a43b739f25
There is no need for the L1 attribute to be on the prototype of the access_ok() function as all consumers of the function do not care where it lives -- they'll always use pcrel calls to get to it. This prevents pointless recompiles of most of the system when this config option changes. Signed-off-by: Mike Frysinger <vapier@gentoo.org>
268 lines
6.7 KiB
C
268 lines
6.7 KiB
C
/* Changes made by Lineo Inc. May 2001
|
|
*
|
|
* Based on: include/asm-m68knommu/uaccess.h
|
|
*/
|
|
|
|
#ifndef __BLACKFIN_UACCESS_H
|
|
#define __BLACKFIN_UACCESS_H
|
|
|
|
/*
|
|
* User space memory access functions
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/segment.h>
|
|
#ifdef CONFIG_ACCESS_CHECK
|
|
# include <asm/bfin-global.h>
|
|
#endif
|
|
|
|
#define get_ds() (KERNEL_DS)
|
|
#define get_fs() (current_thread_info()->addr_limit)
|
|
|
|
static inline void set_fs(mm_segment_t fs)
|
|
{
|
|
current_thread_info()->addr_limit = fs;
|
|
}
|
|
|
|
#define segment_eq(a,b) ((a) == (b))
|
|
|
|
#define VERIFY_READ 0
|
|
#define VERIFY_WRITE 1
|
|
|
|
#define access_ok(type, addr, size) _access_ok((unsigned long)(addr), (size))
|
|
|
|
static inline int is_in_rom(unsigned long addr)
|
|
{
|
|
/*
|
|
* What we are really trying to do is determine if addr is
|
|
* in an allocated kernel memory region. If not then assume
|
|
* we cannot free it or otherwise de-allocate it. Ideally
|
|
* we could restrict this to really being in a ROM or flash,
|
|
* but that would need to be done on a board by board basis,
|
|
* not globally.
|
|
*/
|
|
if ((addr < _ramstart) || (addr >= _ramend))
|
|
return (1);
|
|
|
|
/* Default case, not in ROM */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The fs value determines whether argument validity checking should be
|
|
* performed or not. If get_fs() == USER_DS, checking is performed, with
|
|
* get_fs() == KERNEL_DS, checking is bypassed.
|
|
*/
|
|
|
|
#ifndef CONFIG_ACCESS_CHECK
|
|
static inline int _access_ok(unsigned long addr, unsigned long size) { return 1; }
|
|
#else
|
|
extern int _access_ok(unsigned long addr, unsigned long size);
|
|
#endif
|
|
|
|
/*
|
|
* The exception table consists of pairs of addresses: the first is the
|
|
* address of an instruction that is allowed to fault, and the second is
|
|
* the address at which the program should continue. No registers are
|
|
* modified, so it is entirely up to the continuation code to figure out
|
|
* what to do.
|
|
*
|
|
* All the routines below use bits of fixup code that are out of line
|
|
* with the main instruction path. This means when everything is well,
|
|
* we don't even have to jump over them. Further, they do not intrude
|
|
* on our cache or tlb entries.
|
|
*/
|
|
|
|
struct exception_table_entry {
|
|
unsigned long insn, fixup;
|
|
};
|
|
|
|
/*
|
|
* These are the main single-value transfer routines. They automatically
|
|
* use the right size if we just have the right pointer type.
|
|
*/
|
|
|
|
#define put_user(x,p) \
|
|
({ \
|
|
int _err = 0; \
|
|
typeof(*(p)) _x = (x); \
|
|
typeof(*(p)) *_p = (p); \
|
|
if (!access_ok(VERIFY_WRITE, _p, sizeof(*(_p)))) {\
|
|
_err = -EFAULT; \
|
|
} \
|
|
else { \
|
|
switch (sizeof (*(_p))) { \
|
|
case 1: \
|
|
__put_user_asm(_x, _p, B); \
|
|
break; \
|
|
case 2: \
|
|
__put_user_asm(_x, _p, W); \
|
|
break; \
|
|
case 4: \
|
|
__put_user_asm(_x, _p, ); \
|
|
break; \
|
|
case 8: { \
|
|
long _xl, _xh; \
|
|
_xl = ((long *)&_x)[0]; \
|
|
_xh = ((long *)&_x)[1]; \
|
|
__put_user_asm(_xl, ((long *)_p)+0, ); \
|
|
__put_user_asm(_xh, ((long *)_p)+1, ); \
|
|
} break; \
|
|
default: \
|
|
_err = __put_user_bad(); \
|
|
break; \
|
|
} \
|
|
} \
|
|
_err; \
|
|
})
|
|
|
|
#define __put_user(x,p) put_user(x,p)
|
|
static inline int bad_user_access_length(void)
|
|
{
|
|
panic("bad_user_access_length");
|
|
return -1;
|
|
}
|
|
|
|
#define __put_user_bad() (printk(KERN_INFO "put_user_bad %s:%d %s\n",\
|
|
__FILE__, __LINE__, __func__),\
|
|
bad_user_access_length(), (-EFAULT))
|
|
|
|
/*
|
|
* Tell gcc we read from memory instead of writing: this is because
|
|
* we do not write to any memory gcc knows about, so there are no
|
|
* aliasing issues.
|
|
*/
|
|
|
|
#define __ptr(x) ((unsigned long *)(x))
|
|
|
|
#define __put_user_asm(x,p,bhw) \
|
|
__asm__ (#bhw"[%1] = %0;\n\t" \
|
|
: /* no outputs */ \
|
|
:"d" (x),"a" (__ptr(p)) : "memory")
|
|
|
|
#define get_user(x, ptr) \
|
|
({ \
|
|
int _err = 0; \
|
|
unsigned long _val = 0; \
|
|
const typeof(*(ptr)) __user *_p = (ptr); \
|
|
const size_t ptr_size = sizeof(*(_p)); \
|
|
if (likely(access_ok(VERIFY_READ, _p, ptr_size))) { \
|
|
BUILD_BUG_ON(ptr_size >= 8); \
|
|
switch (ptr_size) { \
|
|
case 1: \
|
|
__get_user_asm(_val, _p, B,(Z)); \
|
|
break; \
|
|
case 2: \
|
|
__get_user_asm(_val, _p, W,(Z)); \
|
|
break; \
|
|
case 4: \
|
|
__get_user_asm(_val, _p, , ); \
|
|
break; \
|
|
} \
|
|
} else \
|
|
_err = -EFAULT; \
|
|
x = (typeof(*(ptr)))_val; \
|
|
_err; \
|
|
})
|
|
|
|
#define __get_user(x,p) get_user(x,p)
|
|
|
|
#define __get_user_bad() (bad_user_access_length(), (-EFAULT))
|
|
|
|
#define __get_user_asm(x, ptr, bhw, option) \
|
|
({ \
|
|
__asm__ __volatile__ ( \
|
|
"%0 =" #bhw "[%1]" #option ";" \
|
|
: "=d" (x) \
|
|
: "a" (__ptr(ptr))); \
|
|
})
|
|
|
|
#define __copy_from_user(to, from, n) copy_from_user(to, from, n)
|
|
#define __copy_to_user(to, from, n) copy_to_user(to, from, n)
|
|
#define __copy_to_user_inatomic __copy_to_user
|
|
#define __copy_from_user_inatomic __copy_from_user
|
|
|
|
#define copy_to_user_ret(to,from,n,retval) ({ if (copy_to_user(to,from,n))\
|
|
return retval; })
|
|
|
|
#define copy_from_user_ret(to,from,n,retval) ({ if (copy_from_user(to,from,n))\
|
|
return retval; })
|
|
|
|
static inline unsigned long __must_check
|
|
copy_from_user(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
if (access_ok(VERIFY_READ, from, n))
|
|
memcpy(to, from, n);
|
|
else
|
|
return n;
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned long __must_check
|
|
copy_to_user(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
if (access_ok(VERIFY_WRITE, to, n))
|
|
memcpy(to, from, n);
|
|
else
|
|
return n;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy a null terminated string from userspace.
|
|
*/
|
|
|
|
static inline long __must_check
|
|
strncpy_from_user(char *dst, const char *src, long count)
|
|
{
|
|
char *tmp;
|
|
if (!access_ok(VERIFY_READ, src, 1))
|
|
return -EFAULT;
|
|
strncpy(dst, src, count);
|
|
for (tmp = dst; *tmp && count > 0; tmp++, count--) ;
|
|
return (tmp - dst);
|
|
}
|
|
|
|
/*
|
|
* Get the size of a string in user space.
|
|
* src: The string to measure
|
|
* n: The maximum valid length
|
|
*
|
|
* Get the size of a NUL-terminated string in user space.
|
|
*
|
|
* Returns the size of the string INCLUDING the terminating NUL.
|
|
* On exception, returns 0.
|
|
* If the string is too long, returns a value greater than n.
|
|
*/
|
|
static inline long __must_check strnlen_user(const char *src, long n)
|
|
{
|
|
if (!access_ok(VERIFY_READ, src, 1))
|
|
return 0;
|
|
return strnlen(src, n) + 1;
|
|
}
|
|
|
|
static inline long __must_check strlen_user(const char *src)
|
|
{
|
|
if (!access_ok(VERIFY_READ, src, 1))
|
|
return 0;
|
|
return strlen(src) + 1;
|
|
}
|
|
|
|
/*
|
|
* Zero Userspace
|
|
*/
|
|
|
|
static inline unsigned long __must_check
|
|
__clear_user(void *to, unsigned long n)
|
|
{
|
|
if (!access_ok(VERIFY_WRITE, to, n))
|
|
return n;
|
|
memset(to, 0, n);
|
|
return 0;
|
|
}
|
|
|
|
#define clear_user(to, n) __clear_user(to, n)
|
|
|
|
#endif /* _BLACKFIN_UACCESS_H */
|