urb == u->surb[1].urb)
mask = FLG_SYNC1RUNNING;
else {
mask = 0;
printk(KERN_ERR "usbin_sync_completed: panic: unknown URB\n");
}
urb->dev = as->state->usbdev;
spin_lock_irqsave(&as->lock, flags);
if (!usbin_sync_retire_desc(u, urb) &&
u->flags & FLG_RUNNING &&
!usbin_sync_prepare_desc(u, urb) &&
(suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
u->flags |= mask;
} else {
u->flags &= ~(mask | FLG_RUNNING);
wake_up(&u->dma.wait);
dprintk((KERN_DEBUG "usbin_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
}
spin_unlock_irqrestore(&as->lock, flags);
}
static int usbin_start(struct usb_audiodev *as)
{
struct usb_device *dev = as->state->usbdev;
struct usbin *u = &as->usbin;
struct urb *urb;
unsigned long flags;
unsigned int maxsze, bufsz;
#if 0
printk(KERN_DEBUG "usbin_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
dev->devnum, u->format, u->dma.format, u->dma.srate);
#endif
/* allocate USB storage if not already done */
spin_lock_irqsave(&as->lock, flags);
if (!(u->flags & FLG_CONNECTED)) {
spin_unlock_irqrestore(&as->lock, flags);
return -EIO;
}
if (!(u->flags & FLG_RUNNING)) {
spin_unlock_irqrestore(&as->lock, flags);
u->freqn = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
u->freqmax = u->freqn + (u->freqn >> 2);
u->phase = 0;
maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
bufsz = DESCFRAMES * maxsze;
kfree(u->durb[0].urb->transfer_buffer);
u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
u->durb[0].urb->transfer_buffer_length = bufsz;
kfree(u->durb[1].urb->transfer_buffer);
u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
u->durb[1].urb->transfer_buffer_length = bufsz;
if (u->syncpipe) {
kfree(u->surb[0].urb->transfer_buffer);
u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
kfree(u->surb[1].urb->transfer_buffer);
u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
}
if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
(u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
return 0;
}
spin_lock_irqsave(&as->lock, flags);
}
if (u->dma.count >= u->dma.dmasize && !u->dma.mapped) {
spin_unlock_irqrestore(&as->lock, flags);
return 0;
}
u->flags |= FLG_RUNNING;
if (!(u->flags & FLG_URB0RUNNING)) {
urb = u->durb[0].urb;
urb->dev = dev;
urb->pipe = u->datapipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = DESCFRAMES;
urb->context = as;
urb->complete = usbin_completed;
if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
u->flags |= FLG_URB0RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
urb = u->durb[1].urb;
urb->dev = dev;
urb->pipe = u->datapipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = DESCFRAMES;
urb->context = as;
urb->complete = usbin_completed;
if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
u->flags |= FLG_URB1RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
if (u->syncpipe) {
if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
urb = u->surb[0].urb;
urb->dev = dev;
urb->pipe = u->syncpipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = SYNCFRAMES;
urb->context = as;
urb->complete = usbin_sync_completed;
/* stride: u->syncinterval */
if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
u->flags |= FLG_SYNC0RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
urb = u->surb[1].urb;
urb->dev = dev;
urb->pipe = u->syncpipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = SYNCFRAMES;
urb->context = as;
urb->complete = usbin_sync_completed;
/* stride: u->syncinterval */
if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
u->flags |= FLG_SYNC1RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
}
spin_unlock_irqrestore(&as->lock, flags);
return 0;
}
static void usbout_stop(struct usb_audiodev *as)
{
struct usbout *u = &as->usbout;
unsigned long flags;
unsigned int i, notkilled = 1;
spin_lock_irqsave(&as->lock, flags);
u->flags &= ~FLG_RUNNING;
i = u->flags;
spin_unlock_irqrestore(&as->lock, flags);
while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
set_current_state(notkilled ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
spin_lock_irqsave(&as->lock, flags);
i = u->flags;
spin_unlock_irqrestore(&as->lock, flags);
if (notkilled && signal_pending(current)) {
if (i & FLG_URB0RUNNING)
usb_kill_urb(u->durb[0].urb);
if (i & FLG_URB1RUNNING)
usb_kill_urb(u->durb[1].urb);
if (i & FLG_SYNC0RUNNING)
usb_kill_urb(u->surb[0].urb);
if (i & FLG_SYNC1RUNNING)
usb_kill_urb(u->surb[1].urb);
notkilled = 0;
}
}
set_current_state(TASK_RUNNING);
kfree(u->durb[0].urb->transfer_buffer);
kfree(u->durb[1].urb->transfer_buffer);
kfree(u->surb[0].urb->transfer_buffer);
kfree(u->surb[1].urb->transfer_buffer);
u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
}
static inline void usbout_release(struct usb_audiodev *as)
{
usbout_stop(as);
}
static void usbout_disc(struct usb_audiodev *as)
{
struct usbout *u = &as->usbout;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
spin_unlock_irqrestore(&as->lock, flags);
usbout_stop(as);
}
static void usbout_convert(struct usbout *u, unsigned char *buffer, unsigned int samples)
{
union {
__s16 s[64];
unsigned char b[0];
} tmp;
unsigned int scnt, maxs, ufmtsh, dfmtsh;
ufmtsh = AFMT_BYTESSHIFT(u->format);
dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
while (samples > 0) {
scnt = samples;
if (scnt > maxs)
scnt = maxs;
dmabuf_copyout(&u->dma, tmp.b, scnt << dfmtsh);
conversion(tmp.b, u->dma.format, buffer, u->format, tmp.b, scnt);
buffer += scnt << ufmtsh;
samples -= scnt;
}
}
static int usbout_prepare_desc(struct usbout *u, struct urb *urb)
{
unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, offs;
unsigned char *cp = urb->transfer_buffer;
ufmtsh = AFMT_BYTESSHIFT(u->format);
dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
for (i = offs = 0; i < DESCFRAMES; i++) {
urb->iso_frame_desc[i].offset = offs;
u->phase = (u->phase & 0x3fff) + u->freqm;
scnt = u->phase >> 14;
if (!scnt) {
urb->iso_frame_desc[i].length = 0;
continue;
}
cnt = scnt << dfmtsh;
if (!u->dma.mapped) {
if (cnt > u->dma.count) {
scnt = u->dma.count >> dfmtsh;
cnt = scnt << dfmtsh;
err++;
}
u->dma.count -= cnt;
} else
u->dma.count += cnt;
if (u->format == u->dma.format) {
/* we do not need format conversion */
dmabuf_copyout(&u->dma, cp, cnt);
} else {
/* we need sampling format conversion */
usbout_convert(u, cp, scnt);
}
cnt = scnt << ufmtsh;
urb->iso_frame_desc[i].length = cnt;
offs += cnt;
cp += cnt;
}
urb->interval = 1;
if (err)
u->dma.error++;
if (u->dma.mapped) {
if (u->dma.count >= (signed)u->dma.fragsize)
wake_up(&u->dma.wait);
} else {
if ((signed)u->dma.dmasize >= u->dma.count + (signed)u->dma.fragsize)
wake_up(&u->dma.wait);
}
return err ? -1 : 0;
}
/*
* return value: 0 if descriptor should be restarted, -1 otherwise
*/
static int usbout_retire_desc(struct usbout *u, struct urb *urb)
{
unsigned int i;
for (i = 0; i < DESCFRAMES; i++) {
if (urb->iso_frame_desc[i].status) {
dprintk((KERN_DEBUG "usbout_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
continue;
}
}
return 0;
}
static void usbout_completed(struct urb *urb, struct pt_regs *regs)
{
struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
struct usbout *u = &as->usbout;
unsigned long flags;
unsigned int mask;
int suret = 0;
#if 0
printk(KERN_DEBUG "usbout_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
#endif
if (urb == u->durb[0].urb)
mask = FLG_URB0RUNNING;
else if (urb == u->durb[1].urb)
mask = FLG_URB1RUNNING;
else {
mask = 0;
printk(KERN_ERR "usbout_completed: panic: unknown URB\n");
}
urb->dev = as->state->usbdev;
spin_lock_irqsave(&as->lock, flags);
if (!usbout_retire_desc(u, urb) &&
u->flags & FLG_RUNNING &&
!usbout_prepare_desc(u, urb) &&
(suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
u->flags |= mask;
} else {
u->flags &= ~(mask | FLG_RUNNING);
wake_up(&u->dma.wait);
dprintk((KERN_DEBUG "usbout_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
}
spin_unlock_irqrestore(&as->lock, flags);
}
static int usbout_sync_prepare_desc(struct usbout *u, struct urb *urb)
{
unsigned int i, offs;
for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3) {
urb->iso_frame_desc[i].length = 3;
urb->iso_frame_desc[i].offset = offs;
}
urb->interval = 1;
return 0;
}
/*
* return value: 0 if descriptor should be restarted, -1 otherwise
*/
static int usbout_sync_retire_desc(struct usbout *u, struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
unsigned int f, i;
for (i = 0; i < SYNCFRAMES; i++, cp += 3) {
if (urb->iso_frame_desc[i].status) {
dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
continue;
}
if (urb->iso_frame_desc[i].actual_length < 3) {
dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u length %d\n", i, urb->iso_frame_desc[i].actual_length));
continue;
}
f = cp[0] | (cp[1] << 8) | (cp[2] << 16);
if (abs(f - u->freqn) > (u->freqn >> 3) || f > u->freqmax) {
printk(KERN_WARNING "usbout_sync_retire_desc: requested frequency %u (nominal %u) out of range!\n", f, u->freqn);
continue;
}
u->freqm = f;
}
return 0;
}
static void usbout_sync_completed(struct urb *urb, struct pt_regs *regs)
{
struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
struct usbout *u = &as->usbout;
unsigned long flags;
unsigned int mask;
int suret = 0;
#if 0
printk(KERN_DEBUG "usbout_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
#endif
if (urb == u->surb[0].urb)
mask = FLG_SYNC0RUNNING;
else if (urb == u->surb[1].urb)
mask = FLG_SYNC1RUNNING;
else {
mask = 0;
printk(KERN_ERR "usbout_sync_completed: panic: unknown URB\n");
}
urb->dev = as->state->usbdev;
spin_lock_irqsave(&as->lock, flags);
if (!usbout_sync_retire_desc(u, urb) &&
u->flags & FLG_RUNNING &&
!usbout_sync_prepare_desc(u, urb) &&
(suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
u->flags |= mask;
} else {
u->flags &= ~(mask | FLG_RUNNING);
wake_up(&u->dma.wait);
dprintk((KERN_DEBUG "usbout_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
}
spin_unlock_irqrestore(&as->lock, flags);
}
static int usbout_start(struct usb_audiodev *as)
{
struct usb_device *dev = as->state->usbdev;
struct usbout *u = &as->usbout;
struct urb *urb;
unsigned long flags;
unsigned int maxsze, bufsz;
#if 0
printk(KERN_DEBUG "usbout_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
dev->devnum, u->format, u->dma.format, u->dma.srate);
#endif
/* allocate USB storage if not already done */
spin_lock_irqsave(&as->lock, flags);
if (!(u->flags & FLG_CONNECTED)) {
spin_unlock_irqrestore(&as->lock, flags);
return -EIO;
}
if (!(u->flags & FLG_RUNNING)) {
spin_unlock_irqrestore(&as->lock, flags);
u->freqn = u->freqm = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
u->freqmax = u->freqn + (u->freqn >> 2);
u->phase = 0;
maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
bufsz = DESCFRAMES * maxsze;
kfree(u->durb[0].urb->transfer_buffer);
u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
u->durb[0].urb->transfer_buffer_length = bufsz;
kfree(u->durb[1].urb->transfer_buffer);
u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
u->durb[1].urb->transfer_buffer_length = bufsz;
if (u->syncpipe) {
kfree(u->surb[0].urb->transfer_buffer);
u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
kfree(u->surb[1].urb->transfer_buffer);
u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
}
if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
(u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
return 0;
}
spin_lock_irqsave(&as->lock, flags);
}
if (u->dma.count <= 0 && !u->dma.mapped) {
spin_unlock_irqrestore(&as->lock, flags);
return 0;
}
u->flags |= FLG_RUNNING;
if (!(u->flags & FLG_URB0RUNNING)) {
urb = u->durb[0].urb;
urb->dev = dev;
urb->pipe = u->datapipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = DESCFRAMES;
urb->context = as;
urb->complete = usbout_completed;
if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
u->flags |= FLG_URB0RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
urb = u->durb[1].urb;
urb->dev = dev;
urb->pipe = u->datapipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = DESCFRAMES;
urb->context = as;
urb->complete = usbout_completed;
if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
u->flags |= FLG_URB1RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
if (u->syncpipe) {
if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
urb = u->surb[0].urb;
urb->dev = dev;
urb->pipe = u->syncpipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = SYNCFRAMES;
urb->context = as;
urb->complete = usbout_sync_completed;
/* stride: u->syncinterval */
if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
u->flags |= FLG_SYNC0RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
urb = u->surb[1].urb;
urb->dev = dev;
urb->pipe = u->syncpipe;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = SYNCFRAMES;
urb->context = as;
urb->complete = usbout_sync_completed;
/* stride: u->syncinterval */
if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
u->flags |= FLG_SYNC1RUNNING;
else
u->flags &= ~FLG_RUNNING;
}
}
spin_unlock_irqrestore(&as->lock, flags);
return 0;
}
/* --------------------------------------------------------------------- */
static unsigned int format_goodness(struct audioformat *afp, unsigned int fmt, unsigned int srate)
{
unsigned int g = 0;
if (srate < afp->sratelo)
g += afp->sratelo - srate;
if (srate > afp->sratehi)
g += srate - afp->sratehi;
if (AFMT_ISSTEREO(afp->format) && !AFMT_ISSTEREO(fmt))
g += 0x100000;
if (!AFMT_ISSTEREO(afp->format) && AFMT_ISSTEREO(fmt))
g += 0x400000;
if (AFMT_IS16BIT(afp->format) && !AFMT_IS16BIT(fmt))
g += 0x100000;
if (!AFMT_IS16BIT(afp->format) && AFMT_IS16BIT(fmt))
g += 0x400000;
return g;
}
static int find_format(struct audioformat *afp, unsigned int nr, unsigned int fmt, unsigned int srate)
{
unsigned int i, g, gb = ~0;
int j = -1; /* default to failure */
/* find "best" format (according to format_goodness) */
for (i = 0; i < nr; i++) {
g = format_goodness(&afp[i], fmt, srate);
if (g >= gb)
continue;
j = i;
gb = g;
}
return j;
}
static int set_format_in(struct usb_audiodev *as)
{
struct usb_device *dev = as->state->usbdev;
struct usb_host_interface *alts;
struct usb_interface *iface;
struct usbin *u = &as->usbin;
struct dmabuf *d = &u->dma;
struct audioformat *fmt;
unsigned int ep;
unsigned char data[3];
int fmtnr, ret;
iface = usb_ifnum_to_if(dev, u->interface);
if (!iface)
return 0;
fmtnr = find_format(as->fmtin, as->numfmtin, d->format, d->srate);
if (fmtnr < 0) {
printk(KERN_ERR "usbaudio: set_format_in(): failed to find desired format/speed combination.\n");
return -1;
}
fmt = as->fmtin + fmtnr;
alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
u->format = fmt->format;
u->datapipe = usb_rcvisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
u->syncpipe = u->syncinterval = 0;
if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x08) {
if (alts->desc.bNumEndpoints < 2 ||
alts->endpoint[1].desc.bmAttributes != 0x01 ||
alts->endpoint[1].desc.bSynchAddress != 0 ||
alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress & 0x7f)) {
printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims adaptive in "
"but has invalid synch pipe; treating as asynchronous in\n",
dev->devnum, u->interface, fmt->altsetting);
} else {
u->syncpipe = usb_sndisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
u->syncinterval = alts->endpoint[1].desc.bRefresh;
}
}
if (d->srate < fmt->sratelo)
d->srate = fmt->sratelo;
if (d->srate > fmt->sratehi)
d->srate = fmt->sratehi;
dprintk((KERN_DEBUG "usbaudio: set_format_in: usb_set_interface %u %u\n",
u->interface, fmt->altsetting));
if (usb_set_interface(dev, alts->desc.bInterfaceNumber, fmt->altsetting) < 0) {
printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
dev->devnum, u->interface, fmt->altsetting);
return -1;
}
if (fmt->sratelo == fmt->sratehi)
return 0;
ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
/* if endpoint has pitch control, enable it */
if (fmt->attributes & 0x02) {
data[0] = 1;
if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
ret, dev->devnum, u->interface, ep, d->srate);
return -1;
}
}
/* if endpoint has sampling rate control, set it */
if (fmt->attributes & 0x01) {
data[0] = d->srate;
data[1] = d->srate >> 8;
data[2] = d->srate >> 16;
if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
printk(KERN_ERR "usbaudio: failure (error %d) to set input sampling frequency device %d interface %u endpoint 0x%x to %u\n",
ret, dev->devnum, u->interface, ep, d->srate);
return -1;
}
if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
printk(KERN_ERR "usbaudio: failure (error %d) to get input sampling frequency device %d interface %u endpoint 0x%x\n",
ret, dev->devnum, u->interface, ep);
return -1;
}
dprintk((KERN_DEBUG "usbaudio: set_format_in: device %d interface %d altsetting %d srate req: %u real %u\n",
dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
}
dprintk((KERN_DEBUG "usbaudio: set_format_in: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
return 0;
}
static int set_format_out(struct usb_audiodev *as)
{
struct usb_device *dev = as->state->usbdev;
struct usb_host_interface *alts;
struct usb_interface *iface;
struct usbout *u = &as->usbout;
struct dmabuf *d = &u->dma;
struct audioformat *fmt;
unsigned int ep;
unsigned char data[3];
int fmtnr, ret;
iface = usb_ifnum_to_if(dev, u->interface);
if (!iface)
return 0;
fmtnr = find_format(as->fmtout, as->numfmtout, d->format, d->srate);
if (fmtnr < 0) {
printk(KERN_ERR "usbaudio: set_format_out(): failed to find desired format/speed combination.\n");
return -1;
}
fmt = as->fmtout + fmtnr;
u->format = fmt->format;
alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
u->datapipe = usb_sndisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
u->syncpipe = u->syncinterval = 0;
if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x04) {
#if 0
printk(KERN_DEBUG "bNumEndpoints 0x%02x endpoint[1].bmAttributes 0x%02x\n"
KERN_DEBUG "endpoint[1].bSynchAddress 0x%02x endpoint[1].bEndpointAddress 0x%02x\n"
KERN_DEBUG "endpoint[0].bSynchAddress 0x%02x\n", alts->bNumEndpoints,
alts->endpoint[1].bmAttributes, alts->endpoint[1].bSynchAddress,
alts->endpoint[1].bEndpointAddress, alts->endpoint[0].bSynchAddress);
#endif
if (alts->desc.bNumEndpoints < 2 ||
alts->endpoint[1].desc.bmAttributes != 0x01 ||
alts->endpoint[1].desc.bSynchAddress != 0 ||
alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress | 0x80)) {
printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims asynch out "
"but has invalid synch pipe; treating as adaptive out\n",
dev->devnum, u->interface, fmt->altsetting);
} else {
u->syncpipe = usb_rcvisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
u->syncinterval = alts->endpoint[1].desc.bRefresh;
}
}
if (d->srate < fmt->sratelo)
d->srate = fmt->sratelo;
if (d->srate > fmt->sratehi)
d->srate = fmt->sratehi;
dprintk((KERN_DEBUG "usbaudio: set_format_out: usb_set_interface %u %u\n",
u->interface, fmt->altsetting));
if (usb_set_interface(dev, u->interface, fmt->altsetting) < 0) {
printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
dev->devnum, u->interface, fmt->altsetting);
return -1;
}
if (fmt->sratelo == fmt->sratehi)
return 0;
ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
/* if endpoint has pitch control, enable it */
if (fmt->attributes & 0x02) {
data[0] = 1;
if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
ret, dev->devnum, u->interface, ep, d->srate);
return -1;
}
}
/* if endpoint has sampling rate control, set it */
if (fmt->attributes & 0x01) {
data[0] = d->srate;
data[1] = d->srate >> 8;
data[2] = d->srate >> 16;
if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
printk(KERN_ERR "usbaudio: failure (error %d) to set output sampling frequency device %d interface %u endpoint 0x%x to %u\n",
ret, dev->devnum, u->interface, ep, d->srate);
return -1;
}
if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
printk(KERN_ERR "usbaudio: failure (error %d) to get output sampling frequency device %d interface %u endpoint 0x%x\n",
ret, dev->devnum, u->interface, ep);
return -1;
}
dprintk((KERN_DEBUG "usbaudio: set_format_out: device %d interface %d altsetting %d srate req: %u real %u\n",
dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
}
dprintk((KERN_DEBUG "usbaudio: set_format_out: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
return 0;
}
static int set_format(struct usb_audiodev *s, unsigned int fmode, unsigned int fmt, unsigned int srate)
{
int ret1 = 0, ret2 = 0;
if (!(fmode & (FMODE_READ|FMODE_WRITE)))
return -EINVAL;
if (fmode & FMODE_READ) {
usbin_stop(s);
s->usbin.dma.ready = 0;
if (fmt == AFMT_QUERY)
fmt = s->usbin.dma.format;
else
s->usbin.dma.format = fmt;
if (!srate)
srate = s->usbin.dma.srate;
else
s->usbin.dma.srate = srate;
}
if (fmode & FMODE_WRITE) {
usbout_stop(s);
s->usbout.dma.ready = 0;
if (fmt == AFMT_QUERY)
fmt = s->usbout.dma.format;
else
s->usbout.dma.format = fmt;
if (!srate)
srate = s->usbout.dma.srate;
else
s->usbout.dma.srate = srate;
}
if (fmode & FMODE_READ)
ret1 = set_format_in(s);
if (fmode & FMODE_WRITE)
ret2 = set_format_out(s);
return ret1 ? ret1 : ret2;
}
/* --------------------------------------------------------------------- */
static int wrmixer(struct usb_mixerdev *ms, unsigned mixch, unsigned value)
{
struct usb_device *dev = ms->state->usbdev;
unsigned char data[2];
struct mixerchannel *ch;
int v1, v2, v3;
if (mixch >= ms->numch)
return -1;
ch = &ms->ch[mixch];
v3 = ch->maxval - ch->minval;
v1 = value & 0xff;
v2 = (value >> 8) & 0xff;
if (v1 > 100)
v1 = 100;
if (v2 > 100)
v2 = 100;
if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
v2 = v1;
ch->value = v1 | (v2 << 8);
v1 = (v1 * v3) / 100 + ch->minval;
v2 = (v2 * v3) / 100 + ch->minval;
switch (ch->selector) {
case 0: /* mixer unit request */
data[0] = v1;
data[1] = v1 >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
(ch->chnum << 8) | 1, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
goto err;
if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
return 0;
data[0] = v2;
data[1] = v2 >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
goto err;
return 0;
/* various feature unit controls */
case VOLUME_CONTROL:
data[0] = v1;
data[1] = v1 >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
(ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
goto err;
if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
return 0;
data[0] = v2;
data[1] = v2 >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
(ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
goto err;
return 0;
case BASS_CONTROL:
case MID_CONTROL:
case TREBLE_CONTROL:
data[0] = v1 >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
(ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
goto err;
if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
return 0;
data[0] = v2 >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
(ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
goto err;
return 0;
default:
return -1;
}
return 0;
err:
printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
dev->devnum, ms->iface, ch->unitid, ch->chnum, ch->selector);
return -1;
}
static int get_rec_src(struct usb_mixerdev *ms)
{
struct usb_device *dev = ms->state->usbdev;
unsigned int mask = 0, retmask = 0;
unsigned int i, j;
unsigned char buf;
int err = 0;
for (i = 0; i < ms->numch; i++) {
if (!ms->ch[i].slctunitid || (mask & (1 << i)))
continue;
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
err = -EIO;
printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
continue;
}
for (j = i; j < ms->numch; j++) {
if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
continue;
mask |= 1 << j;
if (buf == (ms->ch[j].slctunitid >> 8))
retmask |= 1 << ms->ch[j].osschannel;
}
}
if (err)
return -EIO;
return retmask;
}
static int set_rec_src(struct usb_mixerdev *ms, int srcmask)
{
struct usb_device *dev = ms->state->usbdev;
unsigned int mask = 0, smask, bmask;
unsigned int i, j;
unsigned char buf;
int err = 0;
for (i = 0; i < ms->numch; i++) {
if (!ms->ch[i].slctunitid || (mask & (1 << i)))
continue;
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
err = -EIO;
printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
continue;
}
/* first generate smask */
smask = bmask = 0;
for (j = i; j < ms->numch; j++) {
if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
continue;
smask |= 1 << ms->ch[j].osschannel;
if (buf == (ms->ch[j].slctunitid >> 8))
bmask |= 1 << ms->ch[j].osschannel;
mask |= 1 << j;
}
/* check for multiple set sources */
j = hweight32(srcmask & smask);
if (j == 0)
continue;
if (j > 1)
srcmask &= ~bmask;
for (j = i; j < ms->numch; j++) {
if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
continue;
if (!(srcmask & (1 << ms->ch[j].osschannel)))
continue;
buf = ms->ch[j].slctunitid >> 8;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
0, ms->iface | (ms->ch[j].slctunitid << 8), &buf, 1, 1000) < 0) {
err = -EIO;
printk(KERN_ERR "usbaudio: selector write request device %u if %u unit %u failed\n",
dev->devnum, ms->iface, ms->ch[j].slctunitid & 0xff);
continue;
}
}
}
return err ? -EIO : 0;
}
/* --------------------------------------------------------------------- */
/*
* should be called with open_sem hold, so that no new processes
* look at the audio device to be destroyed
*/
static void release(struct usb_audio_state *s)
{
struct usb_audiodev *as;
struct usb_mixerdev *ms;
s->count--;
if (s->count) {
up(&open_sem);
return;
}
up(&open_sem);
wake_up(&open_wait);
while (!list_empty(&s->audiolist)) {
as = list_entry(s->audiolist.next, struct usb_audiodev, list);
list_del(&as->list);
usbin_release(as);
usbout_release(as);
dmabuf_release(&as->usbin.dma);
dmabuf_release(&as->usbout.dma);
usb_free_urb(as->usbin.durb[0].urb);
usb_free_urb(as->usbin.durb[1].urb);
usb_free_urb(as->usbin.surb[0].urb);
usb_free_urb(as->usbin.surb[1].urb);
usb_free_urb(as->usbout.durb[0].urb);
usb_free_urb(as->usbout.durb[1].urb);
usb_free_urb(as->usbout.surb[0].urb);
usb_free_urb(as->usbout.surb[1].urb);
kfree(as);
}
while (!list_empty(&s->mixerlist)) {
ms = list_entry(s->mixerlist.next, struct usb_mixerdev, list);
list_del(&ms->list);
kfree(ms);
}
kfree(s);
}
static inline int prog_dmabuf_in(struct usb_audiodev *as)
{
usbin_stop(as);
return dmabuf_init(&as->usbin.dma);
}
static inline int prog_dmabuf_out(struct usb_audiodev *as)
{
usbout_stop(as);
return dmabuf_init(&as->usbout.dma);
}
/* --------------------------------------------------------------------- */
static int usb_audio_open_mixdev(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
struct usb_mixerdev *ms;
struct usb_audio_state *s;
down(&open_sem);
list_for_each_entry(s, &audiodevs, audiodev) {
list_for_each_entry(ms, &s->mixerlist, list) {
if (ms->dev_mixer == minor)
goto mixer_found;
}
}
up(&open_sem);
return -ENODEV;
mixer_found:
if (!s->usbdev) {
up(&open_sem);
return -EIO;
}
file->private_data = ms;
s->count++;
up(&open_sem);
return nonseekable_open(inode, file);
}
static int usb_audio_release_mixdev(struct inode *inode, struct file *file)
{
struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
struct usb_audio_state *s;
lock_kernel();
s = ms->state;
down(&open_sem);
release(s);
unlock_kernel();
return 0;
}
static int usb_audio_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
int i, j, val;
int __user *user_arg = (int __user *)arg;
if (!ms->state->usbdev)
return -ENODEV;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strncpy(info.id, "USB_AUDIO", sizeof(info.id));
strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
info.modify_counter = ms->modcnt;
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strncpy(info.id, "USB_AUDIO", sizeof(info.id));
strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, user_arg);
if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_IOC_DIR(cmd) == _IOC_READ) {
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
val = get_rec_src(ms);
if (val < 0)
return val;
return put_user(val, user_arg);
case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
for (val = i = 0; i < ms->numch; i++)
val |= 1 << ms->ch[i].osschannel;
return put_user(val, user_arg);
case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
for (val = i = 0; i < ms->numch; i++)
if (ms->ch[i].slctunitid)
val |= 1 << ms->ch[i].osschannel;
return put_user(val, user_arg);
case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
for (val = i = 0; i < ms->numch; i++)
if (ms->ch[i].flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))
val |= 1 << ms->ch[i].osschannel;
return put_user(val, user_arg);
case SOUND_MIXER_CAPS:
return put_user(SOUND_CAP_EXCL_INPUT, user_arg);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES)
return -EINVAL;
for (j = 0; j < ms->numch; j++) {
if (ms->ch[j].osschannel == i) {
return put_user(ms->ch[j].value, user_arg);
}
}
return -EINVAL;
}
}
if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE))
return -EINVAL;
ms->modcnt++;
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
if (get_user(val, user_arg))
return -EFAULT;
return set_rec_src(ms, val);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES)
return -EINVAL;
for (j = 0; j < ms->numch && ms->ch[j].osschannel != i; j++);
if (j >= ms->numch)
return -EINVAL;
if (get_user(val, user_arg))
return -EFAULT;
if (wrmixer(ms, j, val))
return -EIO;
return put_user(ms->ch[j].value, user_arg);
}
}
static /*const*/ struct file_operations usb_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = usb_audio_ioctl_mixdev,
.open = usb_audio_open_mixdev,
.release = usb_audio_release_mixdev,
};
/* --------------------------------------------------------------------- */
static int drain_out(struct usb_audiodev *as, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int count, tmo;
if (as->usbout.dma.mapped || !as->usbout.dma.ready)
return 0;
usbout_start(as);
add_wait_queue(&as->usbout.dma.wait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&as->lock, flags);
count = as->usbout.dma.count;
spin_unlock_irqrestore(&as->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&as->usbout.dma.wait, &wait);
set_current_state(TASK_RUNNING);
return -EBUSY;
}
tmo = 3 * HZ * count / as->usbout.dma.srate;
tmo >>= AFMT_BYTESSHIFT(as->usbout.dma.format);
if (!schedule_timeout(tmo + 1)) {
printk(KERN_DEBUG "usbaudio: dma timed out??\n");
break;
}
}
remove_wait_queue(&as->usbout.dma.wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
/* --------------------------------------------------------------------- */
static ssize_t usb_audio_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret = 0;
unsigned long flags;
unsigned int ptr;
int cnt, err;
if (as->usbin.dma.mapped)
return -ENXIO;
if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
add_wait_queue(&as->usbin.dma.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&as->lock, flags);
ptr = as->usbin.dma.rdptr;
cnt = as->usbin.dma.count;
/* set task state early to avoid wakeup races */
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&as->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (usbin_start(as)) {
if (!ret)
ret = -ENODEV;
break;
}
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if ((err = dmabuf_copyout_user(&as->usbin.dma, ptr, buffer, cnt))) {
if (!ret)
ret = err;
break;
}
ptr += cnt;
if (ptr >= as->usbin.dma.dmasize)
ptr -= as->usbin.dma.dmasize;
spin_lock_irqsave(&as->lock, flags);
as->usbin.dma.rdptr = ptr;
as->usbin.dma.count -= cnt;
spin_unlock_irqrestore(&as->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&as->usbin.dma.wait, &wait);
return ret;
}
static ssize_t usb_audio_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret = 0;
unsigned long flags;
unsigned int ptr;
unsigned int start_thr;
int cnt, err;
if (as->usbout.dma.mapped)
return -ENXIO;
if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
start_thr = (as->usbout.dma.srate << AFMT_BYTESSHIFT(as->usbout.dma.format)) / (1000 / (3 * DESCFRAMES));
add_wait_queue(&as->usbout.dma.wait, &wait);
while (count > 0) {
#if 0
printk(KERN_DEBUG "usb_audio_write: count %u dma: count %u rdptr %u wrptr %u dmasize %u fragsize %u flags 0x%02x taskst 0x%lx\n",
count, as->usbout.dma.count, as->usbout.dma.rdptr, as->usbout.dma.wrptr, as->usbout.dma.dmasize, as->usbout.dma.fragsize,
as->usbout.flags, current->state);
#endif
spin_lock_irqsave(&as->lock, flags);
if (as->usbout.dma.count < 0) {
as->usbout.dma.count = 0;
as->usbout.dma.rdptr = as->usbout.dma.wrptr;
}
ptr = as->usbout.dma.wrptr;
cnt = as->usbout.dma.dmasize - as->usbout.dma.count;
/* set task state early to avoid wakeup races */
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&as->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (usbout_start(as)) {
if (!ret)
ret = -ENODEV;
break;
}
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if ((err = dmabuf_copyin_user(&as->usbout.dma, ptr, buffer, cnt))) {
if (!ret)
ret = err;
break;
}
ptr += cnt;
if (ptr >= as->usbout.dma.dmasize)
ptr -= as->usbout.dma.dmasize;
spin_lock_irqsave(&as->lock, flags);
as->usbout.dma.wrptr = ptr;
as->usbout.dma.count += cnt;
spin_unlock_irqrestore(&as->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
if (as->usbout.dma.count >= start_thr && usbout_start(as)) {
if (!ret)
ret = -ENODEV;
break;
}
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&as->usbout.dma.wait, &wait);
return ret;
}
/* Called without the kernel lock - fine */
static unsigned int usb_audio_poll(struct file *file, struct poll_table_struct *wait)
{
struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
if (file->f_mode & FMODE_WRITE) {
if (!as->usbout.dma.ready)
prog_dmabuf_out(as);
poll_wait(file, &as->usbout.dma.wait, wait);
}
if (file->f_mode & FMODE_READ) {
if (!as->usbin.dma.ready)
prog_dmabuf_in(as);
poll_wait(file, &as->usbin.dma.wait, wait);
}
spin_lock_irqsave(&as->lock, flags);
if (file->f_mode & FMODE_READ) {
if (as->usbin.dma.count >= (signed)as->usbin.dma.fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (as->usbout.dma.mapped) {
if (as->usbout.dma.count >= (signed)as->usbout.dma.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)as->usbout.dma.dmasize >= as->usbout.dma.count + (signed)as->usbout.dma.fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&as->lock, flags);
return mask;
}
static int usb_audio_mmap(struct file *file, struct vm_area_struct *vma)
{
struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
struct dmabuf *db;
int ret = -EINVAL;
lock_kernel();
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf_out(as)) != 0)
goto out;
db = &as->usbout.dma;
} else if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf_in(as)) != 0)
goto out;
db = &as->usbin.dma;
} else
goto out;
ret = -EINVAL;
if (vma->vm_pgoff != 0)
goto out;
ret = dmabuf_mmap(vma, db, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot);
out:
unlock_kernel();
return ret;
}
static int usb_audio_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
struct usb_audio_state *s = as->state;
int __user *user_arg = (int __user *)arg;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val = 0;
int val2, mapped, ret;
if (!s->usbdev)
return -EIO;
mapped = ((file->f_mode & FMODE_WRITE) && as->usbout.dma.mapped) ||
((file->f_mode & FMODE_READ) && as->usbin.dma.mapped);
#if 0
if (arg)
get_user(val, (int *)arg);
printk(KERN_DEBUG "usbaudio: usb_audio_ioctl cmd=%x arg=%lx *arg=%d\n", cmd, arg, val)
#endif
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, user_arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_out(as, 0/*file->f_flags & O_NONBLOCK*/);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER |
DSP_CAP_MMAP | DSP_CAP_BATCH, user_arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
usbout_stop(as);
as->usbout.dma.rdptr = as->usbout.dma.wrptr = as->usbout.dma.count = as->usbout.dma.total_bytes = 0;
}
if (file->f_mode & FMODE_READ) {
usbin_stop(as);
as->usbin.dma.rdptr = as->usbin.dma.wrptr = as->usbin.dma.count = as->usbin.dma.total_bytes = 0;
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, user_arg))
return -EFAULT;
if (val >= 0) {
if (val < 4000)
val = 4000;
if (val > 100000)
val = 100000;
if (set_format(as, file->f_mode, AFMT_QUERY, val))
return -EIO;
}
return put_user((file->f_mode & FMODE_READ) ?
as->usbin.dma.srate : as->usbout.dma.srate,
user_arg);
case SNDCTL_DSP_STEREO:
if (get_user(val, user_arg))
return -EFAULT;
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
if (val)
val2 |= AFMT_STEREO;
else
val2 &= ~AFMT_STEREO;
if (set_format(as, file->f_mode, val2, 0))
return -EIO;
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, user_arg))
return -EFAULT;
if (val != 0) {
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
if (val == 1)
val2 &= ~AFMT_STEREO;
else
val2 |= AFMT_STEREO;
if (set_format(as, file->f_mode, val2, 0))
return -EIO;
}
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE, user_arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, user_arg))
return -EFAULT;
if (val != AFMT_QUERY) {
if (hweight32(val) != 1)
return -EINVAL;
if (!(val & (AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE)))
return -EINVAL;
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
val |= val2 & AFMT_STEREO;
if (set_format(as, file->f_mode, val, 0))
return -EIO;
}
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
return put_user(val2 & ~AFMT_STEREO, user_arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (file->f_mode & FMODE_READ && as->usbin.flags & FLG_RUNNING)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & FMODE_WRITE && as->usbout.flags & FLG_RUNNING)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, user_arg);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, user_arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
return ret;
if (usbin_start(as))
return -ENODEV;
} else
usbin_stop(as);
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
return ret;
if (usbout_start(as))
return -ENODEV;
} else
usbout_stop(as);
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!(as->usbout.flags & FLG_RUNNING) && (val = prog_dmabuf_out(as)) != 0)
return val;
spin_lock_irqsave(&as->lock, flags);
abinfo.fragsize = as->usbout.dma.fragsize;
abinfo.bytes = as->usbout.dma.dmasize - as->usbout.dma.count;
abinfo.fragstotal = as->usbout.dma.numfrag;
abinfo.fragments = abinfo.bytes >> as->usbout.dma.fragshift;
spin_unlock_irqrestore(&as->lock, flags);
return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!(as->usbin.flags & FLG_RUNNING) && (val = prog_dmabuf_in(as)) != 0)
return val;
spin_lock_irqsave(&as->lock, flags);
abinfo.fragsize = as->usbin.dma.fragsize;
abinfo.bytes = as->usbin.dma.count;
abinfo.fragstotal = as->usbin.dma.numfrag;
abinfo.fragments = abinfo.bytes >> as->usbin.dma.fragshift;
spin_unlock_irqrestore(&as->lock, flags);
return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&as->lock, flags);
val = as->usbout.dma.count;
spin_unlock_irqrestore(&as->lock, flags);
return put_user(val, user_arg);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&as->lock, flags);
cinfo.bytes = as->usbin.dma.total_bytes;
cinfo.blocks = as->usbin.dma.count >> as->usbin.dma.fragshift;
cinfo.ptr = as->usbin.dma.wrptr;
if (as->usbin.dma.mapped)
as->usbin.dma.count &= as->usbin.dma.fragsize-1;
spin_unlock_irqrestore(&as->lock, flags);
if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&as->lock, flags);
cinfo.bytes = as->usbout.dma.total_bytes;
cinfo.blocks = as->usbout.dma.count >> as->usbout.dma.fragshift;
cinfo.ptr = as->usbout.dma.rdptr;
if (as->usbout.dma.mapped)
as->usbout.dma.count &= as->usbout.dma.fragsize-1;
spin_unlock_irqrestore(&as->lock, flags);
if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf_out(as)))
return val;
return put_user(as->usbout.dma.fragsize, user_arg);
}
if ((val = prog_dmabuf_in(as)))
return val;
return put_user(as->usbin.dma.fragsize, user_arg);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, user_arg))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
as->usbin.dma.ossfragshift = val & 0xffff;
as->usbin.dma.ossmaxfrags = (val >> 16) & 0xffff;
if (as->usbin.dma.ossfragshift < 4)
as->usbin.dma.ossfragshift = 4;
if (as->usbin.dma.ossfragshift > 15)
as->usbin.dma.ossfragshift = 15;
if (as->usbin.dma.ossmaxfrags < 4)
as->usbin.dma.ossmaxfrags = 4;
}
if (file->f_mode & FMODE_WRITE) {
as->usbout.dma.ossfragshift = val & 0xffff;
as->usbout.dma.ossmaxfrags = (val >> 16) & 0xffff;
if (as->usbout.dma.ossfragshift < 4)
as->usbout.dma.ossfragshift = 4;
if (as->usbout.dma.ossfragshift > 15)
as->usbout.dma.ossfragshift = 15;
if (as->usbout.dma.ossmaxfrags < 4)
as->usbout.dma.ossmaxfrags = 4;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && as->usbin.dma.subdivision) ||
(file->f_mode & FMODE_WRITE && as->usbout.dma.subdivision))
return -EINVAL;
if (get_user(val, user_arg))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
as->usbin.dma.subdivision = val;
if (file->f_mode & FMODE_WRITE)
as->usbout.dma.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ?
as->usbin.dma.srate : as->usbout.dma.srate,
user_arg);
case SOUND_PCM_READ_CHANNELS:
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
case SOUND_PCM_READ_BITS:
val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
return put_user(AFMT_IS16BIT(val2) ? 16 : 8, user_arg);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
dprintk((KERN_DEBUG "usbaudio: usb_audio_ioctl - no command found\n"));
return -ENOIOCTLCMD;
}
static int usb_audio_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
struct usb_audiodev *as;
struct usb_audio_state *s;
for (;;) {
down(&open_sem);
list_for_each_entry(s, &audiodevs, audiodev) {
list_for_each_entry(as, &s->audiolist, list) {
if (!((as->dev_audio ^ minor) & ~0xf))
goto device_found;
}
}
up(&open_sem);
return -ENODEV;
device_found:
if (!s->usbdev) {
up(&open_sem);
return -EIO;
}
/* wait for device to become free */
if (!(as->open_mode & file->f_mode))
break;
if (file->f_flags & O_NONBLOCK) {
up(&open_sem);
return -EBUSY;
}
__set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&open_wait, &wait);
up(&open_sem);
schedule();
__set_current_state(TASK_RUNNING);
remove_wait_queue(&open_wait, &wait);
if (signal_pending(current))
return -ERESTARTSYS;
}
if (file->f_mode & FMODE_READ)
as->usbin.dma.ossfragshift = as->usbin.dma.ossmaxfrags = as->usbin.dma.subdivision = 0;
if (file->f_mode & FMODE_WRITE)
as->usbout.dma.ossfragshift = as->usbout.dma.ossmaxfrags = as->usbout.dma.subdivision = 0;
if (set_format(as, file->f_mode, ((minor & 0xf) == SND_DEV_DSP16) ? AFMT_S16_LE : AFMT_U8 /* AFMT_ULAW */, 8000)) {
up(&open_sem);
return -EIO;
}
file->private_data = as;
as->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
s->count++;
up(&open_sem);
return nonseekable_open(inode, file);
}
static int usb_audio_release(struct inode *inode, struct file *file)
{
struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
struct usb_audio_state *s;
struct usb_device *dev;
lock_kernel();
s = as->state;
dev = s->usbdev;
if (file->f_mode & FMODE_WRITE)
drain_out(as, file->f_flags & O_NONBLOCK);
down(&open_sem);
if (file->f_mode & FMODE_WRITE) {
usbout_stop(as);
if (dev && as->usbout.interface >= 0)
usb_set_interface(dev, as->usbout.interface, 0);
dmabuf_release(&as->usbout.dma);
usbout_release(as);
}
if (file->f_mode & FMODE_READ) {
usbin_stop(as);
if (dev && as->usbin.interface >= 0)
usb_set_interface(dev, as->usbin.interface, 0);
dmabuf_release(&as->usbin.dma);
usbin_release(as);
}
as->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
release(s);
wake_up(&open_wait);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations usb_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = usb_audio_read,
.write = usb_audio_write,
.poll = usb_audio_poll,
.ioctl = usb_audio_ioctl,
.mmap = usb_audio_mmap,
.open = usb_audio_open,
.release = usb_audio_release,
};
/* --------------------------------------------------------------------- */
static int usb_audio_probe(struct usb_interface *iface,
const struct usb_device_id *id);
static void usb_audio_disconnect(struct usb_interface *iface);
static struct usb_device_id usb_audio_ids [] = {
{ .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS),
.bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = 1},
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, usb_audio_ids);
static struct usb_driver usb_audio_driver = {
.owner = THIS_MODULE,
.name = "audio",
.probe = usb_audio_probe,
.disconnect = usb_audio_disconnect,
.id_table = usb_audio_ids,
};
static void *find_descriptor(void *descstart, unsigned int desclen, void *after,
u8 dtype, int iface, int altsetting)
{
u8 *p, *end, *next;
int ifc = -1, as = -1;
p = descstart;
end = p + desclen;
for (; p < end;) {
if (p[0] < 2)
return NULL;
next = p + p[0];
if (next > end)
return NULL;
if (p[1] == USB_DT_INTERFACE) {
/* minimum length of interface descriptor */
if (p[0] < 9)
return NULL;
ifc = p[2];
as = p[3];
}
if (p[1] == dtype && (!after || (void *)p > after) &&
(iface == -1 || iface == ifc) && (altsetting == -1 || altsetting == as)) {
return p;
}
p = next;
}
return NULL;
}
static void *find_csinterface_descriptor(void *descstart, unsigned int desclen, void *after, u8 dsubtype, int iface, int altsetting)
{
unsigned char *p;
p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, altsetting);
while (p) {
if (p[0] >= 3 && p[2] == dsubtype)
return p;
p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, altsetting);
}
return NULL;
}
static void *find_audiocontrol_unit(void *descstart, unsigned int desclen, void *after, u8 unit, int iface)
{
unsigned char *p;
p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, -1);
while (p) {
if (p[0] >= 4 && p[2] >= INPUT_TERMINAL && p[2] <= EXTENSION_UNIT && p[3] == unit)
return p;
p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, -1);
}
return NULL;
}
static void usb_audio_parsestreaming(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, int asifin, int asifout)
{
struct usb_device *dev = s->usbdev;
struct usb_audiodev *as;
struct usb_host_interface *alts;
struct usb_interface *iface;
struct audioformat *fp;
unsigned char *fmt, *csep;
unsigned int i, j, k, format, idx;
if (!(as = kmalloc(sizeof(struct usb_audiodev), GFP_KERNEL)))
return;
memset(as, 0, sizeof(struct usb_audiodev));
init_waitqueue_head(&as->usbin.dma.wait);
init_waitqueue_head(&as->usbout.dma.wait);
spin_lock_init(&as->lock);
as->usbin.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
as->usbin.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
as->usbin.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
as->usbin.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
as->usbout.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
as->usbout.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
as->usbout.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
as->usbout.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
if ((!as->usbin.durb[0].urb) ||
(!as->usbin.durb[1].urb) ||
(!as->usbin.surb[0].urb) ||
(!as->usbin.surb[1].urb) ||
(!as->usbout.durb[0].urb) ||
(!as->usbout.durb[1].urb) ||
(!as->usbout.surb[0].urb) ||
(!as->usbout.surb[1].urb)) {
usb_free_urb(as->usbin.durb[0].urb);
usb_free_urb(as->usbin.durb[1].urb);
usb_free_urb(as->usbin.surb[0].urb);
usb_free_urb(as->usbin.surb[1].urb);
usb_free_urb(as->usbout.durb[0].urb);
usb_free_urb(as->usbout.durb[1].urb);
usb_free_urb(as->usbout.surb[0].urb);
usb_free_urb(as->usbout.surb[1].urb);
kfree(as);
return;
}
as->state = s;
as->usbin.interface = asifin;
as->usbout.interface = asifout;
/* search for input formats */
if (asifin >= 0) {
as->usbin.flags = FLG_CONNECTED;
iface = usb_ifnum_to_if(dev, asifin);
for (idx = 0; idx < iface->num_altsetting; idx++) {
alts = &iface->altsetting[idx];
i = alts->desc.bAlternateSetting;
if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
continue;
if (alts->desc.bNumEndpoints < 1) {
if (i != 0) { /* altsetting 0 has no endpoints (Section B.3.4.1) */
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
dev->devnum, asifin, i);
}
continue;
}
if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
!(alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous in\n",
dev->devnum, asifin, i);
continue;
}
fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifin, i);
if (!fmt) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
dev->devnum, asifin, i);
continue;
}
if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
dev->devnum, asifin, i);
continue;
}
format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifin, i);
if (!fmt) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
dev->devnum, asifin, i);
continue;
}
if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
dev->devnum, asifin, i);
continue;
}
if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
dev->devnum, asifin, i, fmt[4], fmt[5]);
continue;
}
csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifin, i);
if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
dev->devnum, asifin, i);
continue;
}
if (as->numfmtin >= MAXFORMATS)
continue;
fp = &as->fmtin[as->numfmtin++];
if (fmt[5] == 2)
format &= (AFMT_U16_LE | AFMT_S16_LE);
else
format &= (AFMT_U8 | AFMT_S8);
if (fmt[4] == 2)
format |= AFMT_STEREO;
fp->format = format;
fp->altsetting = i;
fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
printk(KERN_INFO "usbaudio: valid input sample rate %u\n", fp->sratelo);
for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
printk(KERN_INFO "usbaudio: valid input sample rate %u\n", k);
if (k > fp->sratehi)
fp->sratehi = k;
if (k < fp->sratelo)
fp->sratelo = k;
}
fp->attributes = csep[3];
printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
dev->devnum, asifin, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
}
}
/* search for output formats */
if (asifout >= 0) {
as->usbout.flags = FLG_CONNECTED;
iface = usb_ifnum_to_if(dev, asifout);
for (idx = 0; idx < iface->num_altsetting; idx++) {
alts = &iface->altsetting[idx];
i = alts->desc.bAlternateSetting;
if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
continue;
if (alts->desc.bNumEndpoints < 1) {
/* altsetting 0 should never have iso EPs */
if (i != 0)
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
dev->devnum, asifout, i);
continue;
}
if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
(alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous out\n",
dev->devnum, asifout, i);
continue;
}
/* See USB audio formats manual, section 2 */
fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifout, i);
if (!fmt) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
dev->devnum, asifout, i);
continue;
}
if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
dev->devnum, asifout, i);
continue;
}
format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
/* Dallas DS4201 workaround */
if (le16_to_cpu(dev->descriptor.idVendor) == 0x04fa &&
le16_to_cpu(dev->descriptor.idProduct) == 0x4201)
format = (AFMT_S16_LE | AFMT_S8);
fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifout, i);
if (!fmt) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
dev->devnum, asifout, i);
continue;
}
if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
dev->devnum, asifout, i);
continue;
}
if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
dev->devnum, asifout, i, fmt[4], fmt[5]);
continue;
}
csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifout, i);
if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
dev->devnum, asifout, i);
continue;
}
if (as->numfmtout >= MAXFORMATS)
continue;
fp = &as->fmtout[as->numfmtout++];
if (fmt[5] == 2)
format &= (AFMT_U16_LE | AFMT_S16_LE);
else
format &= (AFMT_U8 | AFMT_S8);
if (fmt[4] == 2)
format |= AFMT_STEREO;
fp->format = format;
fp->altsetting = i;
fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
printk(KERN_INFO "usbaudio: valid output sample rate %u\n", fp->sratelo);
for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
printk(KERN_INFO "usbaudio: valid output sample rate %u\n", k);
if (k > fp->sratehi)
fp->sratehi = k;
if (k < fp->sratelo)
fp->sratelo = k;
}
fp->attributes = csep[3];
printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
dev->devnum, asifout, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
}
}
if (as->numfmtin == 0 && as->numfmtout == 0) {
usb_free_urb(as->usbin.durb[0].urb);
usb_free_urb(as->usbin.durb[1].urb);
usb_free_urb(as->usbin.surb[0].urb);
usb_free_urb(as->usbin.surb[1].urb);
usb_free_urb(as->usbout.durb[0].urb);
usb_free_urb(as->usbout.durb[1].urb);
usb_free_urb(as->usbout.surb[0].urb);
usb_free_urb(as->usbout.surb[1].urb);
kfree(as);
return;
}
if ((as->dev_audio = register_sound_dsp(&usb_audio_fops, -1)) < 0) {
printk(KERN_ERR "usbaudio: cannot register dsp\n");
usb_free_urb(as->usbin.durb[0].urb);
usb_free_urb(as->usbin.durb[1].urb);
usb_free_urb(as->usbin.surb[0].urb);
usb_free_urb(as->usbin.surb[1].urb);
usb_free_urb(as->usbout.durb[0].urb);
usb_free_urb(as->usbout.durb[1].urb);
usb_free_urb(as->usbout.surb[0].urb);
usb_free_urb(as->usbout.surb[1].urb);
kfree(as);
return;
}
printk(KERN_INFO "usbaudio: registered dsp 14,%d\n", as->dev_audio);
/* everything successful */
list_add_tail(&as->list, &s->audiolist);
}
struct consmixstate {
struct usb_audio_state *s;
unsigned char *buffer;
unsigned int buflen;
unsigned int ctrlif;
struct mixerchannel mixch[SOUND_MIXER_NRDEVICES];
unsigned int nrmixch;
unsigned int mixchmask;
unsigned long unitbitmap[32/sizeof(unsigned long)];
/* return values */
unsigned int nrchannels;
unsigned int termtype;
unsigned int chconfig;
};
static struct mixerchannel *getmixchannel(struct consmixstate *state, unsigned int nr)
{
struct mixerchannel *c;
if (nr >= SOUND_MIXER_NRDEVICES) {
printk(KERN_ERR "usbaudio: invalid OSS mixer channel %u\n", nr);
return NULL;
}
if (!(state->mixchmask & (1 << nr))) {
printk(KERN_WARNING "usbaudio: OSS mixer channel %u already in use\n", nr);
return NULL;
}
c = &state->mixch[state->nrmixch++];
c->osschannel = nr;
state->mixchmask &= ~(1 << nr);
return c;
}
static unsigned int getvolchannel(struct consmixstate *state)
{
unsigned int u;
if ((state->termtype & 0xff00) == 0x0000 && (state->mixchmask & SOUND_MASK_VOLUME))
return SOUND_MIXER_VOLUME;
if ((state->termtype & 0xff00) == 0x0100) {
if (state->mixchmask & SOUND_MASK_PCM)
return SOUND_MIXER_PCM;
if (state->mixchmask & SOUND_MASK_ALTPCM)
return SOUND_MIXER_ALTPCM;
}
if ((state->termtype & 0xff00) == 0x0200 && (state->mixchmask & SOUND_MASK_MIC))
return SOUND_MIXER_MIC;
if ((state->termtype & 0xff00) == 0x0300 && (state->mixchmask & SOUND_MASK_SPEAKER))
return SOUND_MIXER_SPEAKER;
if ((state->termtype & 0xff00) == 0x0500) {
if (state->mixchmask & SOUND_MASK_PHONEIN)
return SOUND_MIXER_PHONEIN;
if (state->mixchmask & SOUND_MASK_PHONEOUT)
return SOUND_MIXER_PHONEOUT;
}
if (state->termtype >= 0x710 && state->termtype <= 0x711 && (state->mixchmask & SOUND_MASK_RADIO))
return SOUND_MIXER_RADIO;
if (state->termtype >= 0x709 && state->termtype <= 0x70f && (state->mixchmask & SOUND_MASK_VIDEO))
return SOUND_MIXER_VIDEO;
u = ffs(state->mixchmask & (SOUND_MASK_LINE | SOUND_MASK_CD | SOUND_MASK_LINE1 | SOUND_MASK_LINE2 | SOUND_MASK_LINE3 |
SOUND_MASK_DIGITAL1 | SOUND_MASK_DIGITAL2 | SOUND_MASK_DIGITAL3));
return u-1;
}
static void prepmixch(struct consmixstate *state)
{
struct usb_device *dev = state->s->usbdev;
struct mixerchannel *ch;
unsigned char *buf;
__s16 v1;
unsigned int v2, v3;
if (!state->nrmixch || state->nrmixch > SOUND_MIXER_NRDEVICES)
return;
buf = kmalloc(sizeof(*buf) * 2, GFP_KERNEL);
if (!buf) {
printk(KERN_ERR "prepmixch: out of memory\n") ;
return;
}
ch = &state->mixch[state->nrmixch-1];
switch (ch->selector) {
case 0: /* mixer unit request */
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
ch->minval = buf[0] | (buf[1] << 8);
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
ch->maxval = buf[0] | (buf[1] << 8);
v2 = ch->maxval - ch->minval;
if (!v2)
v2 = 1;
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
v1 = buf[0] | (buf[1] << 8);
v3 = v1 - ch->minval;
v3 = 100 * v3 / v2;
if (v3 > 100)
v3 = 100;
ch->value = v3;
if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
v1 = buf[0] | (buf[1] << 8);
v3 = v1 - ch->minval;
v3 = 100 * v3 / v2;
if (v3 > 100)
v3 = 100;
}
ch->value |= v3 << 8;
break;
/* various feature unit controls */
case VOLUME_CONTROL:
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
ch->minval = buf[0] | (buf[1] << 8);
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
ch->maxval = buf[0] | (buf[1] << 8);
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
v1 = buf[0] | (buf[1] << 8);
v2 = ch->maxval - ch->minval;
v3 = v1 - ch->minval;
if (!v2)
v2 = 1;
v3 = 100 * v3 / v2;
if (v3 > 100)
v3 = 100;
ch->value = v3;
if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
goto err;
v1 = buf[0] | (buf[1] << 8);
v3 = v1 - ch->minval;
v3 = 100 * v3 / v2;
if (v3 > 100)
v3 = 100;
}
ch->value |= v3 << 8;
break;
case BASS_CONTROL:
case MID_CONTROL:
case TREBLE_CONTROL:
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
goto err;
ch->minval = buf[0] << 8;
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
goto err;
ch->maxval = buf[0] << 8;
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
goto err;
v1 = buf[0] << 8;
v2 = ch->maxval - ch->minval;
v3 = v1 - ch->minval;
if (!v2)
v2 = 1;
v3 = 100 * v3 / v2;
if (v3 > 100)
v3 = 100;
ch->value = v3;
if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
(ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
goto err;
v1 = buf[0] << 8;
v3 = v1 - ch->minval;
v3 = 100 * v3 / v2;
if (v3 > 100)
v3 = 100;
}
ch->value |= v3 << 8;
break;
default:
goto err;
}
freebuf:
kfree(buf);
return;
err:
printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
dev->devnum, state->ctrlif, ch->unitid, ch->chnum, ch->selector);
if (state->nrmixch)
state->nrmixch--;
goto freebuf;
}
static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid);
static inline int checkmixbmap(unsigned char *bmap, unsigned char flg, unsigned int inidx, unsigned int numoch)
{
unsigned int idx;
idx = inidx*numoch;
if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
return 0;
if (!(flg & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
return 1;
idx = (inidx+!!(flg & MIXFLG_STEREOIN))*numoch+!!(flg & MIXFLG_STEREOOUT);
if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
return 0;
return 1;
}
static void usb_audio_mixerunit(struct consmixstate *state, unsigned char *mixer)
{
unsigned int nroutch = mixer[5+mixer[4]];
unsigned int chidx[SOUND_MIXER_NRDEVICES+1];
unsigned int termt[SOUND_MIXER_NRDEVICES];
unsigned char flg = (nroutch >= 2) ? MIXFLG_STEREOOUT : 0;
unsigned char *bmap = &mixer[9+mixer[4]];
unsigned int bmapsize;
struct mixerchannel *ch;
unsigned int i;
if (!mixer[4]) {
printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor\n", mixer[3]);
return;
}
if (mixer[4] > SOUND_MIXER_NRDEVICES) {
printk(KERN_ERR "usbaudio: mixer unit %u: too many input pins\n", mixer[3]);
return;
}
chidx[0] = 0;
for (i = 0; i < mixer[4]; i++) {
usb_audio_recurseunit(state, mixer[5+i]);
chidx[i+1] = chidx[i] + state->nrchannels;
termt[i] = state->termtype;
}
state->termtype = 0;
state->chconfig = mixer[6+mixer[4]] | (mixer[7+mixer[4]] << 8);
bmapsize = (nroutch * chidx[mixer[4]] + 7) >> 3;
bmap += bmapsize - 1;
if (mixer[0] < 10+mixer[4]+bmapsize) {
printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor (bitmap too small)\n", mixer[3]);
return;
}
for (i = 0; i < mixer[4]; i++) {
state->termtype = termt[i];
if (chidx[i+1]-chidx[i] >= 2) {
flg |= MIXFLG_STEREOIN;
if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
ch = getmixchannel(state, getvolchannel(state));
if (ch) {
ch->unitid = mixer[3];
ch->selector = 0;
ch->chnum = chidx[i]+1;
ch->flags = flg;
prepmixch(state);
}
continue;
}
}
flg &= ~MIXFLG_STEREOIN;
if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
ch = getmixchannel(state, getvolchannel(state));
if (ch) {
ch->unitid = mixer[3];
ch->selector = 0;
ch->chnum = chidx[i]+1;
ch->flags = flg;
prepmixch(state);
}
}
}
state->termtype = 0;
}
static struct mixerchannel *slctsrc_findunit(struct consmixstate *state, __u8 unitid)
{
unsigned int i;
for (i = 0; i < state->nrmixch; i++)
if (state->mixch[i].unitid == unitid)
return &state->mixch[i];
return NULL;
}
static void usb_audio_selectorunit(struct consmixstate *state, unsigned char *selector)
{
unsigned int chnum, i, mixch;
struct mixerchannel *mch;
if (!selector[4]) {
printk(KERN_ERR "usbaudio: unit %u invalid SELECTOR_UNIT descriptor\n", selector[3]);
return;
}
mixch = state->nrmixch;
usb_audio_recurseunit(state, selector[5]);
if (state->nrmixch != mixch) {
mch = &state->mixch[state->nrmixch-1];
mch->slctunitid = selector[3] | (1 << 8);
} else if ((mch = slctsrc_findunit(state, selector[5]))) {
mch->slctunitid = selector[3] | (1 << 8);
} else {
printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel 1\n", selector[3]);
}
chnum = state->nrchannels;
for (i = 1; i < selector[4]; i++) {
mixch = state->nrmixch;
usb_audio_recurseunit(state, selector[5+i]);
if (chnum != state->nrchannels) {
printk(KERN_ERR "usbaudio: selector unit %u: input pins with varying channel numbers\n", selector[3]);
state->termtype = 0;
state->chconfig = 0;
state->nrchannels = 0;
return;
}
if (state->nrmixch != mixch) {
mch = &state->mixch[state->nrmixch-1];
mch->slctunitid = selector[3] | ((i + 1) << 8);
} else if ((mch = slctsrc_findunit(state, selector[5+i]))) {
mch->slctunitid = selector[3] | ((i + 1) << 8);
} else {
printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel %u\n", selector[3], i+1);
}
}
state->termtype = 0;
state->chconfig = 0;
}
/* in the future we might try to handle 3D etc. effect units */
static void usb_audio_processingunit(struct consmixstate *state, unsigned char *proc)
{
unsigned int i;
for (i = 0; i < proc[6]; i++)
usb_audio_recurseunit(state, proc[7+i]);
state->nrchannels = proc[7+proc[6]];
state->termtype = 0;
state->chconfig = proc[8+proc[6]] | (proc[9+proc[6]] << 8);
}
/* See Audio Class Spec, section 4.3.2.5 */
static void usb_audio_featureunit(struct consmixstate *state, unsigned char *ftr)
{
struct mixerchannel *ch;
unsigned short chftr, mchftr;
#if 0
struct usb_device *dev = state->s->usbdev;
unsigned char data[1];
#endif
unsigned char nr_logical_channels, i;
usb_audio_recurseunit(state, ftr[4]);
if (ftr[5] == 0 ) {
printk(KERN_ERR "usbaudio: wrong controls size in feature unit %u\n",ftr[3]);
return;
}
if (state->nrchannels == 0) {
printk(KERN_ERR "usbaudio: feature unit %u source has no channels\n", ftr[3]);
return;
}
if (state->nrchannels > 2)
printk(KERN_WARNING "usbaudio: feature unit %u: OSS mixer interface does not support more than 2 channels\n", ftr[3]);
nr_logical_channels=(ftr[0]-7)/ftr[5]-1;
if (nr_logical_channels != state->nrchannels) {
printk(KERN_WARNING "usbaudio: warning: found %d of %d logical channels.\n", state->nrchannels,nr_logical_channels);
if (state->nrchannels == 1 && nr_logical_channels==0) {
printk(KERN_INFO "usbaudio: assuming the channel found is the master channel (got a Philips camera?). Should be fine.\n");
} else if (state->nrchannels == 1 && nr_logical_channels==2) {
printk(KERN_INFO "usbaudio: assuming that a stereo channel connected directly to a mixer is missing in search (got Labtec headset?). Should be fine.\n");
state->nrchannels=nr_logical_channels;
} else {
printk(KERN_WARNING "usbaudio: no idea what's going on..., contact linux-usb-devel@lists.sourceforge.net\n");
}
}
/* There is always a master channel */
mchftr = ftr[6];
/* Binary AND over logical channels if they exist */
if (nr_logical_channels) {
chftr = ftr[6+ftr[5]];
for (i = 2; i <= nr_logical_channels; i++)
chftr &= ftr[6+i*ftr[5]];
} else {
chftr = 0;
}
/* volume control */
if (chftr & 2) {
ch = getmixchannel(state, getvolchannel(state));
if (ch) {
ch->unitid = ftr[3];
ch->selector = VOLUME_CONTROL;
ch->chnum = 1;
ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
prepmixch(state);
}
} else if (mchftr & 2) {
ch = getmixchannel(state, getvolchannel(state));
if (ch) {
ch->unitid = ftr[3];
ch->selector = VOLUME_CONTROL;
ch->chnum = 0;
ch->flags = 0;
prepmixch(state);
}
}
/* bass control */
if (chftr & 4) {
ch = getmixchannel(state, SOUND_MIXER_BASS);
if (ch) {
ch->unitid = ftr[3];
ch->selector = BASS_CONTROL;
ch->chnum = 1;
ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
prepmixch(state);
}
} else if (mchftr & 4) {
ch = getmixchannel(state, SOUND_MIXER_BASS);
if (ch) {
ch->unitid = ftr[3];
ch->selector = BASS_CONTROL;
ch->chnum = 0;
ch->flags = 0;
prepmixch(state);
}
}
/* treble control */
if (chftr & 16) {
ch = getmixchannel(state, SOUND_MIXER_TREBLE);
if (ch) {
ch->unitid = ftr[3];
ch->selector = TREBLE_CONTROL;
ch->chnum = 1;
ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
prepmixch(state);
}
} else if (mchftr & 16) {
ch = getmixchannel(state, SOUND_MIXER_TREBLE);
if (ch) {
ch->unitid = ftr[3];
ch->selector = TREBLE_CONTROL;
ch->chnum = 0;
ch->flags = 0;
prepmixch(state);
}
}
#if 0
/* if there are mute controls, unmute them */
/* does not seem to be necessary, and the Dallas chip does not seem to support the "all" channel (255) */
if ((chftr & 1) || (mchftr & 1)) {
printk(KERN_DEBUG "usbaudio: unmuting feature unit %u interface %u\n", ftr[3], state->ctrlif);
data[0] = 0;
if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
(MUTE_CONTROL << 8) | 0xff, state->ctrlif | (ftr[3] << 8), data, 1, 1000) < 0)
printk(KERN_WARNING "usbaudio: failure to unmute feature unit %u interface %u\n", ftr[3], state->ctrlif);
}
#endif
}
static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid)
{
unsigned char *p1;
unsigned int i, j;
if (test_and_set_bit(unitid, state->unitbitmap)) {
printk(KERN_INFO "usbaudio: mixer path revisits unit %d\n", unitid);
return;
}
p1 = find_audiocontrol_unit(state->buffer, state->buflen, NULL, unitid, state->ctrlif);
if (!p1) {
printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
return;
}
state->nrchannels = 0;
state->termtype = 0;
state->chconfig = 0;
switch (p1[2]) {
case INPUT_TERMINAL:
if (p1[0] < 12) {
printk(KERN_ERR "usbaudio: unit %u: invalid INPUT_TERMINAL descriptor\n", unitid);
return;
}
state->nrchannels = p1[7];
state->termtype = p1[4] | (p1[5] << 8);
state->chconfig = p1[8] | (p1[9] << 8);
return;
case MIXER_UNIT:
if (p1[0] < 10 || p1[0] < 10+p1[4]) {
printk(KERN_ERR "usbaudio: unit %u: invalid MIXER_UNIT descriptor\n", unitid);
return;
}
usb_audio_mixerunit(state, p1);
return;
case SELECTOR_UNIT:
if (p1[0] < 6 || p1[0] < 6+p1[4]) {
printk(KERN_ERR "usbaudio: unit %u: invalid SELECTOR_UNIT descriptor\n", unitid);
return;
}
usb_audio_selectorunit(state, p1);
return;
case FEATURE_UNIT: /* See USB Audio Class Spec 4.3.2.5 */
if (p1[0] < 7 || p1[0] < 7+p1[5]) {
printk(KERN_ERR "usbaudio: unit %u: invalid FEATURE_UNIT descriptor\n", unitid);
return;
}
usb_audio_featureunit(state, p1);
return;
case PROCESSING_UNIT:
if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
printk(KERN_ERR "usbaudio: unit %u: invalid PROCESSING_UNIT descriptor\n", unitid);
return;
}
usb_audio_processingunit(state, p1);
return;
case EXTENSION_UNIT:
if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
printk(KERN_ERR "usbaudio: unit %u: invalid EXTENSION_UNIT descriptor\n", unitid);
return;
}
for (j = i = 0; i < p1[6]; i++) {
usb_audio_recurseunit(state, p1[7+i]);
if (!i)
j = state->termtype;
else if (j != state->termtype)
j = 0;
}
state->nrchannels = p1[7+p1[6]];
state->chconfig = p1[8+p1[6]] | (p1[9+p1[6]] << 8);
state->termtype = j;
return;
default:
printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
return;
}
}
static void usb_audio_constructmixer(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif, unsigned char *oterm)
{
struct usb_mixerdev *ms;
struct consmixstate state;
memset(&state, 0, sizeof(state));
state.s = s;
state.nrmixch = 0;
state.mixchmask = ~0;
state.buffer = buffer;
state.buflen = buflen;
state.ctrlif = ctrlif;
set_bit(oterm[3], state.unitbitmap); /* mark terminal ID as visited */
printk(KERN_DEBUG "usbaudio: constructing mixer for Terminal %u type 0x%04x\n",
oterm[3], oterm[4] | (oterm[5] << 8));
usb_audio_recurseunit(&state, oterm[7]);
if (!state.nrmixch) {
printk(KERN_INFO "usbaudio: no mixer controls found for Terminal %u\n", oterm[3]);
return;
}
if (!(ms = kmalloc(sizeof(struct usb_mixerdev)+state.nrmixch*sizeof(struct mixerchannel), GFP_KERNEL)))
return;
memset(ms, 0, sizeof(struct usb_mixerdev));
memcpy(&ms->ch, &state.mixch, state.nrmixch*sizeof(struct mixerchannel));
ms->state = s;
ms->iface = ctrlif;
ms->numch = state.nrmixch;
if ((ms->dev_mixer = register_sound_mixer(&usb_mixer_fops, -1)) < 0) {
printk(KERN_ERR "usbaudio: cannot register mixer\n");
kfree(ms);
return;
}
printk(KERN_INFO "usbaudio: registered mixer 14,%d\n", ms->dev_mixer);
list_add_tail(&ms->list, &s->mixerlist);
}
/* arbitrary limit, we won't check more interfaces than this */
#define USB_MAXINTERFACES 32
static struct usb_audio_state *usb_audio_parsecontrol(struct usb_device *dev, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif)
{
struct usb_audio_state *s;
struct usb_interface *iface;
struct usb_host_interface *alt;
unsigned char ifin[USB_MAXINTERFACES], ifout[USB_MAXINTERFACES];
unsigned char *p1;
unsigned int i, j, k, numifin = 0, numifout = 0;
if (!(s = kmalloc(sizeof(struct usb_audio_state), GFP_KERNEL)))
return NULL;
memset(s, 0, sizeof(struct usb_audio_state));
INIT_LIST_HEAD(&s->audiolist);
INIT_LIST_HEAD(&s->mixerlist);
s->usbdev = dev;
s->count = 1;
/* find audiocontrol interface */
if (!(p1 = find_csinterface_descriptor(buffer, buflen, NULL, HEADER, ctrlif, -1))) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u no HEADER found\n",
dev->devnum, ctrlif);
goto ret;
}
if (p1[0] < 8 + p1[7]) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u HEADER error\n",
dev->devnum, ctrlif);
goto ret;
}
if (!p1[7])
printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has no AudioStreaming and MidiStreaming interfaces\n",
dev->devnum, ctrlif);
for (i = 0; i < p1[7]; i++) {
j = p1[8+i];
iface = usb_ifnum_to_if(dev, j);
if (!iface) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u does not exist\n",
dev->devnum, ctrlif, j);
continue;
}
if (iface->num_altsetting == 1) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u has only 1 altsetting.\n", dev->devnum, ctrlif);
continue;
}
alt = usb_altnum_to_altsetting(iface, 0);
if (!alt) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 0\n",
dev->devnum, ctrlif, j);
continue;
}
if (alt->desc.bInterfaceClass != USB_CLASS_AUDIO) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u is not an AudioClass interface\n",
dev->devnum, ctrlif, j);
continue;
}
if (alt->desc.bInterfaceSubClass == 3) {
printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u interface %u MIDIStreaming not supported\n",
dev->devnum, ctrlif, j);
continue;
}
if (alt->desc.bInterfaceSubClass != 2) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u invalid AudioClass subtype\n",
dev->devnum, ctrlif, j);
continue;
}
if (alt->desc.bNumEndpoints > 0) {
/* Check all endpoints; should they all have a bandwidth of 0 ? */
for (k = 0; k < alt->desc.bNumEndpoints; k++) {
if (le16_to_cpu(alt->endpoint[k].desc.wMaxPacketSize) > 0) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u endpoint %d does not have 0 bandwidth at alt[0]\n", dev->devnum, ctrlif, k);
break;
}
}
if (k < alt->desc.bNumEndpoints)
continue;
}
alt = usb_altnum_to_altsetting(iface, 1);
if (!alt) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 1\n",
dev->devnum, ctrlif, j);
continue;
}
if (alt->desc.bNumEndpoints < 1) {
printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no endpoint\n",
dev->devnum, ctrlif, j);
continue;
}
/* note: this requires the data endpoint to be ep0 and the optional sync
ep to be ep1, which seems to be the case */
if (alt->endpoint[0].desc.bEndpointAddress & USB_DIR_IN) {
if (numifin < USB_MAXINTERFACES) {
ifin[numifin++] = j;
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
}
} else {
if (numifout < USB_MAXINTERFACES) {
ifout[numifout++] = j;
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
}
}
}
printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has %u input and %u output AudioStreaming interfaces\n",
dev->devnum, ctrlif, numifin, numifout);
for (i = 0; i < numifin && i < numifout; i++)
usb_audio_parsestreaming(s, buffer, buflen, ifin[i], ifout[i]);
for (j = i; j < numifin; j++)
usb_audio_parsestreaming(s, buffer, buflen, ifin[i], -1);
for (j = i; j < numifout; j++)
usb_audio_parsestreaming(s, buffer, buflen, -1, ifout[i]);
/* now walk through all OUTPUT_TERMINAL descriptors to search for mixers */
p1 = find_csinterface_descriptor(buffer, buflen, NULL, OUTPUT_TERMINAL, ctrlif, -1);
while (p1) {
if (p1[0] >= 9)
usb_audio_constructmixer(s, buffer, buflen, ctrlif, p1);
p1 = find_csinterface_descriptor(buffer, buflen, p1, OUTPUT_TERMINAL, ctrlif, -1);
}
ret:
if (list_empty(&s->audiolist) && list_empty(&s->mixerlist)) {
kfree(s);
return NULL;
}
/* everything successful */
down(&open_sem);
list_add_tail(&s->audiodev, &audiodevs);
up(&open_sem);
printk(KERN_DEBUG "usb_audio_parsecontrol: usb_audio_state at %p\n", s);
return s;
}
/* we only care for the currently active configuration */
static int usb_audio_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev (intf);
struct usb_audio_state *s;
unsigned char *buffer;
unsigned int buflen;
#if 0
printk(KERN_DEBUG "usbaudio: Probing if %i: IC %x, ISC %x\n", ifnum,
config->interface[ifnum].altsetting[0].desc.bInterfaceClass,
config->interface[ifnum].altsetting[0].desc.bInterfaceSubClass);
#endif
/*
* audiocontrol interface found
* find which configuration number is active
*/
buffer = dev->rawdescriptors[dev->actconfig - dev->config];
buflen = le16_to_cpu(dev->actconfig->desc.wTotalLength);
s = usb_audio_parsecontrol(dev, buffer, buflen, intf->altsetting->desc.bInterfaceNumber);
if (s) {
usb_set_intfdata (intf, s);
return 0;
}
return -ENODEV;
}
/* a revoke facility would make things simpler */
static void usb_audio_disconnect(struct usb_interface *intf)
{
struct usb_audio_state *s = usb_get_intfdata (intf);
struct usb_audiodev *as;
struct usb_mixerdev *ms;
if (!s)
return;
/* we get called with -1 for every audiostreaming interface registered */
if (s == (struct usb_audio_state *)-1) {
dprintk((KERN_DEBUG "usbaudio: note, usb_audio_disconnect called with -1\n"));
return;
}
if (!s->usbdev) {
dprintk((KERN_DEBUG "usbaudio: error, usb_audio_disconnect already called for %p!\n", s));
return;
}
down(&open_sem);
list_del_init(&s->audiodev);
s->usbdev = NULL;
usb_set_intfdata (intf, NULL);
/* deregister all audio and mixer devices, so no new processes can open this device */
list_for_each_entry(as, &s->audiolist, list) {
usbin_disc(as);
usbout_disc(as);
wake_up(&as->usbin.dma.wait);
wake_up(&as->usbout.dma.wait);
if (as->dev_audio >= 0) {
unregister_sound_dsp(as->dev_audio);
printk(KERN_INFO "usbaudio: unregister dsp 14,%d\n", as->dev_audio);
}
as->dev_audio = -1;
}
list_for_each_entry(ms, &s->mixerlist, list) {
if (ms->dev_mixer >= 0) {
unregister_sound_mixer(ms->dev_mixer);
printk(KERN_INFO "usbaudio: unregister mixer 14,%d\n", ms->dev_mixer);
}
ms->dev_mixer = -1;
}
release(s);
wake_up(&open_wait);
}
static int __init usb_audio_init(void)
{
int result = usb_register(&usb_audio_driver);
if (result == 0)
info(DRIVER_VERSION ":" DRIVER_DESC);
return result;
}
static void __exit usb_audio_cleanup(void)
{
usb_deregister(&usb_audio_driver);
}
module_init(usb_audio_init);
module_exit(usb_audio_cleanup);
MODULE_AUTHOR( DRIVER_AUTHOR );
MODULE_DESCRIPTION( DRIVER_DESC );
MODULE_LICENSE("GPL");